
POLITECNICO DI TORINO

Master degree course in Computer Engineering

Master Degree Thesis

Bridging Neuromorphic Platforms
for Customized Recurrent Spiking

Neural Networks: Human
Activity Recognition from
snnTorch to Intel Loihi 2

Relatori
Gianvito Urgese
Vittorio Fra

Candidato
Francesco Guarino

December 2024

Abstract

In recent years, conventional Artificial Neural Networks (ANNs) have become es-
sential in research and industry, serving as the primary solution for a wide range of
applications. Simultaneously, there is growing interest in Spiking Neural Networks
(SNNs), which offer a more biologically plausible model by emulating the human
brain’s structure and function. SNNs excel in sparse and parallel processing, asso-
ciative memory and low power consumption. To fully leverage these advantages,
specialized neuromorphic hardware is required, shifting from traditional von Neu-
mann architectures to event-driven, asynchronous computation.

This thesis presents a modular approach for designing SNNs suitable for de-
ployment on Intel’s Loihi 2 neuromorphic hardware through Intel’s own framework,
Lava. I utilized mature frameworks like snnTorch and Brevitas to address challenges
related to fixed-point arithmetic, weight quantization, and internal state variable
quantization inherent in Loihi 2’s architecture. My pipeline enables the definition
and training of SNNs with recurrent structures, which are crucial for time-series
classification tasks.

The focus of this work is on Human Activity Recognition (HAR) using the
Wireless Sensor Data Mining (WISDM) dataset, which includes accelerometer and
gyroscope data from smartphones and smartwatches across 18 activity classes. To
ensure comparability with prior studies, I selected subsets of seven classes based
on their separability using the Kullback–Leibler divergence metric. The network
architecture comprises an input layer, an output layer, and a hidden layer with two
neuron populations. This design incorporates recurrence by feeding back spikes
from the output of the hidden layer back to its input, passing through a second
inhibitory population, allowing the network to retain the memory of previous time
steps.

I addressed data conversion challenges by using the input neuron population
as an encoding layer, converting floating-point data into discrete spike outputs
distributed over time. For weight quantization, Brevitas was employed to train
directly with 8-bit quantized weights, sharing the same quantization range across all
connection layers. Internal state quantization was managed by leveraging functions
within the Lava framework, which converted floating-point decays and thresholds
into fixed-point representations suitable for Loihi 2.

3

The training process was enhanced using the Neural Network Intelligence (NNI),
framework for hyperparameter optimization. Sparsity was promoted through dropout
layers and a loss function that encouraged low activation frequencies without ho-
mogenizing neuron behavior. Results demonstrated that quantization and sparsity
enforcement did not adversely affect training; the network achieved a high valida-
tion accuracy of 96.5%, comparable to ANNs results on the task. While converting
states led to some clipping of system dynamics near the quantization range limits,
this saturation of internal states had only a minor impact on performance, lowering
the accuracy to 94.8%.

Future work will focus on enhancing the generalizability of the pipeline across
various tasks and network architectures. This includes improving quantization tech-
niques to further minimize state saturation effects. Additionally, expanding com-
patibility with other neuromorphic frameworks, such as Neuromorphic Intermediate
Representation (NIR). This will serve to validate the pipeline’s applicability and
contribute to the broader adoption of SNNs in practical applications.

4

Contents

Contents 5

List of Figures 7

List of Tables 9

1 Introduction 13

2 Background 17
2.1 From classic ANNs to SNNs . 17

2.1.1 Leaky Integrate and Fire (LIF) 19
2.1.2 Data Encoding . 20
2.1.3 Training spiking neural network 21
2.1.4 snnTorch . 25
2.1.5 NeuroBench . 26

2.2 Human Activity Recognition . 26
2.2.1 WISDM dataset . 27

2.3 Intel Loihi 2 . 29
2.3.1 Architecture and Key Features 29
2.3.2 Performance Improvements 30
2.3.3 Research Applications and Results 30
2.3.4 Available Loihi 2 Hardware Systems 31

2.4 Lava Framework . 32
2.4.1 Core Structure of Lava . 32
2.4.2 Process Models . 32
2.4.3 Execution of Processes . 33
2.4.4 Inter-Process Communication 34
2.4.5 Lava-DL: Deep Learning Extension 34

3 Materials and methods 35
3.1 Data pre-processing . 36

3.1.1 Kullback-Leibler Divergence as Separability Metric 36
3.1.2 Separability score . 38

5

3.2 Spiking Network Definition . 40
3.2.1 Encoding Layer . 40
3.2.2 Recurrent Block . 43
3.2.3 Output Loss Function and Rate Coding 45
3.2.4 Quantization in Brevitas . 47
3.2.5 Cosine Annealing Learning Rate and its Role in Quantized

Networks . 49
3.2.6 Sparsity Enforcing . 50

3.3 Lava and Loihi 2 Porting . 53
3.3.1 Network Definition in Lava 54
3.3.2 Neuron Internal Variable Quantization 55
3.3.3 Hardware Execution . 56

3.4 Hyperparameter Search . 56
3.4.1 Neural Network Intelligence (NNI) 57

4 Results 61
4.1 KDL metrics evaluation . 61
4.2 Training results . 65

4.2.1 Best results analysis . 65
4.3 Activation sparsity results . 70
4.4 Networks conversion results . 72

4.4.1 From snnTorch to Lava . 73
4.4.2 From Floating Point to Fixed Point in Lava 76
4.4.3 Lava fine-tuning using local learning rule 85

4.5 Loihi2 power consumption . 85
4.6 Conclusion . 86

Bibliography 91

6

List of Figures

2.1 a) Biological visualization of membrane potential. b) Representa-
tion of equivalent circuit. c) Visual representation of elements con-
stituting the neuron model. d) Evolution of membrane potential and
spikes over time. Image from [18] 19

2.2 . 21
2.3 Spike-Timing Dependent Plasticity (schematic): The Spike-Timing-

Dependent Plasticity (STDP) function shows the change of synaptic
connections as a function of the relative timing of pre-and postsy-
naptic spikes after 60 spike pairings. Schematically redrawn after Bi
and Poo (1998). From [5]. 24

2.4 . 29

3.1 1. Data preprocessing using Kernel Density Estimation (KDE) and
Küllbach-Leibler Divergence (KLD). 2. Building the network. 3.
Implementation of quantized aware training and 4. Definition of
activation sparsity loss. 5. Iterative training using NNI. 6. lava
porting and state quantization. 7. Loihi2 deployment and power
consumption metrics. 35

3.2 Visualization of KDE metrics over WISDM dataset 37
3.3 Visualization of KDL score over different pairs of functions 38
3.4 Distance matrix calculated with the described process 40
3.5 the full network designed for this work. From the top, we can rec-

ognize: Encoding layer, responsible for the spiking encoding of the
encoded data. RInibitory populations: responsible for the feature ex-
traction from incoming data, using two neuron populations. Output
population: responsible for the output Rate coding. 41

3.6 a) Original AHP Compartment compared to b) this thesis imple-
mentation . 43

3.7 a) visualization of snn.RLeaky block b) implementation of Rinibitory
that Inherit from snn.RLeaky . 46

4.1 Distance matrix calculated with the described process 62

7

4.2 Sum Score: 150.30 MSE Score: 2.380 · 10−4 63
4.3 Sum Score: 125.05 MSE Score: 1.436 · 10−4 64
4.4 Sum Score: 27.67 MSE Score: 2.011 · 10−4 65
4.5 Evaluation of the worst split.(a) Subfigures show Accuracy , (b) Loss

, (c)Confusion Matrix , (d) the parameters chosen by the Hyperpa-
rameter optimization (HPO) process 66

4.6 Evaluation of the High Score split. Subfigures show Accuracy (a),
Loss (b), Confusion Matrix (c), and the parameters chosen by the
HPO process (d). 68

4.7 Evaluation of the balanced score split. Subfigures show Accuracy
(a), Loss (b), Confusion Matrix (c), and the parameters chosen by
the HPO process (d). 69

4.8 Visualization of signal from class 5 (Drinking) of balanced split. It
will be the input for the state and raster visualization. 74

4.9 Comparison between encoding population state and spikes of ((a)
and (c)) snnTorch and ((d) and (b)) Lava 75

4.10 Comparison between forward population state and spikes of ((a)
and (c)) snnTorch and ((d) and (b)) Lava 76

4.11 Comparison between backward population state and spikes of ((a)
and (c)) snnTorch and ((d) and (b)) Lava 77

4.12 Comparison between output population state and spikes of ((a)
and (c)) snnTorch and ((d) and (b)) Lava 78

4.13 Comparison between forward population state and spikes of Lava
((a) and (c)) Floating-pt and ((d) and (b)) Lava Fixed-pt 79

4.14 Comparison between backward population state and spikes of
Lava ((a) and (c)) Floating-pt and ((d) and (b)) Lava Fixed-pt . . . 80

4.15 Comparison between output population state and spikes of Lava
((a) and (c)) Floating-pt ((d) and (b)) Lava Fixed-pt 81

4.16 Comparison of Confusion Matrices: (a) Fixed High score split (b)
Original snnTorch results for High score split. 82

4.17 (a)Class signals for label 1 (b) raster plot of output layer floating
point network (c) raster plot of output layer fixed point network both
in Lava . 83

4.18 (a) Class signals for label 5, (b) raster plot of output layer floating
point network (c) raster plot of output layer fixed point network both
in Lava . 84

8

List of Tables

2.1 Complete List of Activities . 27
2.2 Dataset Sizes for Training, Validation, Testing, and Calibration . . 28
2.3 Comparison of Intel Loihi 1 and Loihi 2 Specifications [13] 31

3.1 Parameter Search Spaces . 57

4.1 Activity for High score split . 62
4.2 Activity for balanced score split . 63
4.3 Activity for worst score split . 64
4.4 HPO for each network analyzed. In bold the main parameters

that change model size. 71
4.5 Comparison of metrics across different configurations. 72
4.6 comparison of validation score for the same network on the two dif-

ferent frameworks using floating point values 73
4.7 comparison of validation score for the same network in Lava using

floating point and fixed point arithmeticians 78
4.8 Lava fixed test results for al three dataset splits 84
4.9 Performance Benchmarking Comparison Template (Transposed) . . 86

9

10

Glossary

AHPC After-Hyperpolarizing Compartment. 44, 45

ANN Artificial Neural Network. 3, 4, 13, 14, 18, 22, 34, 43

CUBA LIF CUrrent BAse Leaky Integrate-and-Fire. 54

HAR Human Activity Recognition. 3, 14, 15, 18, 26, 27, 36, 38, 43, 44

HPO Hyperparameter optimization. 8, 56–59, 61, 65, 66, 71

KDE Kernel Density Estimation. 7, 35–40

KLD Küllbach-Leibler Divergence. 7, 35–40

LIF Leaky Integrate and Fire. 14, 19, 42, 44–46, 54

NNI Neural Network Intelligence. 4, 7, 35, 57–59, 65

RSTDP Reward-modulated Spike-Timing-Dependent Plasticity. 85

SNN Spiking Neural Network. 3, 4, 13–15, 17, 18, 20–23, 25, 26, 30, 34, 40, 42–44,
50, 56, 58, 59, 65, 70, 86, 87

STDP Spike-Timing-Dependent Plasticity. 7, 14, 17, 23, 24, 85

WISDM Wireless Sensor Data Mining. 3, 7, 27, 36, 37

11

12

Chapter 1

Introduction

The rapid evolution of artificial intelligence and machine learning technologies has
ushered in a renewed interest in computational paradigms inspired by biological sys-
tems. Neuromorphic computing, a concept theorized in 1997 by Wolfgang Maass
in [1], is one such paradigm that mimics the behavior and structure of the brain,
offering a potential pathway to more efficient and powerful artificial neural net-
works. Unlike traditional ANNs, which rely on continuous signal processing, SNNs
leverage an event-driven model that better reflects the functionality of biological
neurons. This architecture allows for the simultaneous representation of both spa-
tial and temporal dependencies, enhancing the network’s ability to tackle complex
tasks.

In SNNs, information transmission is sparse and asynchronous, relying on dis-
crete spike events rather than continuous activations. Each neuron in an SNN
remains inactive until it receives a sufficient accumulation of spikes to exceed a
threshold, at which point it generates a spike of its own. This approach aligns
closely with how neurons in the brain operate, where communication between neu-
rons is triggered by spikes, encoded as electrical pulses. Unlike traditional ANNs,
which require continuous floating-point calculations, SNNs operate using binary
spikes, allowing for greater power efficiency and enabling computation with mini-
mal energy use. This distinctive approach not only captures spatial dependencies
among neurons but also inherently encodes temporal information, making SNNs
particularly suited to applications involving time-sensitive or sequential data.

One of the key strengths ofSNNs lies in their ability to process information in
real-time. By only activating in response to incoming spikes, SNNs can signifi-
cantly reduce the amount of computation required, which directly translates into
energy savings. This event-driven nature makes SNNs an attractive solution for
tasks where power efficiency and low-latency processing are crucial, such as mobile
and wearable devices. However, these benefits come with challenges, particularly in
the realm of training. The non-differentiable nature of spiking neurons complicates
the use of conventional backpropagation (as SLAYER [2]), the backbone of training

13

Introduction

in traditional ANNs. Instead, training SNNs often requires alternative approaches,
such as surrogate gradient methods [3], conversion techniques from ANNs [4], or
biologically inspired methods like STDP [5] These methods, while promising, fre-
quently involve compromises in training efficiency or accuracy, highlighting an area
of ongoing research and development.

In recent years, advancements in neuromorphic hardware have brought SNNs
closer to real-world applications [6]. Unlike general-purpose processors, which rely
on the von Neumann architecture, neuromorphic chips incorporate specialized cir-
cuits designed to emulate the operation of biological neurons and synapses. These
chips integrate both computational and memory resources, enabling local process-
ing of information in a manner similar to synaptic connections in the brain. Notable
examples of such hardware include IBM’s TrueNorth [7], SpiNNaker [8] which pi-
oneered large-scale neuromorphic computing; SynSense’s Xylo [9], optimized for
low-dimensional inputs; and Intel’s Loihi [6] [10] and Loihi 2 [11] [12] [13] and
spiNNaker 2 [14] which offer flexibility in neuron models and support for complex
network topologies. These devices enable the hardware-level implementation of
SNNs, allowing researchers to explore their potential outside of purely software-
based simulations.

Intel’s Loihi 2, in particular, represents a significant step forward in the field.
It provides a versatile platform that supports various neuron models, including the
commonly used Leaky Integrate and Fire (LIF) model. The design of this chip
places an emphasis on energy efficiency and configurability, rendering it an optimal
choice for edge computing applications. Loihi 2’s architecture facilitates the deploy-
ment of SNNs for practical tasks such as object detection, signal processing, and
HAR, where real-time responsiveness and low power consumption are paramount.
Loihi 2’s capacity to integrate with other computing components also positions it
as a viable accelerator for offloading specific tasks from the central processing unit,
extending the functionality of neuromorphic systems to broader, more practical use
cases.

The potential of neuromorphic computing is further amplified by its suitability
for battery-powered devices, where energy constraints are a significant concern. In
the domain of HAR, for instance, traditional deep learning models, while effective,
often struggle with power efficiency when deployed on mobile devices. By leveraging
the inherent advantages of SNNs, neuromorphic chips can facilitate HAR on devices
like smartphones and wearables, using sensor data to classify activities such as
walking, running, and sitting with minimal power draw. This capability opens
up new possibilities for mobile applications, enabling continuous monitoring and
real-time analysis without the energy burden typical of conventional models.

The advent of hardware platforms like Loihi 2 signals a shift from theoretical
exploration to practical deployment of SNNs. Despite their promise, the deploy-
ment of SNNs on neuromorphic hardware involves several hurdles. These include

14

Introduction

the challenge of encoding input data into spike-based formats, the need for spe-
cialized training methods that accommodate the event-driven nature of SNNs, and
the intricacies of programming for neuromorphic architectures. Addressing these
challenges requires a nuanced understanding of both the software and hardware as-
pects of neuromorphic computing, as well as careful consideration of the application
context to maximize performance and efficiency.

