Livello precedente |
Riccardo Pignari. Impact of Encoding Techniques on the Classification of Raw Time-Variant Signals with Spiking Neural Networks. Rel. Gianvito Urgese, Evelina Forno, Vittorio Fra. Politecnico di Torino, Corso di laurea magistrale in Physics Of Complex Systems (Fisica Dei Sistemi Complessi), 2022
Andrea Pignata. Development of a synchronized acquisition system based on a BLE-sensor network for real time IoT applications. Rel. Gianvito Urgese, Vittorio Fra, Evelina Forno, Walter Gallego Gomez. Politecnico di Torino, Corso di laurea magistrale in Ingegneria Informatica (Computer Engineering), 2022
Marco Bramini. Designing an end-to-end Pipeline for Developing and Deploying IoT Solutions on Embedded Neuromorphic Platforms. Rel. Gianvito Urgese, Giacomo Indiveri, Vittorio Fra. Politecnico di Torino, Corso di laurea magistrale in Ingegneria Informatica (Computer Engineering), 2023
Salvatore Tilocca. Exploring Brain-Inspired Multi-Sensor Data Fusion Models for Improving Performances in Navigation and Tracking Applications. Rel. Gianvito Urgese, Vittorio Fra. Politecnico di Torino, Corso di laurea magistrale in Ingegneria Informatica (Computer Engineering), 2024
Benedetto Leto. LIF-based Legendre Memory Unit: neuromorphic redesign of a recurrent architecture and its application to human activity recognition. Rel. Gianvito Urgese, Vittorio Fra. Politecnico di Torino, Corso di laurea magistrale in Ingegneria Informatica (Computer Engineering), 2024
Francesco Guarino. Bridging Neuromorphic Platforms for Customized Recurrent Spiking Neural Networks: Human Activity Recognition from snnTorch to Intel Loihi 2. Rel. Gianvito Urgese, Vittorio Fra. Politecnico di Torino, Corso di laurea magistrale in Ingegneria Informatica (Computer Engineering), 2024