This thesis aims to define, train, and evaluate a custom recurrent Spiking Neu-
ral Network on the Intel Loihi 2 platform for HAR The goal is to test the SNN’s
performance in this field, examining its power efficiency, robustness, and overall
suitability for real-time applications. By deploying the SNN on Intel Loihi 2, this
work also seeks to address the practical challenges of programming, training, and
optimizing SNNs for neuromorphic hardware, contributing to the broader under-
standing of the applicability of SNNs for edge computing in real-world scenarios.
Ultimately, this thesis will provide insights into the viability of a low-power al-
ternative to traditional deep learning models in mobile and wearable technology
applications.

15

16

Chapter 2

Background

2.1 From classic ANNs to SNNs
Spiking Neural Networks (SNNs) represent a class of artificial neural networks that
attempt to mimic the way biological neurons communicate through discrete spikes,
as opposed to the continuous activations used in traditional neural networks. SNNs
were first theorized in the late 1980s and early 1990s as researchers sought to model
more biologically realistic neural processes [15]. They differ from conventional neu-
ral networks by encoding information through spikes’ timing, allowing them to
process temporal data more naturally and with greater energy efficiency.

The early theoretical foundation of SNNs can be traced back to work by neu-
roscientists like Alan Hodgkin and Andrew Huxley in [16], who described the bio-
physical mechanisms of spiking neurons in 1952. However, it wasn’t until 1997 that
the formal concept of SNNs was introduced by Wolfgang Maass in [1] giving signifi-
cant contributions by defining the computational capabilities of SNNs and showing
that they are computationally more powerful than traditional neural networks for
certain types of tasks. One important milestone in the evolution of SNNs came in
1997 with the introduction of STDP, a learning rule that adjusts the strength of
synaptic connections based on the precise timing of spikes. This discovery, led by
Henry Markram and colleagues, was significant because it aligned closely with how
synaptic learning occurs in the brain, advancing both AI and neuroscience.

In the 2000s, it gained momentum with the development of neuromorphic hard-
ware—specialized chips designed to run SNNs efficiently. In particular, IBM’s
TrueNorth [7] and Intel’s Loihi [17] are notable examples of neuromorphic pro-
cessors built to leverage the sparse, event-driven nature of SNNs for low-power
applications. These chips have been demonstrating the practical advantages of
SNNs, particularly in power-sensitive applications like mobile devices and IoT. To-
day, SNNs are an active area of research, with advancements in both algorithms and
hardware driving new applications in areas such as real-time sensory processing,
robotics, and edge computing. As neuromorphic technology continues to improve,

17

Background

SNNs are poised to play an increasingly prominent role in AI, particularly for tasks
that require temporal precision and energy efficiency.

The shift from conventional (ANNs) to (SNNs) reflects the pursuit of more
energy-efficient, temporally dynamic, and biologically inspired AI. SNNs, which use
discrete spikes to transmit information, are designed to mimic the brain’s neural
processes more closely than traditional ANNs. With the emergence of neuromorphic
hardware, SNNs are increasingly being adopted for applications that demand real-
time processing, low power consumption, and enhanced adaptability. Here are the
key reasons driving this transition:

1. Energy Efficiency: SNNs only process information when spikes occur, un-
like conventional ANNs, which operate on continuous signals and require
constant updates. This event-driven approach significantly reduces energy
consumption, especially when idle.

2. Temporal Dynamics: SNNs inherently model time, allowing them to han-
dle sequential and time-sensitive data more effectively than ANNs, which
require architectures like LSTMs or GRUs. This makes SNNs well-suited for
tasks such as HAR, where understanding temporal patterns is essential.

3. Spike Timing and Processing: By using the precise timing of spikes, SNNs
can represent and process temporal information directly, enabling them to
respond to dynamic changes in data streams more naturally than conventional
networks.

4. Biological Plausibility: SNNs simulate the behavior of biological neurons
by using spikes for information transfer, closely resembling the way neurons
in the brain communicate. This approach is not only more interpretable for
studying neural mechanisms but also aligns well with neuroscience research.

5. Scalability and Parallelism: Neuromorphic hardware enables SNNs to
scale with a high degree of parallelism, as each neuron can operate indepen-
dently. This is beneficial for complex, large-scale tasks requiring substantial
computational resources.

6. Sparse Connectivity: Unlike ANNs, which often require dense connections
and extensive data exchange, SNNs rely on sparse connections. This reduces
communication overhead, allowing SNNs to scale efficiently and maintain per-
formance as the network size grows.

7. Resilience to Noise: The event-driven, spike-based processing in SNNs
makes them more tolerant to noise and random perturbations in input data,
as they do not continuously update based on every small change.

18

2.1 – From classic ANNs to SNNs

2.1.1 Leaky Integrate and Fire (LIF)
LIF 2.1 neurons serve as essential models in computational neuroscience, reflecting
the behavior of biological neurons while providing a framework for mathematical
analysis. Biologically, neurons integrate incoming electrical signals through their
dendrites, where the membrane, acting as a boundary filled with intracellular saline,
generates an action potential when ion channels, such as sodium (Na+), facilitate
the flow of ions. This movement creates the voltage changes that trigger commu-
nication with other neurons.

Figure 2.1: a) Biological visualization of membrane potential. b) Representation
of equivalent circuit. c) Visual representation of elements constituting the neuron
model. d) Evolution of membrane potential and spikes over time. Image from [18]

In the LIF model [19], this process can be represented as an electrical circuit
(Figure 2.1.b) where incoming current Iin charges the membrane potential U(t),
constrained by membrane resistance R and capacitance C. This simple representa-
tion captures the integration of input and the natural decay of potential over time
due to leakage. When U(t) reaches a defined threshold ϑ, a spike is generated,

19

Background

mirroring the firing behavior of biological neurons.
The behavior of LIF neurons can be modeled with mathematical functions 2.1

and 2.2 that describe how synaptic currents and membrane potentials evolve.

Isyn[t + 1] = αIsyn[t] + WX[t + 1] where α = e−∆t/τsyn (2.1)

U [t + 1] = βU [t] + Isyn[t + 1]−R[t] where β = e−∆t/τmem (2.2)

The spiking condition is given by Equation 2.3.

Sout[t] =
⎧⎨⎩1, if U [t] > Uthr,

0, otherwise.
(2.3)

where:

• Isyn[t] is the synaptic current at time step t,

• U [t] is the membrane potential at time step t,

• W represents the weight matrix,

• X[t + 1] is the input at time step t + 1,

• R[t] is the reset term after spiking,

• α and β are decay factors related to the synaptic and membrane time con-
stants (τsyn and τmem, respectively),

• ∆t is the time step size,

• Uthr is the threshold for spiking.

2.1.2 Data Encoding
Data encoding in Spiking Neural Networks (SNNs) translates continuous input in-
formation into spike-based representations, crucial for conveying information through
discrete spiking events. Common encoding methods include rate coding, latency
coding, and delta modulation, each with applications tailored to specific aspects of
sensory processing and neural computation [20].

1. Rate Coding: This method encodes input intensity as a firing rate or spike
count, where higher input intensities are represented by higher spike frequen-
cies. Rate coding is widely used in SNNs for applications such as image
recognition [21], where pixel intensity can be mapped to neuron firing rates,
allowing networks to process visual information similarly to traditional deep

20

2.1 – From classic ANNs to SNNs

learning networks. In recurrent SNNs, rate coding can carry information over
timesteps, making it suitable for time-dependent processing tasks. This en-
coding scheme is also applied in speech processing [22] to represent phonetic
intensity over time.

2. Latency (Temporal) Coding: Here, the timing of spikes represents in-
put intensity, with earlier spikes corresponding to stronger inputs. Latency
coding is effective for applications requiring precise timing, such as sound
localization [23], where the relative spike pathways can pinpoint sound direc-
tion. Additionally, latency coding is employed in tactile sensing systems [24],
where touch intensity is encoded by the spike timing, allowing rapid detection
of physical pressure on neuromorphic sensors.

3. Delta Modulation: Also known as “threshold crossing,” delta modulation
encodes input by generating spikes only when there is a substantial change in
input intensity. This encoding method is commonly used in event-based vision
systems [25], where spikes are triggered only by changes in pixel intensity,
drastically reducing data and power consumption in stable conditions. Delta
modulation is also applied in anomaly detection [26], where infrequent but
significant changes in sensor data trigger spikes, allowing the network to focus
only on relevant dynamic information.

2.1.3 Training spiking neural network

Figure 2.2

In SNNs 2.2, communication between neurons relies solely on binary signals,
represented as ones and zeros, generated according to the neuron activation func-
tion. This discrete signaling approach mirrors biological neurons, where spikes
represent the only form of data exchange across the network.

21

Background

However, the spiking activation function is inherently non-differentiable, posing
significant challenges for traditional training methods such as back-propagation.
The standard back-propagation technique relies on gradient-based optimization,
which necessitates differentiability in order to compute weight updates in an effi-
cient manner. Consequently, the direct application of back-propagation in SNNs
is not a viable approach without either altering the network’s behaviour during
training or selecting an alternative method of updating the models’ weights. The
standard back-propagation technique relies on gradient-based optimisation, which
necessitates differentiability in order to compute weight updates in an efficient
manner. Consequently, the direct application of back-propagation in SNNs is not a
viable approach without either altering the network’s behavior during training or
selecting an alternative method of updating the models’ weights.

A comprehensive account of the methodologies that have yet to be explored is
provided in [18]. The following is a brief summary of these methodologies.

1. From already existing ANNs: Shadow training is a technique for training
SNNs by first training an equivalent non-spiking ANN and then converting it
into an SNN [4]. In this approach, the activations of the ANN are interpreted
as spike-based metrics, such as firing rate or spike timing, allowing SNNs to
benefit from conventional deep learning methods.
In shadow training, the ANN is trained on the target task, and its activations
are mapped to spike-based representations in the SNN:

• Firing Rate Mapping: ANN activations are interpreted as firing rates,
where the activation of a neuron in the ANN corresponds to the rate of
spikes generated by the corresponding neuron in the SNN.

• Spike Timing Mapping: Alternatively, ANN activations can be mapped
to specific spike times, where higher activation translates to earlier spik-
ing.

This approach allows SNNs to leverage well-established deep learning tech-
niques and architectures without requiring complex spike-based backpropa-
gation. It also provides a way to apply recent advancements in ANN-based
learning directly to SNNs.
The utilization of shadow training represents an effective methodology for
the initialization of SNNs. This approach facilitates the translation of ANN
knowledge into spike-based models, thereby enabling SNNs to inherit the
sophisticated capabilities inherent to ANNs for tasks such as classification,
detection, and recognition.
This technique has key drawbacks for temporal dependency tasks. By map-
ping static ANN activations to SNNs, it fails to capture precise timing depen-
dencies, limiting the SNN’s native temporal precision. Additionally, ANNs

22

2.1 – From classic ANNs to SNNs

process in frames rather than asynchronously, which mismatches the event-
driven strengths of SNNs. This approach also increases latency and reduces
efficiency, as it doesn’t leverage the sparse, spike-based computations that
SNNs are optimized for. Consequently, shadow-trained SNNs are less effective
for tasks requiring temporal patterns, such as speech or gesture recognition,
where direct spike-based learning is better suited.

2. Local learning rules: Weight updates are a function of signals that are
spatially and temporally local to the weights, rather than from a global signal
as in error backpropagation. Into this family of rules we can reference STDP
[5]. STDP is a biologically inspired learning rule in SNNs where synaptic
weight changes depend on the relative timing of spikes between pre- and
post-synaptic neurons.
If a pre-synaptic neuron fires just before a post-synaptic neuron, the connec-
tion weight W is strengthened (LTP - Long-Term Potentiation). Conversely,
if the post-synaptic neuron fires first, the weight is weakened (LTD - Long-
Term Depression). This is captured by the STDP update rule as equation
2.4.

∆W =
⎧⎨⎩A+e−∆t/τ+ , if ∆t > 0
−A−e∆t/τ− , if ∆t < 0

(2.4)

where:

• ∆t = tpost − tpre is the time difference between post- and pre-synaptic
spikes.

• A+ and A− are scaling factors for potentiation and depression.
• τ+ and τ− are time constants controlling the decay rate of potentiation

and depression.

This asymmetric rule encourages causal spike timing: weights increase when
pre-synaptic spikes precede post-synaptic spikes, reinforcing pathways that
lead to timely activation.
STDP enables unsupervised learning by strengthening or weakening synapses
based on spike timing, capturing temporal correlations in the input data, and
promoting efficient synaptic organization within the network.

3. Backpropagation using spikes: Backpropagation through spikes in SNNs
allows training by approximating gradients for non-differentiable spike events
[3]. Spikes are triggered when membrane potential U crosses a threshold θ,
represented as equation 2.5.

S = H(U − θ), (2.5)

23

Background

Figure 2.3: Spike-Timing Dependent Plasticity (schematic): The STDP function
shows the change of synaptic connections as a function of the relative timing of
pre-and postsynaptic spikes after 60 spike pairings. Schematically redrawn after Bi
and Poo (1998). From [5].

where H is the Heaviside function. Since dS
dU

= 0 for all U /= θ, gradients are
zero except at the threshold, causing the dead neuron problem—neurons
that do not spike receive any gradient and cannot learn.
To enable gradient flow, surrogate gradients replace H(U − θ) with smooth
approximations. Common surrogate functions are:

• Sigmoid:
dS

dU
≈ σ(U − θ) = 1

1 + e−k(U−θ)

• Arctangent:
dS

dU
≈ 1

π
arctan(k(U − θ)) + 0.5

These provide non-zero gradients, even without spikes, enabling neurons to
receive "credit" and overcome the dead neuron issue.
The loss gradient with respect to weights W is computed as in equation 2.6:

∂L

∂W
= ∂L

∂S
· ∂S

∂U
· ∂U

∂W
, (2.6)

24

2.1 – From classic ANNs to SNNs

where ∂L
∂S

is W base on the Loss, ∂S
∂U

is the surrogate gradient, while ∂U
∂W

is the spiking function of the neurons taken in consideration. This allows
effective learning by propagating gradients regardless of neuron firing status,
minimizing the overall loss.

4. SLAYER 2.0 [2]: Advanced surrogate gradient base backpropagation used
specifically by Intel’s developer inside Lava-dl framework, for training SNNs.
Offers significant advantages over conventional surrogate gradient methods
by enhancing efficiency, stability, and hardware compatibility. It optimizes
temporal unfolding to manage SNNs’ time dependencies, reducing redundant
operations and improving memory efficiency, which is crucial for sequential
tasks. SLAYER 2.0 also employs specialized surrogate gradients, such as
the arctangent, for better gradient stability, avoiding issues like vanishing or
exploding gradients and achieving faster convergence.

2.1.4 snnTorch

The snnTorch [18] framework is a Python library built on PyTorch that enables
easy implementation and training of SNNs. One of its strengths lies in its seam-
less integration with PyTorch, which makes it accessible for users already familiar
with deep learning workflows. With snnTorch, users can construct SNNs by defin-
ing spiking layers like snn.LIF (Leaky Integrate-and-Fire) and snn.IF (Integrate-
and-Fire) neurons directly within the PyTorch nn.Sequential or functional API,
maintaining a familiar setup and reducing the learning curve.

snnTorch supports surrogate gradient methods to enable backpropagation through
spikes, allowing users to select from various approximations like sigmoid and arc-
tangent, simplifying the process of training SNNs. This feature lets users easily
experiment with different gradient approximations to improve model training per-
formance. Moreover, snnTorch supports hybrid networks, combining both conven-
tional and spiking layers for more flexible architectures.

snnTorch is also highly portable due to its roots in PyTorch, which allows it
to run on a diverse range of hardware, including CPUs, GPUs, and even neuro-
morphic devices compatible with this framework. This portability ensures that
models developed on standard hardware can later be transferred to specialized
environments, supporting efficient experimentation and deployment. The compat-
ibility with PyTorch libraries, such as torchvision and optimization tools, further
enhances snnTorch’s versatility, enabling integration with a vast ecosystem of ma-
chine learning resources.

25

Background

2.1.5 NeuroBench
NeuroBench [27] is a benchmarking suite designed specifically for evaluating
(SNNs) on a variety of neuromorphic tasks. It provides a standardized set of
tasks and metrics, enabling consistent and objective comparisons between differ-
ent SNN models, algorithms, and hardware implementations. NeuroBench includes
benchmarks that focus on real-time, event-driven processing, aligning well with the
capabilities of SNNs and neuromorphic hardware.

The suite supports a range of applications, from sensory processing tasks to
temporal sequence learning, helping researchers assess model performance in real-
world scenarios that require high efficiency and low latency. By offering a unified
framework for evaluation, NeuroBench promotes reproducibility and aids in iden-
tifying the most effective architectures and training strategies for neuromorphic
computing.

2.2 Human Activity Recognition
A deep understanding of the user’s surroundings is essential for many systems to
achieve their goals. Recognizing user behavior and activities is particularly crucial,
as it enables more sophisticated and effective human-computer interactions.

This understanding has broad implications across various fields, including health-
care, autonomous driving, and security surveillance. For example, identifying hu-
man actions could enhance the functionality of prosthetic limbs, support fitness
assessments, aid in illness prevention, and much more [28].

HAR aims to classify and understand human actions by analyzing motion data
from sensors.

This data is processed through a trained classifier, which then identifies the
activity. Historically, HAR posed significant challenges due to the lack of precise,
commercially available sensors and the limited processing power of portable devices.

Gathering necessary data once required bulky, full-body sensor suits that were
cumbersome and inefficient. Real-time data processing on handheld devices was
also impractical, as it was too slow and rapidly depleted battery life.

Today, however, advancements in sensor technology and the widespread use
of wearable devices, such as smartwatches, have transformed HAR. Modern wear-
ables are equipped with highly accurate sensors and boast impressive processing
capabilities for their size, with batteries that can easily last more than a day.

These devices have gained popularity as practical and stylish accessories, often
worn continuously throughout the day. This constant usage provides a steady flow
of data, enabling systems to adapt and tailor their recognition models to individual
users, thereby improving accuracy. Furthermore, it allows for background analysis
that was previously unfeasible.

26

2.2 – Human Activity Recognition

The progress in HAR technology has the potential to drive a new wave of in-
novations that can significantly enhance human-machine integration across various
applications.

2.2.1 WISDM dataset
The WISDM dataset at [29], created by the WISDM Lab at Fordham University, is
a rich resource for human activity recognition and biometric research. This dataset
was designed to capture and analyze data from the accelerometers and gyroscopes
of both smartphones and smartwatches as participants engaged in 18 main activi-
ties (2.1. Specifically, 51 subjects, each equipped with a smartphone in their pocket
and a smartwatch on their dominant hand, performed 18 distinct activities. These
activities encompassed both ambulatory movements, like walking and jogging, and
hand-centric tasks, such as brushing teeth, folding clothes, and various eating ac-
tivities. Each activity was performed for three minutes, accumulating 54 minutes of
data per participant and yielding an extensive dataset with over 15 million sensor
readings.

Index Activity
0 walking
1 jogging
2 stairs
3 sitting
4 standing
5 typing
6 brushing teeth
7 eating soup
8 eating chips
9 eating pasta
10 drinking
11 eating sandwich
12 kicking soccer
13 catch tennis
14 dribbling basketball
15 writing
16 clapping
17 folding clothes

Table 2.1: Complete List of Activities

Data collection was facilitated by a custom application that ran on both the
smartphone and smartwatch, ensuring consistent data acquisition across devices.

27

Background

The dataset was recorded at a frequency of 20 Hz (one reading every 50 ms), pro-
ducing time-series data from four separate sensors: the smartphone’s accelerometer
and gyroscope, and the smartwatch’s accelerometer and gyroscope. The smart-
phone models used were the Google Nexus 5/5X or Samsung Galaxy S5, running
Android 6.0, while the smartwatch was the LG G Watch on Android Wear 1.5.
This setup allowed for the simultaneous recording of accelerations and rotational
movements, which were then tagged with an activity label and a unique subject
identifier for ease of analysis.

The data are not only labeled with the specific activity being performed but
are also segmented by subject, enabling the use of the dataset for both activity
recognition and biometric identification. This dual purpose is further supported
by the inclusion of subject identifiers in the dataset, allowing for personalized and
user-specific analyses.

In addition to the raw sensor data, the dataset includes processed versions,
with examples transformed using a sliding window approach, typical in activity
recognition. The sliding window method segments the raw time-series data into
non-overlapping windows (in this case, 10-second segments), with each window
containing high-level features derived from the raw data. This transformation fa-
cilitates machine learning and data mining applications, as many algorithms require
fixed-size, feature-rich input rather than raw time-series data. Subsequent works
identify a better way to define the overlapping windows, in fact, Vittorio Fra in
[30] was able to recognize with high accuracy each sample using 2-second segments,
giving a total window of 40 timesteps for each sample. In Table 2.2, are represented
some key features of the dataset.

Dataset Samples Time Steps Features
Training 55,404 40 6
Validation 18468 40 6
Testing 18469 40 6
Calibration 100 40 6

Table 2.2: Dataset Sizes for Training, Validation, Testing, and Calibration

Overall, the WISDM dataset provides a comprehensive foundation for researchers
exploring human activity recognition, with applications spanning health monitor-
ing, personal fitness, biometric security, and beyond. Its structure and breadth
make it a versatile dataset that can support a wide range of analytical techniques
and model development efforts, particularly in fields leveraging wearable sensor
data for real-time user monitoring and interaction. The dataset is publicly accessi-
ble via the UCI Machine Learning Repository[31], promoting further innovation in
wearable sensor-based research.

28

2.3 – Intel Loihi 2

2.3 Intel Loihi 2
Intel’s Loihi 2 represents the latest innovation in neuromorphic computing, build-
ing upon the foundational architecture of its predecessor, Loihi 1, with enhanced
flexibility, computational power, and resource efficiency. Neuromorphic computing
is a technology that emulates the neural networks of the brain to facilitate real-time,
adaptive processing at low power consumption, rendering it an optimal choice for
artificial intelligence applications in robotics, embedded systems, and edge devices.

2.3.1 Architecture and Key Features

Figure 2.4

Loihi 2 introduces several architectural enhancements as shown in Figure 2.4,
making it significantly more versatile and powerful than Loihi 1:

• Programmable Neuron Models: Loihi 2 provides fully programmable
neuron models that support a wide variety of neural behaviors, allowing the
implementation of customized spiking dynamics to match specific computa-
tional needs.

• Graded Spike Events: Loihi 2’s support for graded spikes enables each
spike to carry up to a 32-bit integer payload, increasing data precision while
retaining the benefits of event-driven communication.

29

Background

• Enhanced Learning Rules: Loihi 2 adds localized “third factors” for on-
chip learning, enabling it to perform more complex training algorithms, in-
cluding approximations of backpropagation. This is essential for supporting
deep learning tasks that require gradient-based learning methods.

• Increased Resource Density: Built on Intel’s 4-nm process, Loihi 2 achieves
a 2x increase in resource density, with a die size of just 31 mm2. This im-
provement enables up to 1 million neurons and 120 million synapses on a
single chip, allowing for larger and more complex SNN models.

• Onboard x86 Processor: Loihi 2 incorporates 6 embedded x86 processor
that facilitates efficient spike-based input/output processing, network config-
uration, and data handling, which simplifies integration with other systems.
The x86 processor offloads tasks from the neuromorphic cores, optimizing
performance and enabling faster data encoding, decoding, and transfer.

• 3D Multi-Chip Scaling: Loihi 2 introduces a redesigned asynchronous
communication fabric with support for 3D multi-chip scaling, allowing up to
16,384 interconnected chips for high scalability. This feature expands the po-
tential of Loihi-based systems to tackle large-scale, distributed neuromorphic
applications.

• Improved Connectivity and Standard Interfaces: Loihi 2 features stan-
dardized interfaces, including 10G Ethernet, GPIO, and SPI, which facilitate
integration with conventional computing systems and sensors for real-world
deployments.

2.3.2 Performance Improvements
Loihi 2’s improvements over Loihi 1 include significant advancements in compu-
tational speed, precision, and energy efficiency. These improvements stem from
architectural changes such as asynchronous pipelining and enhanced circuit design,
which reduce latency and enable faster more efficient neuromorphic processing.

With up to 10x faster spike generation, 5x improved synaptic operations, and
2x faster neuron updates, Loihi 2 delivers substantial speedups over Loihi 1. The
introduction of graded spikes and improved learning flexibility make Loihi 2 more
adaptable to a broader range of applications, including complex tasks that require
precise, adaptive control.

2.3.3 Research Applications and Results
Research conducted by the Intel Neuromorphic Research Community (Intel NRC)
[32] has showcased Loihi’s capabilities across various fields:

30

2.3 – Intel Loihi 2

Feature Loihi 1 Loihi 2
Process Technology 14nm 4nm

Die Size 60 mm2 31 mm2
Max Neuron Count 128,000 1,000,000
Max Synapse Count 128 million 120 million

Neuron Model Programmability Limited Fully programmable
Spike Precision Binary spikes Graded spikes (32-bit)

Learning Architecture Two-factor, fixed rules Three-factor, adaptive rules
Onboard x86 Processor 3 6
Networking Interface Proprietary Standard (10G Ethernet, GPIO, SPI)

minimum Time per Timestep ~- 200 ns

Table 2.3: Comparison of Intel Loihi 1 and Loihi 2 Specifications [13]

• Adaptive Control in Robotics: Loihi 2 has been employed in robotic arm
control [33] and drone [34] systems, achieving fast, adaptive responses with
really low power consumption, much lower than what traditional processors
require.

• Real-Time Sensory Processing: In sensory perception tasks, such as
visual-tactile integration [35] and olfactory processing [36], Loihi demon-
strated the ability to process multi-sensory data in real time, which is valuable
for applications in human-computer interaction.

• Optimization and Scientific Computing: Loihi has been applied in chal-
lenging optimization problems, such as solving QUBO problems [37]. In these
tasks, Loihi-based solutions showed significant energy savings and processing
speed improvements, often achieving results an order of magnitude faster and
more efficient than conventional approaches.

• Low Power Efficiency: Across applications, Loihi 2 has shown an energy
efficiency several orders of magnitude higher than traditional systems. This
capability makes Loihi 2 well-suited for use in edge devices and embedded
systems where power availability is limited.

2.3.4 Available Loihi 2 Hardware Systems
Intel has released two hardware systems to facilitate research and deployment on
Loihi 2:

• Oheo Gulch: A single-chip system that offers remote access via an Arria 10
FPGA over Ethernet, designed for laboratory research and testing.

• Kapoho Point: This compact, stackable system consists of eight Loihi 2
chips with 10G Ethernet interfaces, making it ideal for embedded applications
and scalable edge deployments.

31

Background

Intel’s Loihi 2 combines enhanced programmability, high computational effi-
ciency, and adaptability, paving the way for low-power solutions in real-world en-
vironments. These advances enable researchers and developers to deploy neuro-
morphic computing in innovative applications, pushing the boundaries of artificial
intelligence.

2.4 Lava Framework
The Lava framework [38] is an open-source software platform developed by Intel to
facilitate the development of neuro-inspired applications. By leveraging neuromor-
phic computing principles, Lava enables efficient, real-time processing, and learning
with minimal power consumption, which is particularly valuable in embedded sys-
tems, robotics, and AI applications. Lava provides a high-level API for designing,
simulating, and executing neural network models on both conventional hardware
(CPUs, GPUs) and neuromorphic platforms, including Intel’s Loihi 2.

2.4.1 Core Structure of Lava
At the heart of Lava is the Process concept, which represents the fundamental
computational unit in a neuromorphic system. A Process defines the structure,
including input/output ports and internal state variables (Vars), but not the im-
plementation details. Processes are designed to interact asynchronously through
ports, enabling parallel, event-driven communication between units in a distributed
network.

Processes in Lava are defined using AbstractProcess, which serves as a blueprint
by specifying the process’s ports and internal variables without detailing its behav-
ior. This structural definition allows a process to be agnostic of specific hardware
platforms, promoting portability and modularity.

2.4.2 Process Models
To implement the actual behavior of a Process, Lava uses Process Models. Pro-
cess Models define the specific computations and logic for a Process, making it
executable on different platforms. Each Process can have multiple Process Mod-
els, allowing it to run on various resources (CPU, GPU, Loihi 2) or in different
languages (e.g., Python, C).

Lava supports two primary types of Process Models:

• LeafProcessModel: Implements the behavior of a Process directly, detailing
the specific logic needed to execute its intended function.

32

2.4 – Lava Framework

• SubProcessModel: Allows for hierarchical composition by defining a Pro-
cess’s behavior using other, smaller Processes. This enables complex, reusable
designs, where larger processes are built from smaller, interlinked sub-processes.

For example, a LeafProcessModel for a Leaky Integrate-and-Fire (LIF) neuron
might include computations for updating the membrane potential and emitting
spikes when the potential crosses a threshold. By contrast, a SubProcessModel
could represent a network of LIF neurons, implementing higher-level neural dy-
namics through hierarchical connections.

Below is a simple example of a LeafProcessModel in Python for a LIF neuron:

from lava.magma.core.model.py.model import PyLoihiProcessModel
from lava.magma.core.decorator import implements, requires, tag
from lava.proc.lif.process import LIF

@implements(proc=LIF)
@requires(CPU)
@tag(’floating_pt’)
class LIFNeuronModel(PyLoihiProcessModel):

def run_spk(self):
Update and spike logic here

2.4.3 Execution of Processes
Processes in Lava are executed by defining both a Run Condition and a Run
Configuration. The RunCondition specifies the duration of execution, such as
a fixed number of steps or continuous execution until paused or stopped. The
RunConfiguration sets the target hardware platform, allowing the same Process
to execute on different devices with minimal code changes.

For instance, running a LIF neuron Process for 42 steps on a CPU simulation
can be achieved as follows:

from lava.proc.lif.process import LIF
from lava.magma.core.run_conditions import RunSteps
from lava.magma.core.run_configs import Loihi1SimCfg

lif = LIF(shape=(1,))
lif.run(condition=RunSteps(num_steps=42), run_cfg=Loihi1SimCfg())

Lava also supports controlling the lifecycle of a Process through commands like
pause() and stop(), allowing developers to examine and manipulate the inter-
nal states mid-execution. This control enables debugging, state inspection, and
adjustments during long-running simulations.

33

Background

2.4.4 Inter-Process Communication
Lava processes communicate asynchronously using Ports. Each Process can have
multiple InPort and OutPort objects, which facilitate data exchange and enable the
creation of large-scale, distributed networks. Ports support flexible, non-blocking
communication where processes can interact without sequential dependencies, sup-
porting parallelism across the network.

Processes can connect dynamically, allowing for complex network configura-
tions. For instance, an output port from one Process can connect to multiple input
ports on other Processes, creating broadcast capabilities. This setup is critical
for distributed neuromorphic networks, where data needs to flow efficiently across
interconnected nodes.

2.4.5 Lava-DL: Deep Learning Extension
Lava-DL [39] is an extension of the Lava framework that adds support for deep
learning on neuromorphic hardware. Built around the SLAYER 2.0, an improved
version of SLAYER [2] (Spiking Layer Error Reassignment in Time) algorithm,
Lava-DL provides tools for training SNNs, supporting various neuron models, synap-
tic dynamics, and easy-to-use exporting policies to deploy networks on Lava.

Lava-DL integrates seamlessly with PyTorch, a popular deep-learning library,
allowing developers to create hybrid models that combine traditional ANNs and
SNNs. This flexibility expands the potential of neuromorphic systems, making
Lava-DL a powerful toolkit for applications requiring adaptive, event-driven pro-
cessing in real-time.

Additional tools in Lava-DL include:

• Event Input/Output Management: Utilities for handling event-driven
data, essential for applications such as sensory processing and real-time decision-
making.

• Visualization and Logging: Tools for visualizing neuron activity and log-
ging training metrics, which facilitate model development and debugging.

• Support for Various Learning Rules: Includes gradient-based and lo-
cal learning rules, enabling versatile training options on Loihi 2 and other
neuromorphic hardware.

By providing these tools, Lava-DL allows developers to design sophisticated,
adaptive models optimized for low-power, high-efficiency neuromorphic platforms.

34

Chapter 3

Materials and methods

This section outlines the materials and methods used in this thesis, providing a
foundation for understanding how the various components and ideas were integrated
into a cohesive and functional pipeline, as shown in Figure 3.1. The work began
with an in-depth analysis of the dataset, focusing on identifying the best subset
for optimizing model performance. This involved employing two distinct methods
to evaluate separability scores, which provided critical insights for tailoring the
dataset splits.

Figure 3.1: 1. Data preprocessing using KDE and KLD. 2. Building the network. 3.
Implementation of quantized aware training and 4. Definition of activation sparsity
loss. 5. Iterative training using NNI. 6. lava porting and state quantization. 7.
Loihi2 deployment and power consumption metrics.

Subsequently, the thesis delves into the architecture of the network itself, offer-
ing a detailed explanation of each component and the reasoning behind the design
choices. Each network section is thoroughly analyzed, discussing the origin of the
design concepts, the rationale for modifications during development, and how these
changes contributed to the final behavior.

The section also addresses the challenges introduced during the porting process,
examining how these issues were anticipated and managed throughout training.

35

Materials and methods

Particular emphasis is placed on aligning the functionalities of snnTorch and Lava,
including strategies for preserving consistency across frameworks. Additionally, the
limitations and implications of quantization are explored in detail, highlighting how
fixed-point conversion affects network behavior and performance.

By providing a structured overview of the methodologies and decisions, this
section aims to offer a comprehensive understanding of the steps taken to build,
train, and deploy the spiking neural network in a robust and effective manner.

3.1 Data pre-processing
To facilitate the attainment of the thesis objective and facilitate comparison with
previous research, it was necessary to divide the data set into seven distinct sub-
groups. In the WISDM dataset, we have data from gyroscope and accelerometer
coming from smartphone and smartwatch, that recorded the same activity for each
person at the same moment. The data obtained from the smartphone was not
utilized in this study due to the presence of certain issues during the data collec-
tion process. The smartphone was placed in the subject’s pockets without first
verifying its orientation and position. This results in more significant complica-
tions for the classification process, as it entails the interchange of axes that can
potentially impede the training procedure. Only smartwatch data was used for this
work, being recorded in a better and more reliable way, due to the position on
the wrist that leads to better data characterization for hand-oriented tasks, also
counting on a better IMU present in the smartwatch itself. A detailed examination
of the KDE for the hand-oriented activity reveals a significant degree of overlap
among the constituent classes. This observation underscores the need for a more
nuanced approach to classification, particularly in regard to identifying a subset of
non-overlapping, classless labels. Doing so will enhance the efficacy of our pipeline
in achieving its desired outcomes. KDE is a non-parametric method to estimate
the probability density function (PDF) of a random variable based on a finite data
sample. Unlike parametric methods, KDE does not assume that the data follows a
specific distribution (e.g., normal distribution). KDE alone is insufficient for char-
acterizing the available activity and identifying the optimal subset. As illustrated
in Figure 3.2, the majority of classes exhibit substantial overlap, rendering them
difficult to differentiate.

KLD Class Separability Metric was used instead to score and select the subsets.

3.1.1 Kullback-Leibler Divergence as Separability Metric
KLD [40], a measure of how one probability distribution diverges from another, can
be used to assess class separability in tasks like HAR. In this approach, the KLD is

36

3.1 – Data pre-processing

Figure 3.2: Visualization of KDE metrics over WISDM dataset

calculated over the KDE of each class, allowing for a smooth, non-parametric rep-
resentation of the feature distributions. A visual example can be seen in Figure 3.3

Definition For two probability distributions P and Q over the same variable
space X, the KLD Equation 3.1

DKL(P ∥ Q) =
∫︂ ∞

−∞
p(x) log p(x)

q(x) dx. (3.1)

In our case, P and Q represent the KDEs of two different classes. This met-
ric reflects the average inefficiency in encoding samples from P using Q, with a
divergence of zero only if P and Q are identical.

Application in Temporal Signal Separability In HAR, temporal signals are
divided into segments, and features are extracted from these segments to repre-
sent different activities. Each activity’s distribution is estimated using KDE, which
provides a smoothed, continuous approximation of the feature distribution without
assuming a parametric form. Calculating the KLD between the KDEs of different
classes (e.g., PA and PB for classes A and B) gives a direct measure of class sepa-
rability. A high KLD DKL(PA ∥ PB) indicates minimal overlap between classes A
and B, implying strong separability in the feature space.

37

Materials and methods

Figure 3.3: Visualization of KDL score over different pairs of functions

Considerations and Advantages Using KDE in conjunction with KLD pro-
vides several advantages for temporal signal analysis:

1. Smooth Distribution Estimation KDE offers a flexible way to estimate
class distributions, capturing subtleties in the data without relying on rigid
parametric models. This is particularly useful in HAR, where distributions
may vary widely across activities.

2. Comprehensive Comparison: By applying KLD over KDEs, we achieve
a detailed comparison of distribution shapes, enabling the detection of even
subtle distributional differences between classes.

3. Bandwidth Sensitivity: While KDE depends on bandwidth selection, care-
ful optimization ensures accurate distribution representation, making KLD a
reliable measure of separability when KDE is properly configured.

The combination of KDE and KLD offers a powerful, non-parametric approach
to quantifying class separability in HAR, balancing flexibility in distribution estima-
tion with the robust, comprehensive comparison provided by KLD. This approach
allows for a nuanced assessment of class distinctions in temporally varying signals.

3.1.2 Separability score
Kullback-Leibler Divergence-based Class Separability Metric The class
separability metric based on KLD is computed as follows:

38

3.1 – Data pre-processing

1. Efficient KDE Computation: To optimize performance, the algorithm
first computes the Kernel Density Estimates (KDEs) for each class across all
data dimensions. These KDEs are stored in a map or dictionary for efficient
retrieval in subsequent calculations.

2. Creation of a Class Distance Matrix: The algorithm then constructs
a matrix representing the distances between classes by calculating the KLD
between the KDEs of each pair of classes, taking all data dimensions into
account. Given the asymmetry of KLD (i.e., DKL(P ∥ Q) /= DKL(Q ∥ P)),
the divergence is calculated in both directions for each class pair. The two
values are then summed to produce a symmetric distance measure, ensuring
that the distance from class A to class B is the same as from class B to class
A. A matrix result can be seen in Figure 3.4.

3. Generation of Class Combinations: After selecting a value for the vari-
able n, which specifies the number of classes to include in each analysis set,
the system generates all possible combinations of class labels of size n. This
step allows for analysis of separability across different groupings of classes.

4. Calculation of Scores: For each combination of classes, the algorithm cal-
culates two scores:

• the total separability score calculated in Equation 3.2, summing the
distance values between every pair of classes within the combination.
Higher is better.

Stotal =
∑︂
i<j

DKL(Pci
∥ Pcj

) + DKL(Pcj
∥ Pci

) (3.2)

• the MSE score in Equation 3.3 calculated between the uniform distribu-
tion and the normalized score values for each pair. Lower is better.

SMSE = 1
N

∑︂
j<i

(︃
S̃i,j −

1
N

)︃2
(3.3)

Where N is the number of class pairs in the combination, and 1
N

repre-
sents the ideal value in a uniform distribution. While S̃i,j is the score of
the pair i j normalized with respect to the current combination set.

5. Ranking the score: to rank the class combination, should be minimized
the weighted difference between the Total score and MSE in Equation 3.4.
The subtraction is needed because we want to maximize the first metric and
minimize the second one.

Srank = wtotal · Stotal − wMSE · SMSE (3.4)

39

Materials and methods

This approach enables an efficient and comprehensive assessment of class sepa-
rability by leveraging KLD over KDEs.

Figure 3.4: Distance matrix calculated with the described process

3.2 Spiking Network Definition
This paragraph will present a detailed account of the network structure and quan-
tization, elucidating the underlying concepts and the actual algorithmic and code
implementation. The selected approach employs the use of snnTorch and Brevitas.
3.5 depicts the network in its entirety, offering a visual representation that can be
referenced while following the step-by-step description.

3.2.1 Encoding Layer
Given the spiking nature of the network and the constraints of the Loihi 2 chip
as the deployment platform, there are several critical requirements that must be
addressed during the design of the input encoding layer:

1. R1 The input data must be converted into the spiking domain, as SNNs
process information exclusively through discrete spike events.

40

3.2 – Spiking Network Definition

Figure 3.5: the full network designed for this work. From the top, we can recognize:
Encoding layer, responsible for the spiking encoding of the encoded data. RInibitory
populations: responsible for the feature extraction from incoming data, using two
neuron populations. Output population: responsible for the output Rate coding.

2. R2 Loihi 2 imposes strict hardware limitations, allowing computations only
in fixed-point arithmetic. Consequently, all input data must be converted to
meet this requirement.

3. R3 Achieving a task-agnostic encoding pipeline is highly desirable to ensure
the portability of the network across different applications without the need
for extensive retuning.

Traditional static encoding methods, such as Sigma-Delta encoding, frequency-
based encoding, or time encoding, were evaluated. While these methods success-
fully convert input signals into spike-based representations, they fail to satisfy all
the outlined requirements. Specifically, these methods are highly task-dependent,
requiring significant manual tuning to adapt to different use cases as can be seen in
[20]. This lack of flexibility makes them unsuitable for scenarios where portability

41

Materials and methods

across tasks and domains is a priority.
To address these challenges, an encoding layer based on a LIF population is

proposed as the optimal solution. This method meets all three requirements:

• Task-Agnostic Encoding (R3): Unlike static methods, the LIF popula-
tion is trainable alongside the rest of the network. This enables the encoding
layer to automatically adapt to different tasks, optimizing its performance
in a task-specific manner without requiring manual adjustments. The train-
ability ensures that the encoding layer can generalize across a wide range of
applications while maintaining high efficiency.

• Direct Spike-Based Encoding (R1): The LIF population directly con-
verts continuous-valued input signals into discrete spike trains. This ensures
seamless integration with the SNN architecture, preserving the event-driven
nature of the network and aligning with the requirements of spiking compu-
tation.

• Compatibility with Loihi 2 (R2): Although Loihi 2 only supports fixed-
point arithmetic for computation, the platform is typically coupled with a
conventional CPU for data preprocessing and I/O operations. The encoding
layer, implemented as a population of LIF neurons, can leverage this CPU for
input data conversion prior to deployment on Loihi 2, ensuring compatibility
with the chip’s constraints.

Structure of the Encoding Layer The encoding layer consists of two main
components:

• A trainable connection: This layer learns to project the input data into a
form that is optimal for the LIF population to process. The weights of this
connection are adjusted during training to ensure the encoding is tailored to
the specific task.

• A LIF population: This group of spiking neurons processes the pre-projected
input and generates spike trains based on the dynamics of the LIF model.
These neurons integrate input over time, leak their membrane potential at a
predefined rate, and generate spikes whenever the potential crosses a thresh-
old. This behavior ensures temporal representation of the input data in a
spiking format.

The use of a trainable encoding layer allows the network to adapt its input
representation dynamically, making it robust and generalizable across diverse ap-
plications. This flexibility is particularly advantageous in neuromorphic systems,
where diverse tasks and datasets often require encoding methods tailored to specific
constraints.

42

3.2 – Spiking Network Definition

Additionally, by offloading the preprocessing and encoding tasks to a conven-
tional CPU, the encoding layer ensures that the constraints of Loihi 2’s fixed-point
arithmetic are fully respected. This hybrid approach—combining the computa-
tional efficiency of the neuromorphic chip with the flexibility of CPU-based pre-
processing—provides a practical and scalable solution for deploying SNNs across
real-world tasks.

3.2.2 Recurrent Block

In HAR using (SNNs), temporal signals from activities like walking and running
often exhibit periodic patterns due to repetitive body movements, while others are
less periodic and produce higher signal magnitudes. To manage such diverse signal
characteristics, traditional ANNs replace simple feed-forward layers with recurrent
structures, such as Recurrent Neural Networks (RNNs), Gated Recurrent Units
(GRUs), and Long Short-Term Memory (LSTM) networks. These recurrent layers
are capable of retaining and processing past information along with current inputs,
refining predictions, and improving classification accuracy for temporal tasks as can
be seen in [41].

Previous efforts to classify HAR signals with feedforward SNNs have produced
results that are generally inferior to those of state-of-the-art recurrent neural net-
works [30]. This discrepancy in performance is largely due to the inherent nature of
spiking activations in SNNs. In an SNN, a neuron’s membrane potential increases
as it receives input, potentially reaching a threshold that triggers a spike. After
each spike, the neuron’s potential resets to zero, causing it to "forget" prior inputs.
While biologically inspired, this reset behavior limits the neuron’s ability to retain
information over time, which is essential in tasks requiring temporal context, such
as HAR.

Figure 3.6: a) Original AHP Compartment compared to b) this thesis implemen-
tation

43

Materials and methods

To overcome this limitation, this work focuses on developing a recurrent spik-
ing neural network architecture that can effectively process temporal information
in HAR. The architecture is inspired by the After-Hyperpolarizing Compartment
(AHPC) component introduced in the work of Philipp Plank et al. [42]. The AHPC
implements a mechanism known in neuroscience as "spike-frequency adaptation"
[43]. Specifically, after-hyperpolarizing (AHP) currents slow the readiness of bio-
logical neurons to fire again immediately after recent activity, reducing their firing
frequency. This adaptation preserves temporal information by enabling neurons to
“remember” recent spikes over short periods.

The incorporation of the AHPC component within a recurrent SNN design is
particularly useful for HAR, as it allows the network to handle both periodic and
non-periodic signal patterns by retaining relevant temporal information across time
steps. This biologically inspired mechanism addresses the limitations of traditional
feedforward SNNs, equipping the network to perform better in classification tasks
involving dynamic signals. These concepts explored in this paper are quite valuable
and proved their validity, but was not easy to import this behavior on the neuro-
morphic chip, given the necessity to extensively test and debug microcode over the
actual Loihi2 chip.

Two Implementations of Inhibitory Populations The Figure 3.6 illustrates
two different implementations of inhibitory populations within a SNN architecture:
(a) the AHPC model, and (b) a simpler inhibitory model, which is used in this
work.

1. AHPC Model (a): In this implementation, the inhibitory mechanism is
modeled through an additional component known as the After-Hyperpolarizing
(AHP) compartment. The main excitatory neurons are modeled as (LIF) neu-
rons (shown in the red box), which receive an input post-synaptic current.

The process is as follows:

• The LIF population, receives the input, updates the membrane potential,
and eventually generates a spike. If the threshold is not passed, the
current voltage is multiplied by the decay factor β and added in the
next time step.

• The spike is passed to the following computational block and to the AHP
compartment. Here spikes are multiplied by a negative weight, updating
the After-Hyperpolarizing current Iahp. The current at time t is added
at t+1 multiplied by decay factor α.

• The Iahp, being a negative value, is then added to the input of the LIF,
inhibiting the membrane potential of the neuron.

44

3.2 – Spiking Network Definition

The AHP compartment effectively implements "spike-frequency adaptation",
reducing the likelihood of frequent firing and enabling the neuron to retain
information about recent spikes. Output spikes are generated from the LIF
neurons based on their updated membrane potential, with an inhibitory feed-
back term W applied to the output to modulate future spikes.

2. Simpler Inhibitory Model (b): In this simpler model, the inhibitory effect
is achieved through a direct feedback loop to the main LIF neuron population
(in red), using another LIF neuron (in blue).
The process in this model is as follows:

• The LIF population, receives the input, updates the membrane potential,
and eventually generates a spike. If the threshold is not passed, the
current voltage is multiplied by the decay factor β and added in the
next time step.

• Instead of an adaptive Iahp, this model implements a simpler feedback
mechanism where the output spikes are fed back into the inhibitory LIF
through a weight term Win and Wout, modulating the input current and
membrane potential directly.

This approach is computationally simpler than the AHPC model, as it lucks
the current compartment and allows seamless porting to Lava. However, it
provides a basic level of inhibition by adjusting the neuron’s input based on
recent spikes.

snnTorch implementation The actual implementation of the network was done
exploiting the already existing spiking layer defined in snntorch.snn. The selected
one was snn.RLeaky. As shown in Figure 3.7 it implements a neuron population
that feeds back the input on itself, passing across a fully connected layer, that can
be both a dense connection or a sparse one-to-one connection.

That was modified accordingly to better mimic the needed behavior represented
in Figure 3.6.b. The backward branch was expanded to host the three blocks
shown in Figure 3.7. One dense block represents the input weight of the following
inhibitory population, then an output weight that inhibits the incoming currents.

This method gave us a lot of flexibility and the possibility of updating the
structure down the road.

3.2.3 Output Loss Function and Rate Coding
The output of the network is processed through the output block, located at the
bottom of Figure 3.5. This block consists of a qnn.Dense layer followed by a (LIF)
population. The qnn.Dense layer projects the continuous values generated by the

45

Materials and methods

Figure 3.7: a) visualization of snn.RLeaky block b) implementation of Rinibitory
that Inherit from snn.RLeaky

network into a lower-dimensional space suitable for the task at hand. These outputs
are then passed to the LIF population, which converts them into spike trains by
integrating the input over time and firing when the membrane potential exceeds a
threshold. This structure ensures that the final output of the network is encoded
in the spiking domain, making it compatible with the rest of the network and the
neuromorphic hardware.

To interpret the output spike trains, the network employs rate coding, where
the firing rate of each output neuron over a specific time window represents the
predicted output. The firing rate of an output neuron i is defined in equation 3.5

ri =
∑︁T

t=1 Si(t)
T

, (3.5)

where Si(t) is the spike output of neuron i at timestep t , and T is the total number
of timesteps.

Cross-Entropy Spike Count Loss, provided by the snnTorch library, which
proved to be significantly more effective for our tasks. The Cross-Entropy Spike
Count Loss is defined in equation 3.6

LCE = −
N∑︂

i=1
yi log

(︄
ri∑︁N

j=1 rj

)︄
, (3.6)

where yi is the one-hot encoded target for class i, ri is the predicted firing rate for
neuron i, and N is the total number of output neurons. This loss treats the firing
rates as logits and calculates the probability distribution across classes, penalizing
incorrect classifications while encouraging the network to optimize the likelihood
of the correct class.

It allowed the network to converge reliably and efficiently by leveraging the
probabilistic interpretation of spike rates, which better aligned with the classifica-
tion objectives of our system. By adopting this loss, we ensured that the network

46

3.2 – Spiking Network Definition

could learn meaningful patterns while maintaining compatibility with the spiking
framework. Additionally, the use of snnTorch’s prebuilt loss functions simplified
integration, making the training process efficient and deployment-ready for neuro-
morphic platforms like Loihi 2.

3.2.4 Quantization in Brevitas
Quantization is a critical technique for reducing the precision of numerical represen-
tations in neural network models to enable efficient deployment on hardware with
limited resources. Brevitas [44] serves as a versatile framework for implementing
reduced precision data paths during training. It provides a modular and extensi-
ble platform that caters to both researchers developing novel quantization-aware
training techniques and practitioners applying established methods to their models.

One of Brevitas’s key strengths lies in its ability to support a super-set of quan-
tization schemes, unified under a single API. This abstraction simplifies the process
of adopting and experimenting with various quantization approaches across differ-
ent frameworks and compilers. Furthermore, for specific combinations of layers and
quantization types, Brevitas facilitates inference acceleration by enabling seamless
export to ONNX Runtime, or PyTorch’s native quantized operators.

Brevitas has demonstrated its efficacy, mainly These deployments targe cus-
tom accelerators, with particular success on Xilinx FPGAs [45]. The framework
predominantly focuses on affine quantization, emphasizing uniform quantization
schemes. However, it does not currently provide out-of-the-box support for non-
uniform quantization.

By bridging the gap between research innovation and practical application, Bre-
vitas stands as a powerful tool for advancing quantization techniques and optimizing
neural networks for resource-constrained environments.

Brevitas provides a powerful framework for implementing quantized neural net-
works, with key components such as qnn.QuantLinear and the brevitas.quant type
Int8WeightPerTensorFixedPoint.

The qnn.QuantLinear module serves as a replacement for PyTorch’s nn.Linear,
providing support for quantization. This layer allows weights to be quantized dur-
ing both training and inference, thereby closely mimicking hardware behavior. The
quantization type for the weights can be specified using the weight_quant param-
eter, and an optional bias term can also be included.

The Int8WeightPerTensorFixedPoint type in Brevitas represents weights using
8-bit signed integers with per-tensor affine quantization. This quantization method
applies a single scale and zero-point to all weights in a tensor, simplifying imple-
mentation while maintaining compatibility with hardware accelerators. The process
involves linear scaling of weights using a quantization scale and zero-point, enabling
efficient computation and reduced memory usage.

An example usage in combination with qnn.QuantLinear is:

47

Materials and methods

from brevitas.nn import QuantLinear
from brevitas.quant import Int8WeightPerTensorFixedPoint

quant_linear = QuantLinear(
in_features=256,
out_features=128,
weight_quant=Int8WeightPerTensorFixedPoint,
bias=False
)

import torch
x = torch.randn(1, 256)
output = quant_linear(x)

One notable feature of qnn.QuantLinear is its ability to share the same weight_quant
object across multiple quantized layers. This capability ensures that different layers
can operate with a consistent quantization range, which is particularly advanta-
geous when deploying models on hardware systems that require uniform quantiza-
tion parameters across layers.

For example, a quantized linear layer can be defined as:

from brevitas.nn import QuantLinear
from brevitas.quant import Int8WeightPerTensorFixedPoint

Use the shared weight quantizer in multiple layers

quant_linear1 = QuantLinear(
in_features=128,
out_features=64,
weight_quant=Int8WeightPerTensorFixedPoint,
bias=True
)

quant_linear2 = QuantLinear(
in_features=64,
out_features=32,
weight_quant=quant_linear1.weight_quant,
bias=True
)

By leveraging these components, Brevitas provides a seamless platform for creat-
ing and optimizing quantized neural networks, enabling both research and practical
deployment on hardware-constrained environments.

48

3.2 – Spiking Network Definition

3.2.5 Cosine Annealing Learning Rate and its Role in Quan-
tized Networks

Cosine Annealing Learning Rate scheduling has emerged as a powerful technique
to improve the training of Quantized Spiking Neural Networks (QSNNs) and is
being explored by Jason K. E. et al. in [46]. In quantized networks, the loss land-
scape is often plagued by flat regions, local minima, or sharp transitions caused by
non-differentiable operations like weight quantization and hard thresholding. Such
conditions make convergence to an optimal solution challenging. Cosine annealing
addresses this by periodically modulating the learning rate, helping the network
escape suboptimal solutions, and exploring uncharted regions of the solution space.

The cosine annealing schedule modulates the learning rate ηt over training iter-
ations t using the equation 3.7:

ηt = 1
2η
(︃

1 + cos
(︃

πt

T

)︃)︃
, (3.7)

where η is the initial learning rate and T is the period of the schedule. This pe-
riodic reset introduces learning rate peaks at regular intervals, effectively providing
the optimizer with momentum to jump out of flat regions or local minima.

In the context of quantized networks, cosine annealing offers several benefits.
Firstly, by periodically increasing the learning rate, the network is less likely to
get stuck in suboptimal barriers or flat regions of the loss landscape. This is par-
ticularly crucial for quantized models, where the reduced resolution of parameters
exacerbates the risk of such occurrences. Secondly, the periodic resets allow the
model to revisit earlier solution paths with updated conditions, potentially improv-
ing convergence to a more optimal state.

Empirical evaluations on datasets like MNIST, FashionMNIST, and DVS128
Gesture in [46] demonstrate that cosine annealing not only reduces the performance
degradation caused by quantization but also achieves more consistent results across
trials compared to alternative schedules like step decay or loss-dependent LR ad-
justments. The robustness of this schedule lies in its simplicity and ability to explore
a wider solution space without introducing complex hyperparameter dependencies.
Moreover, the schedule is well-suited for QSNNs, as it complements the inherently
noisy gradient feedback caused by quantization and spiking approximations, helping
to mitigate their adverse effects on training.

The ability of cosine annealing to balance exploration and exploitation in the
optimization process makes it a particularly effective tool for training quantized
networks, enhancing their robustness and performance in both high-precision and
fixed-precision settings.

The cosine annealing schedule was defined in the code in this way:

import torch
from torch import lr_scheduler.CosineAnnealingLR as CosineAnnealingLR

49

Materials and methods

optimizer = torch.optim.Adam(net.parameters(),
lr=params[’lr’],
betas=(0.9, 0.999))

scheduler = CosineAnnealingLR(optimizer,
T_max=4690,
eta_min=0,
last_epoch=-1)

3.2.6 Sparsity Enforcing
One of the greatest advantages of SNNs running on neuromorphic hardware, such
as Intel’s Loihi 2, is their high computational efficiency combined with extremely
low power consumption. This efficiency arises from the asynchronous, event-driven
nature of SNNs, where only discrete spikes are exchanged over time, significantly re-
ducing energy requirements compared to traditional, continuously-activated neural
networks.

However, achieving these power savings in practice requires strategies to enforce
sparsity in the network’s activity. Sparse spiking activity ensures that neurons
only fire when necessary, thereby conserving energy. In neuromorphic hardware,
the power consumption is directly related to spiking frequency [47]: the lower the
average firing rate across the network, the less energy is consumed. Consequently,
by controlling and limiting the frequency of spikes, we can minimize power usage
without sacrificing computational capacity.

To enforce sparsity, two strategies can be implemented:

• Dynamic Threshold [48]: By setting dynamic firing thresholds, This model
adapts thresholds based on the neuron’s energy and temporal dynamics neu-
rons are less likely to spike, thereby reducing spiking frequency across the
network. This adjustment can lead to substantial power savings.

• Activity Regularization[47]: Regularizing the spiking activity during train-
ing, such as by penalizing high firing rates in the loss function, encourages
the network to learn sparse representations that naturally translate to en-
ergy efficiency during inference. This was the selected strategy applied to our
neuron network.

Activity regularization was the selected method to enforce sparsity and conse-
quently reduce the network power consumption. There are multiple loss types that
aim to regularize the neuron’s activity, here there are some examples:

• Firing Rate Loss penalizes deviations from a target firing rate, encouraging
neurons to maintain a desired activity level. This loss function is formulated

50

3.2 – Spiking Network Definition

as equation 3.8.

Firing Rate Loss = λ ·
N∑︂

i=1
|firing ratei − target rate| (3.8)

where λ is a regularization parameter, N is the total number of neurons, and
firing ratei represents the average firing rate of neuron i. This method is
simple to implement and highly effective in promoting sparse activity across
the network. However, if the target firing rate is set too strictly, it can overly
constrain neuron flexibility, potentially reducing the network’s responsiveness
to input.

• Spike Count Loss controls the overall spike activity by adding a penalty
based on the total spike count over a specified time window. This method is
particularly effective for maintaining a global constraint on activity, formu-
lated as equation 3.9.

Spike Count Loss = λ ·
N∑︂

i=1
(spike counti − target count)2, (3.9)

where spike counti denotes the total spikes generated by neuron i within the
time window. Spike count loss helps in significantly reduce energy usage,
making it advantageous for power-efficient applications. However, this ap-
proach may not enforce sparsity uniformly across all neurons, resulting in
potential imbalances in neuron activity.

• L1 Regularization on Membrane Potential [47] penalizes high mem-
brane potential values, indirectly limiting spiking frequency by making it
more challenging for neurons to reach their firing threshold. The loss func-
tion is expressed as equation 3.10.

L1 Membrane Loss = λ ·
N∑︂

i=1
|membrane potentiali|, (3.10)

where membrane potentiali represents the potential of neuron i. By enforcing
a constraint on membrane potential magnitude, L1 regularization promotes
sparsity without directly impacting spike counts. However, it may reduce
network expressiveness if neurons become too inhibited, limiting their ability
to react to input changes.

• L2 Regularization on Membrane Potential [47], similar to L1 regulariza-
tion, applies a constraint on membrane potential but uses the squared value
for a smoother penalization, as can be seen in equation 3.11.

L2 Membrane Loss = λ ·
N∑︂

i=1
(membrane potentiali)2, (3.11)

51

Materials and methods

L2 regularization provides a softer constraint, allowing more flexibility in
neuron activation compared to L1.

• Target Firing Rate Loss Kinjal Patel et al. in [49] describe a loss that
enforces a desired average firing rate for each neuron by penalizing deviations
from a predefined target rate range. Instead of enforcing a fixed target firing
rate, this regularization method allows neurons to fire within a specified range,
defined by a minimum Fmin and maximum Fmax firing rate. The loss function
is formulated to penalize neurons that fall outside this range. Using a rank-
based statistical approach, this method regularizes the p-th percentile of firing
rates, making it more robust to outliers and variations across samples. The
firing rate regularization loss is defined as equation 3.12

LF R = 1
Lj

Lj∑︂
i=1

(︃[︂
Fmin −Rj

i,p

]︂+
+
[︂
Rj

i,p − Fmax
]︂+)︃2

, (3.12)

where Lj is the number of neurons in layer j, Rj
i,p represents the p-th percentile

firing rate of neuron i in layer j across a batch of inputs, and [·]+ denotes
the ramp function, which is zero if the expression inside is negative and the
expression itself if positive. This function imposes a squared penalty if the
neuron’s firing rate falls below Fmin or exceeds Fmax, encouraging firing rates
within the acceptable range.

In practice, setting p = 99% for the percentile value allows the regularization
to be robust to outliers, making it applicable across various inputs.

Most of the losses listed above, force the network with hard constraints, limiting
the population dynamics. The only one that mitigates this behavior is the Tar-
get Firing Rate Loss because it effectively balances neuron activity, enhancing
network stability and reducing energy consumption by preventing excessive or too
low spiking. The main idea behind this loss is that if we think of time as our en-
coding range, forcing the neurons to the same fixed frequency it actually forces the
encoding in the same range, killing all the dynamics inside the network and losing
details in the codification of the signals. This loss contrary to all the other ones
gives the networks less strict bandwidth borders, leaving space for neuron frequency
characterization other than trying to regularize the overall spiking activity.

52

3.3 – Lava and Loihi 2 Porting

Input: Spike count arrays for each layer, spike_count_array, with
dimensions [time, batch, channels]

Output: Regularization loss, loss
Initialize loss← 0;
foreach layer i in spike_count_array do

Initialize layer_loss← 0;
Compute the firing frequencies for each channel
frequency_matrix←

∑︁
spike_count_array[i]

time_window ;
frequency_matrix← sort(frequency_matrix);
Rpth ← frequency_matrix[pth · len(frequency_matrix)];
foreach channel j in spike_count_array[i] do

layer_loss← layer_loss +
(max(0, Rpth,j −max_hz) + max(0, min_hz −Rpth,j))2;

end
loss← loss + layer_loss

batch_size ;
return loss

end
Algorithm 1: Firing Rate Regularization Loss Calculation

3.3 Lava and Loihi 2 Porting
The design choices made during the development of the network were heavily influ-
enced by the runtime environment of the Loihi 2 chip. Each decision was validated
to ensure compatibility with Intel’s Lava framework, to simplify the porting process
between snnTorch and Lava. This iterative process required careful evaluation of
the computational blocks used in the network, focusing on two critical questions
for each component:

• Does the selected computational block exist in Lava?

– If not, the block was discarded for now, awaiting potential future imple-
mentation in Lava.

– If yes, does it function as intended in snnTorch, with matching parame-
ters and behavior?

• Does the network maintain equivalent behavior between snnTorch and Lava?

To answer these questions, extensive experimentation was conducted to evaluate
both functionality and compatibility. This led to the development of the current
network architecture, optimized for both frameworks.

53

Materials and methods

3.3.1 Network Definition in Lava
Each computational block available in snnTorch was assessed for both functionality
and availability within Lava. The building blocks for the final network were care-
fully selected to ensure compatibility while maintaining simplicity and versatility.
As a result, the network primarily relies on CUrrent BAse Leaky Integrate-and-Fire
(CUBA LIF) and Dense connections, which offer both flexibility and compati-
bility with Lava.

CUBA LIF Neurons The chosen neuron model, the CUBA LIF neuron, extends
the standard LIF model by introducing a second-order filter. This adds a second
decay parameter to the neuron current in addition to the membrane potential decay.
While this model is highly versatile, a few constraints were identified during its
implementation in Lava.

First, the Lava framework enforces a hard reset of the neuron membrane po-
tential to zero after a spike. In contrast, snnTorch offers flexibility by subtracting
the threshold from the current membrane potential (default behavior) or resetting
it to zero. The Lava behavior was adopted for consistency across platforms.

Second, Lava emits spikes simultaneously with the membrane reset, whereas
snnTorch provides an option to emit spikes either at the reset timestep or at the
subsequent timestep. This difference required adjustments to ensure that the net-
work behavior in snnTorch was consistent with Lava’s constraints.

Dense Connections Dense connections are essential in Lava for connecting dif-
ferent neuron populations. While these connections pose no issues during simula-
tion, the Loihi 2 hardware configuration raises an error if a neuron population is
directly connected without a dense layer. Consequently, the snnTorch network was
adapted to include dense connections where necessary, such as in the inhibitory
population block shown in Figure 3.7.b.

Although these dense layers could be initialized as diagonal matrices to mimic
identity connections, their weights were made trainable to enable the network to
learn meaningful transformations and improve performance.

One notable constraint in Lava is the fixed delay of one timestep for all con-
nections. This is a design choice to prevent deadlocks, as all input reads in Lava
connections are blocking. While this delay does not affect feedforward networks,
it introduces temporal desynchronization in recurrent connections. In snnTorch,
recurrent connections compute feedback at timestep t, based on the forward spike
at t, and feed it back at t + 1. In Lava, due to the delay, the feedback computed at
t is introduced at t + 2.

This delay was initially perceived as a potential issue, particularly for networks
with strict temporal dependencies. However, extensive simulations were conducted
to assess the impact of this delay on network performance. These simulations, using

54

3.3 – Lava and Loihi 2 Porting

the floating-point execution in Lava, demonstrated that the network was robust to
the introduced delays, showing negligible accuracy loss even at the decimal level.
These results validated the feasibility of proceeding with the Lava implementation.

Data Loader A custom data loader block was implemented to feed input data
into the network while adhering to Lava’s constraints. The design mimicked the
functionality of PyTorch’s DataLoader, ensuring compatibility and seamless inte-
gration with the rest of the framework. This custom block handles data prepro-
cessing and conversion, allowing the network to receive properly formatted inputs
for spiking computation.

Output Manager To handle the spiking output of the network, an output man-
ager block was introduced. This block processes the spike-based outputs to compute
the final predicted labels and aligns them with the ground truth. This alignment
facilitates accurate calculation of performance metrics and statistical evaluation
outside the Lava runtime environment. The output manager ensures that predic-
tions are correctly interpreted for downstream analysis and performance reporting.

3.3.2 Neuron Internal Variable Quantization
To successfully port the network to neuromorphic hardware, an intermediate step
is required to quantize the internal state variables of neurons, passing through
the Lava framework. Direct training with quantized variables is not feasible in
the current workflow, necessitating this intermediate step for compatibility. Lava
provides a seamless conversion pipeline within its simulator to facilitate this process.

The conversion process is highly transparent and user-friendly. At a high level,
the API requires only the trained network with floating-point values for both
weights and internal neuron variables. After running the network through the con-
version tool, it outputs all the converted variables in a fixed-point format, correctly
prepared for hardware deployment.

Internally, the conversion pipeline operates by simulating the network and record-
ing the execution ranges of each variable during floating-point operation. These
ranges are then discretized and used to determine the appropriate quantized repre-
sentation for each variable, interpolating values as necessary. This ensures that the
quantized variables closely approximate the behavior of the original floating-point
network within the constraints of fixed-point arithmetic.

However, this quantization process imposes limitations on the operational range
of the network. As variables are discretized, saturation can occur at the extremes of
the range, a behavior inherent to the fixed-point nature of computations on neuro-
morphic hardware. While this introduces some constraints, it is an unavoidable as-
pect of hardware execution. Careful validation and tuning during the quantization
phase can minimize the impact of these limitations on overall network performance.

55

Materials and methods

3.3.3 Hardware Execution

Once the neuron variables and weights were quantized using the Lava framework,
the network was configured for execution on the Loihi 2 hardware. Since the ma-
jor issues were addressed during the simulation and quantization steps, the final
deployment required minimal additional adjustments.

As per the system design, data loading and the execution of the first encoding
block were handled by the CPU. The spiking components, including the recurrent
inhibitory block and the output layer, were deployed directly onto the Loihi 2 chip.
This hybrid approach leveraged the strengths of both computational domains: the
flexibility of the CPU for preprocessing and the efficiency of the neuromorphic chip
for spike-based processing.

To allow communication between the CPU and the Loihi 2 chip, specialized I/O
blocks were integrated, as required by the Lava framework. These blocks ensure
efficient and seamless data transfer between the two processing units, enabling
synchronized operation of the hybrid system.

Performance evaluation was carried out using the benchmarking APIs provided
by the Lava framework [38]. These tools allowed for detailed analysis of metrics
such as power consumption, latency, and throughput. The results validated the
network’s performance and its efficient execution on the Loihi 2 chip, demonstrating
that the hybrid configuration successfully met the design objectives.

3.4 Hyperparameter Search

Training SNNs is inherently challenging due to its event-driven and temporal dy-
namics, which make traditional optimization techniques less effective. Optimizing
these networks for execution on neuromorphic hardware, such as Loihi 2, introduces
further complexity, as the hardware imposes constraints on numerical precision,
memory, and compute operations. HPO is crucial to determining the optimal con-
figuration of trainable and structural parameters, providing the network with the
best starting point for its training process.

The sheer number of hyperparameters, including learning rates, decay constants,
spike thresholds, and weight initializations, makes it impractical to evaluate all
possible combinations within their respective operational ranges manually. This
complexity is further compounded by the interactions between hyperparameters,
where a suboptimal choice in one parameter can severely affect the performance of
the entire network. Table 3.1 illustrates the number of hyperparameters in each
search space that must be selected for the network, highlighting the impracticality
of manual tuning. Without a systematic and efficient tool to guide the selection of
hyperparameters, finding an optimal solution would be nearly impossible.

56

3.4 – Hyperparameter Search

Parameter Type Search Space
batch_size choice {128, 256, 512, 1024}
slope quniform [Lower: 5, Upper: 50, Step: 5]
lr choice {0.01, 0.005, 0.002, 0.001, 0.0005,

0.0002, 0.0001, 0.00005, 0.00002, 0.00001}
net_hidden_1 quniform [Lower: 20, Upper: 200, Step: 20]
net_hidden_2 quniform [Lower: 100, Upper: 600, Step: 50]
vth_in quniform [Lower: 0.1, Upper: 2, Step: 0.1]
vth_recurrent quniform [Lower: 0.1, Upper: 2, Step: 0.1]
vth_out quniform [Lower: 0.1, Upper: 2, Step: 0.1]
vth_back quniform [Lower: 0.1, Upper: 2, Step: 0.1]
beta_in quniform [Lower: 0.1, Upper: 1, Step: 0.1]
beta_recurrent quniform [Lower: 0.1, Upper: 1, Step: 0.1]
beta_back quniform [Lower: 0.1, Upper: 1, Step: 0.1]
beta_out quniform [Lower: 0.1, Upper: 1, Step: 0.1]
drop_recurrent quniform [Lower: 0.1, Upper: 0.5, Step: 0.05]
drop_back quniform [Lower: 0.1, Upper: 0.5, Step: 0.05]
drop_out quniform [Lower: 0.1, Upper: 0.5, Step: 0.05]

Table 3.1: Parameter Search Spaces

3.4.1 Neural Network Intelligence (NNI)
To address the challenges of hyperparameter optimization, we leveraged a tool
called NNI. This tool provides a robust and extensible framework for automating
hyperparameter search and optimization, enabling a systematic exploration of the
parameter space while reducing the time and effort required for manual tuning.

Hyperparameter Optimization (HPO): The goal of HPO is to identify
the combination of hyperparameters that results in the best performance for a
given task. This is achieved by defining an objective function—such as validation
accuracy, loss minimization, or energy efficiency—and systematically evaluating
different parameter configurations to maximize or minimize this objective. HPO is
especially critical for SNNs, as their training dynamics are sensitive to parameters
such as:

• Learning rate, which controls the step size in weight updates.

• Spike threshold, which determines when a neuron fires.

• Decay constants for membrane potentials in LIF neurons.

• batch size affects memory, training time and generalization.

• neuron population sizes affects how many neurons will be assigned per
population.

57

Materials and methods

• slope affects the surrogate gradient slope.

• dropout the probability of each neuron to be shut down for each epoch step.

Traditional grid search or random search methods are often computationally ex-
pensive and fail to explore the parameter space efficiently, particularly for high-
dimensional hyperparameter configurations.

NNI Framework for HPO: NNI streamlines this process by providing a
flexible and scalable environment for hyperparameter optimization. Users define
a search space for each hyperparameter and specify the optimization algorithm to
guide the search. NNI supports a wide range of optimization methods, including:

• Grid Search: Systematically evaluates all combinations in the search space.

• Random Search: Randomly sample configurations, offering simplicity and
baseline performance.

• Bayesian Optimization: Constructs a probabilistic model of the objective
function to guide exploration, focusing on regions likely to yield high perfor-
mance.

• Tree-structured Parzen Estimator (TPE): A model-based method that
estimates distributions of promising hyperparameter configurations.

• Evolutionary Algorithms: Simulates natural selection processes to evolve
hyperparameter configurations.

• Anneal: A simple annealing-based heuristic that begins by sampling ran-
domly from the entire search space and gradually focuses on regions closer to
the best solutions observed. It leverages smoothness in the response surface,
but its annealing rate is fixed and not adaptive. It is lightweight and effective
for simpler search tasks.

Application to SNNs: For the training of SNNs, NNI allowed us to define a
search space encompassing key hyperparameters such as learning rate, spike thresh-
olds, and decay constants. By automating the search process, NNI enabled efficient
exploration of this space, identifying configurations that maximized the network’s
accuracy and robustness while maintaining compatibility with the hardware con-
straints of Loihi 2.

During the search, NNI efficiently distributed trials across available computa-
tional resources, ensuring rapid evaluation of candidate configurations. Among the
various optimization algorithms provided by NNI, we selected Anneal as our op-
timizer due to its demonstrated ability in previous works to converge to optimal
solutions faster than alternative methods. This made it particularly suitable for
scenarios with constrained computational resources or time-sensitive tasks.

58

3.4 – Hyperparameter Search

The use of NNI, combined with the Anneal optimizer, significantly improved the
training process, reducing the time and computational resources required for hyper-
parameter tuning. The optimized configurations discovered through this process led
to better convergence, higher accuracy, and improved energy efficiency compared
to manually selected hyperparameters. These results highlight the importance of
automated HPO tools in developing high-performance SNNs for neuromorphic ap-
plications.

59

60

Chapter 4

Results

This chapter presents the results obtained from the proposed approach, evaluating
each step of the process in Figure 3.1 and assessing their alignment with the ex-
pected outcomes. The evaluation begins with an analysis of the data preprocessing
pipeline, specifically focusing on how the dataset was split into subsections and the
performance metrics achieved for each split.

Next, the HPO process is examined, highlighting the parameter configurations
that produced the best results and analyzing the accuracy losses incurred during
each porting stage: from snnTorch to Lava and from floating-point to fixed-point
arithmetic.

The performance of each model is then evaluated on the test set, providing a
comprehensive view of their effectiveness. Special attention is given to the impact
of sparsity-enforcing mechanisms, quantifying the reduction in overall network ac-
tivity compared to a baseline network without sparsity loss, as measured using the
NeuroBench framework [27].

Finally, the chapter concludes with a detailed analysis of power metrics, eval-
uating the energy efficiency of the proposed network on the Loihi 2 chip, and
showcasing the practical benefits of this neuromorphic hardware implementation.

4.1 KDL metrics evaluation

Following the execution of the pipeline described in Section 3.1, the complete dis-
tance matrix is presented for analysis in Figure 4.1. This matrix quantifies the
relationships between data subsets, providing a clear view of their similarities and
differences. It validates the effectiveness of the preprocessing steps, ensuring the
dataset splits are appropriately structured for training and evaluation. This dis-
tance matrix serves as a foundation for assessing the balance and representativeness
of the prepared data.

61

Results

Figure 4.1: Distance matrix calculated with the described process

High score split: This split achieved the highest sum of pairwise distances, in-
dicating the greatest overall class separability among the evaluated subsets. Com-
binations of selected classes are reported in Table 4.1.

Subset Index Dataset Index Activity
0 0 walking
1 2 stairs
2 6 brushing teeth
3 8 eating chips
4 9 eating pasta
5 14 dribbling basketball
6 17 folding clothes

Table 4.1: Activity for High score split

As can be seen in Figure 4.2, most of the contribution that increases the sum
score is given by the class in position 2. It has the best separability pair score with
all the classes in this split, meanwhile, the are two big clusters of similar classes at
the start and the end of the label indexes. This will probably result in a less-than-
optimal class separation. This is also represented by the higher than excerpted

62

4.1 – KDL metrics evaluation

MSE score, that underlies this characteristic of this subset.

Figure 4.2: Sum Score: 150.30 MSE Score: 2.380 · 10−4

Balanced score split: This split represents the optimal balance between a high
sum of pairwise distances and the MSE score. The result was achieved by weighting
the MSE score with a coefficient of 2, compared to a coefficient of 1 for the sum
score, emphasizing the need for more evenly distributed pairwise separability across
the dataset. The subset of the classes in this split are listed in Table 4.2.

Subset index Dataset Index Activity
0 0 walking
1 1 jogging
2 4 standing
3 8 eating_chips
4 9 eating_pasta
5 10 drinking
6 14 dribbling_basketball

Table 4.2: Activity for balanced score split

In Figure 4.3 can be seen that the sum Class score is pretty high, but is dis-
tributed, as expected, more evenly across all the pairs compared to the previous
split. This is shown also by the low MSE Score, having as lowest MSE score
1.287 · 10−4.

63

Results

Figure 4.3: Sum Score: 125.05 MSE Score: 1.436 · 10−4

Worst split: This split exhibits the lowest sum of pairwise distances, representing
the worst-case scenario in terms of class separability. The class list can be seen in
Table 4.3

Subset Index Dataset Index Activity
0 0 walking
1 1 jogging
2 2 stairs
3 5 typing
4 6 brushing teeth
5 7 eating soup
6 12 kicking soccer

Table 4.3: Activity for worst score split

In Figure 4.4, the class separability score is notably low, making it challenging
to distinguish between classes effectively. For this subset, relying on the MSE score
does not provide meaningful insights, as it fails to capture the nuances required for
accurate evaluation under these conditions.

64

4.2 – Training results

Figure 4.4: Sum Score: 27.67 MSE Score: 2.011 · 10−4

4.2 Training results
This section presents the training results of the proposed SNN in Figure 3.5 and
evaluates the effectiveness of the HPO process conducted using the NNI framework.
The primary goal of this process was to identify the optimal configuration of hy-
perparameters to maximize the network’s performance while ensuring compatibility
with the Loihi 2 hardware constraints. The evaluation begins with an analysis of
the hyperparameter search results, focusing on the configurations selected by the
Anneal optimizer and their impact on the network’s accuracy and convergence
during training. The validation set is used to assess the performance of each con-
figuration, ensuring that the chosen parameters contribute to robust and efficient
network behavior. Finally, the section concludes by presenting the performance of
the optimized networks on the test set, highlighting the generalization capabilities
and overall effectiveness of the proposed approach. This comprehensive evaluation
underscores the significance of systematic HPO in achieving high-performing SNNs
while meeting the requirements of neuromorphic hardware deployment.

4.2.1 Best results analysis
This section discusses the results of the best experiments conducted for each net-
work configuration. The evaluation includes an analysis of accuracy scores for both
training and validation, the loss trends, and the corresponding confusion matrices.
The discussion begins with the worst-performing results, derived from the subsets
with extreme similarity between classes and high sum scores. It then transitions to
an analysis of the best-performing results, achieved with the balanced score subset.

65

Results

worst split This split was used as a control to evaluate the network’s perfor-
mance on a challenging subset of data, all the meaningful results are shown in
Figure 4.5. Achieving satisfactory results on this split provides a reliable indica-
tion of the network’s overall capabilities, particularly in handling low-separability
classes. It serves as a potential lower bound for the accuracy, offering insight into
the robustness of the network structure. The network achieved a score of 89.94%,
coming remarkably close to the critical threshold of 90%, further validating the
effectiveness of the proposed design and process.

(a) Accuracy (b) Loss

(c) Confusion Matrix

Parameter Value
batch_size 512
slope 5
lr 0.001
net_hidden_1 140
net_hidden_2 450
vth_in 1.3
vth_recurrent 0.4
vth_out 0.4
vth_back 0.8
beta_in 0.7
beta_recurrent 0.4
beta_back 0.3
beta_out 0.3
drop_recurrent 0.35
drop_back 0.35
drop_out 0.25
Score 89.449

(d) HPO Parameters

Figure 4.5: Evaluation of the worst split.(a) Subfigures show Accuracy , (b) Loss ,
(c)Confusion Matrix , (d) the parameters chosen by the HPO process .

66

4.2 – Training results

high score split This split was not expected to yield good results due to the
poor separability of score clusters, which inherently penalized the network’s perfor-
mance. Despite these challenges, the network configuration achieved good enough
results, reaching an accuracy of 91.73% for this experiment. The confusion matrix
in Figure 4.6.c highlights that the most frequently misclassified instances belong
to the least separable classes, underscoring the impact of low cluster separability
on the network’s classification accuracy. These observations validate the network’s
robustness under suboptimal conditions while identifying areas for potential im-
provement. The accuracy of this split, which is close to the performance of the
worst split, definitely stresses the previous sub-optimal evaluation of the sum score
as a metric for best separable splits.

balanced split The balanced split represented the most promising candidate for
achieving optimal performance, as it was carefully crafted using additional selection
policies to enhance class separability and overall representativeness. Compared to
other splits, which faced challenges such as poor separability or imbalanced distri-
butions, the result in Figure 4.7 for the balanced split provided a more consistent
foundation for training and evaluation reaching the final validation accuracy of
96.508%. Experiments validated these assumptions, with the network achieving
the highest accuracy observed across all subsets. This result underscores the effec-
tiveness of the balanced split in leveraging the network’s full potential, highlighting
its ability to handle class distributions more effectively than splits with inherent
cluster separability issues. The superior performance on this subset confirms the
robustness of the proposed network structure and optimization process.

Experiments validated these assumptions, with the network achieving the high-
est accuracy observed across all subsets. This result underscores the effectiveness of
the balanced split in leveraging the network’s full potential, highlighting its ability
to handle class distributions more effectively than splits with inherent cluster sep-
arability issues. The superior performance on this subset confirms the robustness
of the proposed network structure and optimization process.

67

Results

(a) Accuracy (b) Loss

(c) Confusion Matrix

Parameter Value
batch_size 256
slope 5
lr 0.0005
net_hidden_1 140
net_hidden_2 550
vth_in 1.7
vth_recurrent 1.0
vth_out 0.9
vth_back 0.4
beta_in 0.4
beta_recurrent 0.8
beta_back 0.6
beta_out 0.8
drop_recurrent 0.15
drop_back 0.25
drop_out 0.45
Score 91.733

(d) HPO Parameters

Figure 4.6: Evaluation of the High Score split. Subfigures show Accuracy (a), Loss
(b), Confusion Matrix (c), and the parameters chosen by the HPO process (d).

68

4.2 – Training results

(a) Accuracy (b) Loss

(c) Confusion Matrix

Parameter Value
batch_size 512
slope 5
lr 0.005
net_hidden_1 200
net_hidden_2 500
vth_in 1.5
vth_recurrent 0.5
vth_out 0.3
vth_back 1.4
beta_in 0.4
beta_recurrent 0.6
beta_back 0.6
beta_out 0.3
drop_recurrent 0.4
drop_back 0.2
drop_out 0.2
Score 96.508

(d) HPO Parameters

Figure 4.7: Evaluation of the balanced score split. Subfigures show Accuracy (a),
Loss (b), Confusion Matrix (c), and the parameters chosen by the HPO process
(d).

69

Results

4.3 Activation sparsity results
Activation sparsity is a fundamental feature of SNNs that contributes significantly
to their energy efficiency and computational performance. By minimizing the num-
ber of active neurons during execution, sparsity reduces the overall computational
cost and memory usage while preserving network functionality. In this study, spar-
sity loss was selectively applied to the network to encourage this behavior. The
application of sparsity loss, however, requires careful consideration, particularly for
neuron populations involved in feedback mechanisms, as excessive constraints can
disrupt the learning process.

The following analysis focuses on the evaluation of activation sparsity and other
associated metrics, as calculated using the Neurobench framework. The impact
of sparsity loss is assessed by comparing multiple versions of the network, each
trained under different conditions, to understand how sparsity constraints influence
performance and efficiency.

Sparsity loss was applied to all neuron populations, except for the backward
population. This decision was made because the backward population’s behavior
is directly influenced by the forward population. Adding sparsity constraints to
this feedback loop could unnecessarily complicate the learning process, potentially
leading to convergence issues during training.

Neurobench provides a range of metrics to analyze the performance and effi-
ciency of SNNs. The following metrics were calculated:

• footprint: This metric measures the memory footprint, in bytes, required to
represent the model. It accounts for factors such as quantization, parameter
storage, and buffering requirements. (Note: It is unclear whether this metric
includes quantized weights, which may impact the result).

• parameter_count: This represents the total number of parameters in the
network, as returned by the nn.Module.parameters() method. It provides
a direct measure of the model’s complexity.

• activation_sparsity: This metric calculates the average sparsity of neuron
activations during execution. It is averaged over all neurons in all layers,
across all timesteps and tested samples. A value of 0 indicates no sparsity
(all neurons are always active), while a value of 1 indicates complete sparsity
(all neurons are inactive).

• membrane_updates: This metric captures the average number of updates
made to neuron membrane potentials during execution. It is computed across
all neurons, timesteps, and tested samples. This metric is specifically tailored
for SNNs implemented with snnTorch.

70

4.3 – Activation sparsity results

These metrics were evaluated on three different networks to provide a com-
prehensive comparison (hyperparameters and accuracy results can be seen in Ta-
ble 4.4):

• Balanced split: This model represents the optimized network obtained from
the HPO process, incorporating the activation sparsity loss.

• Balanced split no loss: This network shares the same hyperparameters as
the Balanced score split, but the activation sparsity loss was omitted to
evaluate the impact of sparsity constraints on network performance.

• Balanced no loss optimal: This network was directly optimized without
any sparsity constraints applied, representing an idealized case for compari-
son.

Parameter Balanced Balanced
no loss

Balanced
optimal
no loss

batch_size 512 512 256
slope 5 5 5
lr 0.005 0.005 0.002
net_hidden_1 200 200 120
net_hidden_2 500 500 250
vth_in 1.5 1.5 0.7
vth_recurrent 0.5 0.5 1.9
vth_out 0.3 0.3 1.5
vth_back 1.4 1.4 0.9
beta_in 0.4 0.4 0.6
beta_recurrent 0.6 0.6 0.7
beta_back 0.6 0.6 0.7
beta_out 0.3 0.3 0.4
drop_recurrent 0.4 0.4 0.25
drop_back 0.2 0.2 0.4
drop_out 0.2 0.2 0.25
Score 96.508 96.508 87.834

Table 4.4: HPO for each network analyzed. In bold the main parameters that
change model size.

By comparing these networks using the metrics provided by Neurobench, we can
assess the impact of sparsity loss and other design choices on memory efficiency,
computational cost, and overall network performance.

71

Results

Metric Balanced score
split

Balanced score
split no loss

Balanced score split
no loss optimal

footprint (KB) 590.52 590.52 153.78
parameter_count 604710 604710 157480
activation_sparsity 0.963 0.744 0.863
membrane_updates 7779.61 6807.251 3575.9675
accuracy 96.508 95.358 87.834

Table 4.5: Comparison of metrics across different configurations.

As can be seen from the results in Table 4.5, comparing networks with the same
hyperparameters, the network trained with the activation sparsity loss achieves sig-
nificantly better accuracy and a superior activation sparsity score. The activation
sparsity loss proves to be highly effective, both enhancing the overall performance
of the model and optimizing the spiking behavior of the neurons. Reducing un-
necessary activity, not only improves the model’s efficiency but also boosts its
classification accuracy.

On the other hand, the network optimized without the loss demonstrates a lower
memory footprint compared to the others. Despite this, it manages to achieve per-
formance levels close to that of the best-performing network trained with sparsity
loss, albeit without the same level of activation sparsity.

Overall, these results show that the activation sparsity loss is highly beneficial,
effectively reducing activity while improving accuracy. This dual optimization im-
proves the encoding efficiency of spikes, making the network more effective and
efficient in handling sparse neural activity.

4.4 Networks conversion results
To achieve deployment on the Loihi 2 hardware, two intermediate steps are neces-
sary:

• Transitioning the network from snnTorch to Lava.

• Converting the network in Lava from floating-point to fixed-point arithmetic.

Significant effort was dedicated to ensuring that the network behaved consis-
tently across both frameworks, despite differences such as the timestep execution
delay between snnTorch and Lava. This section evaluates the robustness of the net-
work with respect to these fundamental principles, first by examining its behavior
during the transition from snnTorch to Lava and then by assessing the impact of
state quantization. The analysis focuses on understanding how the reduced preci-
sion and dynamics introduced by fixed-point arithmetic affect the network’s overall
performance.

72

4.4 – Networks conversion results

4.4.1 From snnTorch to Lava
After obtaining the best results from the snnTorch framework, the network was
ported to Lava for further validation. This validation process involved analyzing
accuracy, raster plots, and state dynamics to assess the robustness of the network
and the reliability of the porting process, given the inherent execution discrepancies
between the two frameworks.

Table 4.6 shows that the accuracy loss during this transition was marginal, with
the largest drop observed in the Balanced Score split, where accuracy decreased by
only 0.582%. These results highlight the robustness of the network and suggest that
the differences in dynamics between snnTorch and Lava do not critically impact
performance for this application.

The minimal accuracy loss observed during this stage was highly encouraging,
providing confidence in the pipeline’s ability to maintain performance across the
entire porting process.

Split name snnTorch accuracy Lava accuracy accuracy loss
High score split 91.733 91.609 0.124
Balanced score split 96.508 95.926 0,582
Worst score split 89.449 88.875 0.574

Table 4.6: comparison of validation score for the same network on the two different
frameworks using floating point values

Now, we analyze the state plots and raster plots of each population, comparing
the dynamic behavior between snnTorch and Lava for the same class signal (Fig-
ure 4.8). The network under consideration is the one trained on the balanced score
split, as it experienced the largest accuracy loss during this step.

From the graphs, it is evident that Lava introduces a time delay for each block
due to its inherent processing characteristics. This delay causes the input signal
to propagate through the network at staggered time steps compared to snnTorch.
For instance, the final step of the input signal is processed in Lava at timestep 43,
whereas in snnTorch it completes at the same timestep, 43. This subtle difference
highlights the processing discrepancy introduced by Lava’s execution model.

In the subsequent analysis, we will take a detailed look at each population in-
dividually, evaluating how this delay affects their state dynamics and spike raster
patterns. This comparison provides deeper insights into the robustness of the net-
work under different execution environments.

Encoding layer For the encoding layer graphs in Figure 4.9, the state plots
and spike rasters show a high degree of similarity between snnTorch and Lava.
The primary observable difference is the expected time delay introduced by Lava,
which is not a significant issue at this initial processing stage. This similarity

73

Results

Figure 4.8: Visualization of signal from class 5 (Drinking) of balanced split. It will
be the input for the state and raster visualization.

indicates that the encoding layer’s functionality and dynamics are preserved across
frameworks, ensuring consistent behavior during the input signal transformation.

Forward layer In Figure 4.10, the first noticeable activity discrepancy between
the two implementations can be observed, particularly in the raster plots. While the
state representations exhibit minimal differences and maintain the same operational
range, slight variations in the actual signals are evident. These differences are not
drastic but indicate the influence of the time delay introduced by Lava, which
consequently impacts the inhibitory action of the backward population.

This effect is further highlighted in the raster plots, where the Lava implemen-
tation shows a slightly higher spike density compared to snnTorch. This increased
activity aligns with the expected delay in inhibitory feedback, subtly altering the
dynamics of the forward population.

Backward layer Similar observations can be made for the backward population
in Figure 4.11, but with a greater degree of difference. Both the state dynamics
and operational ranges show notable discrepancies between Lava and snnTorch.

The differences in spiking activity are clearly visible in the raster plots: the
backward population in snnTorch exhibits fewer spikes compared to Lava. This
indicates a need for increased inhibition in the Lava implementation, as the in-
troduced delay allows the forward population to accumulate more charge in the
neuron states before inhibition takes effect. These dynamics underscore the impact
of timing discrepancies on the inhibitory feedback mechanism and highlight the
importance of accounting for these effects during the porting process.

Output layer Despite the observed differences in the dynamics of the forward
and backward populations, the robustness of the network can still be assessed
through the behavior of the output population, as shown in Figure 4.12. The

74

4.4 – Networks conversion results

output dynamics largely follow the same patterns across both snnTorch and Lava,
demonstrating the network’s resilience to the introduced discrepancies.

The class label prediction remains correct, with firing patterns for the correct
class exhibiting only slight differences while still being decisive for accurate class
selection. Additionally, the raster plots for both frameworks show that the same
incorrect class labels are minimally stimulated, highlighting consistent overall be-
havior despite minor variations in the spike patterns. This reinforces the conclusion
that the network’s functionality and classification capability are preserved across
the two implementations.

(a) (b)

(c) (d)

Figure 4.9: Comparison between encoding population state and spikes of ((a)
and (c)) snnTorch and ((d) and (b)) Lava

75

Results

(a) (b)

(c) (d)

Figure 4.10: Comparison between forward population state and spikes of ((a)
and (c)) snnTorch and ((d) and (b)) Lava

4.4.2 From Floating Point to Fixed Point in Lava
We now turn to the results obtained from the conversion between floating-point
and fixed-point representations. Contrary to what might be expected, this step
poses the greatest risk to network performance due to the operational range con-
straints imposed by the quantization process. As shown in Table 4.7, the conversion
introduces varying degrees of accuracy loss across different splits.

The balanced split exhibited the smallest accuracy drop, losing only 1.080%,

76

4.4 – Networks conversion results

(a) (b)

(c) (d)

Figure 4.11: Comparison between backward population state and spikes of ((a)
and (c)) snnTorch and ((d) and (b)) Lava

further reinforcing its robustness. The worst split experienced a slightly greater
loss in accuracy. However, the most surprising result came from the High Score
split, which showed the largest drop in accuracy at 9.338%, despite its otherwise
favorable characteristics.

We will first analyze the conversion process for the balanced split to understand
its resilience to quantization. Following this, we will take a closer look at the High
Score split to identify the underlying causes of its significant accuracy loss during
this step.

We will skip the first encoding layer for the fixed point visualization, given

77

Results

(a) (b)

(c) (d)

Figure 4.12: Comparison between output population state and spikes of ((a) and
(c)) snnTorch and ((d) and (b)) Lava

that it will not be converted in this step.

Split name Lava fp accuracy Lava fixed accuracy accuracy loss
High score split 91.609 82.271 9.338
Balanced score split 95.926 94.846 1.080
Worst score split 88.875 84.593 4.282

Table 4.7: comparison of validation score for the same network in Lava using floating
point and fixed point arithmeticians

78

4.4 – Networks conversion results

Forward layer In Figure 4.13, the primary effects of quantization are evident:
range limitations and signal saturation at the lower boundary. This fundamental
change in state dynamics leads to noticeable differences. While the spiking patterns
remain generally similar to the original floating-point behavior, the saturation at
the bottom limit reduces spiking activity, lowering the later information encoding
that can lead to the registered accuracy loss. As a result, neurons are less likely to
spike compared to the original floating-point behavior.

(a) (b)

(c) (d)

Figure 4.13: Comparison between forward population state and spikes of Lava
((a) and (c)) Floating-pt and ((d) and (b)) Lava Fixed-pt

79

Results

Backward layer Similar observations can be made for the backward population,
as shown in Figure 4.14. Given the decrease in spiking activity of the forward
population, one might expect a corresponding decrease in the backward feedback
because there is less need to help regulate and keep the forward population "un-
der control." However, this adjustment is evident in a meaningful and visible way,
as the backward population consistently lowered the spiking activity. This lack
of significant feedback response highlights the saturation effects on the network
dynamics.

(a) (b)

(c) (d)

Figure 4.14: Comparison between backward population state and spikes of Lava
((a) and (c)) Floating-pt and ((d) and (b)) Lava Fixed-pt

80

4.4 – Networks conversion results

Output layer Examining the output population in Figure 4.15, it is evident that
the network dynamics are preserved, with spike patterns closely resembling those
of the floating-point implementation. In this population, the inhibitory effects are
more pronounced. The spike pattern for the correct label shows reduced activity,
reflecting the modulation introduced by quantization. Additionally, the outputs for
incorrect labels remain silent throughout the entire time window, further highlight-
ing the effects of the quantization limitations.

(a) (b)

(c) (d)

Figure 4.15: Comparison between output population state and spikes of Lava
((a) and (c)) Floating-pt ((d) and (b)) Lava Fixed-pt

81

Results

investigate accuracy losses Given the relatively low accuracy loss observed for
the conversion of the other two splits, the significant accuracy drop highlighted in
Figure 4.7 for the High Score split warranted further investigation to understand the
underlying reasons for this discrepancy. Such analysis was essential to identify the
specific challenges posed by the conversion process and to determine whether factors
like low separability or dynamic range clipping during quantization contributed to
this performance degradation. The first idea was to take a look at the confusion
matrix for this model on Lava, to see if the losses are distributed over all classes or
are concentrated in some specific ones.

(a) (b)

Figure 4.16: Comparison of Confusion Matrices: (a) Fixed High score split (b)
Original snnTorch results for High score split.

In Figure 4.16, it can be observed that the lower classification scores are pri-
marily associated with classes 1, 5, and 6. Referring back to Figure 4.1, it becomes
evident that these classes have the lowest separability between the actual label and
the prediction. This suggests that their inherent difficulty in classification is fur-
ther exacerbated by the range limitations imposed by quantization during the final
dynamics conversion.

The hypothesis is that the quantization process may have truncated some of
the meaningful information necessary for distinguishing these classes, leading to
reduced performance. To gain a deeper understanding of this behavior, examining
the corresponding raster plots can provide additional insights into the underlying
dynamics.

As shown in Figure 4.17 and Figure 4.18, the inhibition patterns observed in
previous analyses reveal that the output layer struggles to produce the correct
classification. Due to the inherently low separability scores of these classes, the
output layer exhibits difficulty in distinguishing the correct label from the incorrect
ones, resulting in a marginal spike count difference.

82

4.4 – Networks conversion results

(a)

(b) (c)

Figure 4.17: (a)Class signals for label 1 (b) raster plot of output layer floating point
network (c) raster plot of output layer fixed point network both in Lava

This already narrow spike margin is further penalized by the inhibition mech-
anism results from quantization. In the best-case scenario, as seen in Figure 4.17,
the spike counts for both the correct and incorrect labels are nearly identical, re-
ducing the network’s confidence in the classification. In the worst case, depicted in
Figure 4.18, the correct label is inhibited more than the incorrect one, ultimately
leading the network to misclassify the input.

This behavior suggests that critical information encoded in the neurons’ dynam-
ics has been lost during processing, likely due to the range constraints introduced by
quantization. This loss of dynamic information exacerbates the challenges faced by
the network in distinguishing between classes with low initial separability, further
hindering its ability to make accurate predictions.

Test results evaluation In this paragraph, the performance of the network on
the test set will be evaluated, providing final considerations regarding the port-
ing process based on the obtained results. This step was not performed on the
actual chip for two primary reasons: the limited availability of chip runtime was
insufficient to process the entire test set, and the computational accuracy of the

83

Results

(a)

(b) (c)

Figure 4.18: (a) Class signals for label 5, (b) raster plot of output layer floating
point network (c) raster plot of output layer fixed point network both in Lava

fixed-point simulator is known to seamlessly replicate the chip’s behavior. There-
fore, the evaluation was carried out using the fixed-point simulator.

As shown in Table 4.8, the results demonstrate the network’s ability to maintain
its performance even after all the conversion steps and adaptations required to port
it from snnTorch to Lava in fixed-point format.

Split name Lava fixed accuracy
High score split 81.8347
Balanced score split 95.0653
Worst score split 84.1214

Table 4.8: Lava fixed test results for al three dataset splits

This is particularly evident for the split where all the efforts were focused:
the Balanced split. Its uniform diversity among the classes facilitates seamless
classification performance, making it robust even to the quantization step. The
Worst split, despite its challenging separability, also performed above expectations,
further validating the effectiveness of the network design.

84

4.5 – Loihi2 power consumption

However, the unexpected results from the High score split opened new oppor-
tunities for investigation. These results provided deeper insights into how quanti-
zation influences the network’s behavior, highlighting critical areas for future im-
provement and optimization.

4.4.3 Lava fine-tuning using local learning rule

To ensure a seamless porting of the network and maintain its performance despite
the observed drop, it was hypothesized that fine-tuning the network could help
achieve comparable or even superior results to those obtained with snnTorch. For
this purpose, the local learning rules provided by Lava were utilized.

Among these, local learning rules such as STDP and Reward-modulated Spike-
Timing-Dependent Plasticity (RSTDP) were selected to update the synaptic weights
to a potentially better state. These learning rules were already implemented within
Lava, and existing examples were leveraged to guide the integration into the final
steps of the pipeline.

The fine-tuning process involved applying these learning rules exclusively to
the synapses of the output layer. Specifically, the synapses connecting between
the forward branch of the RInibitory block (pre-synaptic neurons) to the Output
population (post-synaptic neurons) were updated. This targeted approach allowed
for a direct evaluation of the validity of the updates, as the classification accuracy
could be used as a metric for penalizing or rewarding synaptic changes.

RSTDP, which incorporates a reward function, was particularly suited for this
task, as it directly aligns synaptic updates with performance improvements. How-
ever, implementing these learning rules was not without challenges. While the
provided examples served as a foundation, they lacked clarity, and when integrated
into the pipeline, the resulting updates did not yield any significant improvements
over the already achieved results. This outcome suggests either limitations in the
application of these learning rules within the specific network context or the need
for further refinement of the implementation process.

4.5 Loihi2 power consumption

As already explained, having developed all the previous pipelines significantly sim-
plified the deployment process on the neuromorphic chip, requiring only a few
additional steps to achieve the desired results. This step is critical, as it represents
the final stage of transitioning the network from simulation to real-world hardware,
where the true advantages of neuromorphic computing—such as energy efficiency
and low latency—can be fully realized.

85

Results

We opted not to run the entire validation procedure directly on the chip. In-
stead, thanks to extensive evaluation comparisons, we confirmed that the fixed-
point simulator accurately mimics the chip’s computational behavior. This allowed
us to focus on measuring the power consumption of a single classification task,
which is one of the most significant metrics for assessing the performance of neu-
romorphic systems. The decision to use the simulator was also necessitated by
time constraints on the availability of the chip itself, emphasizing the importance
of efficient pipeline development to minimize deployment bottlenecks.

Measurement Loihi 2
Power (W): Static 0.212560
Power (W): Dynamic 0.037387
Power (W): Total 0.249947
Latency (µs) 10000
Energy (µJ): Total 900280.00
Energy (µJ): Dynamic 63761.00
Energy (µJ): Static 836519.00

Table 4.9: Performance Benchmarking Comparison Template (Transposed)

The proposed model occupies 21 neuromorphic cores. A single sample classifi-
cation takes 10000 µs on the neuromorphic cores and consumes 900280.00 µJ of en-
ergy, 63761.00 µJ of which is dynamic energy. These results highlight the network’s
ability to maintain computational efficiency while adhering to the constraints of the
neuromorphic hardware. All measurements were obtained using Lava on Loihi 2,
version 0.6.0, on the board oheogulch. Table 4.9 provides a detailed breakdown of
the energy consumption.

The deployment step not only validates the compatibility of the network with
the hardware but also demonstrates its practical applicability for low-power, high-
speed applications. This is a crucial milestone in leveraging the full potential of
the Loihi 2 platform and neuromorphic computing in general.

4.6 Conclusion
This thesis presented a comprehensive approach for developing and deploying SNNs
on neuromorphic hardware, focusing on creating a pipeline that balances flexibility,
efficiency, and generalization. By leveraging existing tools such as snnTorch other
than the predefined framework, Lava, addressing challenges across data preprocess-
ing, training, and hardware deployment, the work demonstrated how to successfully
adapt custom SNNs for fixed-point neuromorphic platforms.

86

4.6 – Conclusion

The importance of data preprocessing was highlighted early in the pipeline,
where different dataset splits were created to evaluate the network under various
conditions, from best-case scenarios to challenging worst-case separability. The
balanced split proved to be the most effective configuration, achieving the highest
accuracy of 96.508% and showcasing its ability to manage class diversity and sepa-
rability effectively. This outcome validated the importance of a well-designed split,
showing how the careful selection of training subsets can greatly influence the final
network performance.

The activation sparsity loss was another critical contribution to the pipeline, as
demonstrated by the comparison between two models: one trained with sparsity
loss and another without it. This comparison showed that the inclusion of spar-
sity loss not only improved classification accuracy but also optimized the spiking
behavior of the neurons. The network trained with sparsity loss achieved higher
activation sparsity and better accuracy compared to its counterpart. For example,
the balanced split with sparsity loss achieved an activation sparsity score of 0.963
and an accuracy improvement of 8.674% compared to the same network trained
without sparsity loss.

This dual benefit underscores the importance of sparsity loss in reducing unnec-
essary activity while enhancing the encoding efficiency of spikes. By promoting effi-
cient neuron activations, sparsity loss effectively balances computational efficiency
with improved network performance, making it a valuable tool in the development
of spiking neural networks.

Interestingly, even the worst-case split, with its inherently poor separability, per-
formed above expectations. Achieving an accuracy of 88.875%, this result demon-
strated the robustness of the proposed network structure and optimization process.
Although the high-score split faced unexpected challenges due to quantization ef-
fects, the analysis provided valuable insights into how fixed-point representation
influences network behavior, offering new directions for future improvements.

The hardware deployment step further validated the pipeline’s robustness. The
transition from snnTorch to Lava in fixed-point format, while not without chal-
lenges, retained high computational fidelity. Using the fixed-point simulator to
replicate chip behavior, it was shown that a single classification task required
10000 µs and consumed 900280.00 µJ, with 63761.00 µJ attributed to dynamic
energy. The memory footprint of the final deployed model was 590.52 Kilo Bytes,
distributed across 21 neuromorphic cores. These results reinforce the feasibility of
deploying such networks on real-world hardware while maintaining the expected
efficiency and performance.

In conclusion, this work demonstrated the viability of transferring SNNs to a
new computational framework, achieving high performance even under challenging
conditions. The proposed pipeline offers a scalable, adaptable, and efficient ap-
proach to deploying SNNs on neuromorphic hardware, paving the way for future

87

Results

research into improving both network design and hardware compatibility. The in-
sights gained from this study provide a strong foundation for further exploration
into the development of energy-efficient and flexible neuromorphic computing sys-
tems, also expanding this pipeline compatibility with other frameworks such as
Neuromorphic Intermediate Representation (NIR).

88

Acknowledgements

I would like to dedicate these lines to all the people who have accompanied me on
this journey and made it possible to reach this important milestone.

First and foremost, I would like to thank my supervisor, Gianvito Urgese, for
giving me the opportunity to explore this fascinating field of research related to neu-
romorphic computing, and for his unwavering support and valuable advice through-
out this journey.

I would also like to express my sincere gratitude to Vittorio Fra, whose patience
and expertise were crucial in helping me refine the concepts of this thesis. His deep
knowledge of the field has been essential in shaping the quality of this research. I
would also like to thank the members of the EDA research group at the Politecnico
di Torino who, even with a small contribution, helped me to complete this work.
We acknowledge a contribution from the Italian National Recovery and Resilience
Plan (NRRP), M4C2, funded by the European Union – NextGenerationEU (Project
IR0000011, CUP B51E22000150006, “EBRAINS-Italy”).

89

Acknowledgements

Grazie a mio padre che, anche se non si scompone mai troppo, mi dimostra
sempre un affetto smisurato ed e’ sempre pronto ad aiutarmi e consigliarmi, anche
quando lo disturbo nei momenti piu’ inopportune.

Grazie a mia madre che con i suoi modi gentili mi supporta quando nota delle
piccole indecisioni, riesce sempre a tirarmi su il morale, consolandomi anche nei
momenti peggiori, che mi chiama sempre per chiedermi anche stupidaggini, soltanto
per sentire come sto.

Grazie a mi nonno che mi ha insegnato a usare il trapano e la penna, grazie a
mia nonna che mi ha accudito e protetto quando nessuno era in casa, grazie ai miei
zii, sempre disposti a darmi qualcosa da fare per non farimi annoiare.

Grazie a tutta la mia famiglia sparsa un po per tutta l’Italia, che mi fa sentire
sempre amato e in quei pochi momenti all’anno in cui ci si riunisce, e’ capace di
farmi tornare bambino.

Grazie a mia sorella, la persona di cui vorrei dire troppe cose belle, in lei trovo
sempre un confronto e un supporto indescrivibile, anche se ormai siamo distanti,
non siamo mai stati cosi vicini, sono davvero entusiasta di avere te come sorella,
di poche cose sono estremamente orgoglioso, la prima di queste e’ il fantastico
rapporto che abbiamo costruito.

Grazie ai miei amici che mi sopportano dalle scuole superiori, con cui abbi-
amo affrontato tutti insieme il trasferimento all’universita’ e che anche in modo
strampalato, continuiamo a volerci bene.

Grazie ai miei nuovi amici incontrati a Torino, con cui abbiamo condiviso stu-
dio, divertimento e bagna cauda, collezionato un numero indescrivibile di nuove
esperienze vissute insieme.

Grazie a Elisa, Elisabetta e Christian, con cui abbiamo costruito un’amicizia
speciale, fatta di semplici uscite, viaggi e momenti di sincero affetto.

Grazie ai nuovi coinquilini che mi hanno accolto nella nuova casa, grazie ai
vecchi coinquilini, con cui abbiamo condiviso piccoli momenti di vita qotidiana,
litigi e piccole confessioni, feste assurde e pranzi abbondanti.

Grazie ai vecchi membri di RoboTO, con cui abbiamo iniziato questo pazzo
viaggio, pieno di difficolta’ e sfide, che ci ha permesso di crescere ed imparare ad
una velocita’ impressionante, che ci ha permesso di costruire il gruppo di amici piu’
bizzarro che c’e’.

Grazie ai nuovi membri, che con il loro entusiasmo, dedizione, passione e disturbi
dell’attenzione, sono disposti a portare avanti la piccola realta’ che abbiamo creato
con tanta fatica.

Ringrazio tutti coloro che sono presenti, anche soltanto con il cuore in questa
giornata, se siete qui, oggi, riconoscete il valore della nostra amicizia e avete con-
tribuito a farmi arrivare a questo importantissimo traguardo.

90

Bibliography

[1] Wolfgang Maass. «Networks of spiking neurons: The third generation of neu-
ral network models». In: Neural Networks 10.9 (1997), pp. 1659–1671. issn:
0893-6080. doi: https : / / doi . org / 10 . 1016 / S0893 - 6080(97) 00011 -
7. url: https : / / www . sciencedirect . com / science / article / pii /
S0893608097000117.

[2] Sumit Bam Shrestha and Garrick Orchard. «SLAYER: Spike Layer Error
Reassignment in Time». In: Advances in Neural Information Processing Sys-
tems 31. Ed. by S. Bengio et al. Curran Associates, Inc., 2018, pp. 1419–1428.
url: http://papers.nips.cc/paper/7415-slayer-spike-layer-error-
reassignment-in-time.pdf.

[3] Sander M. Bohte, Joost N. Kok, and Han La Poutré. «Error-backpropagation
in temporally encoded networks of spiking neurons». In: Neurocomputing
(2002). doi: https://doi.org/10.1016/S0925-2312(01)00658-0. url:
https://www.sciencedirect.com/science/article/pii/S0925231201006580.

[4] Bodo Rueckauer et al. «Conversion of Continuous-Valued Deep Networks to
Efficient Event-Driven Networks for Image Classification». In: Frontiers in
Neuroscience 11 (2017). issn: 1662-453X. doi: 10.3389/fnins.2017.00682.
url: https://www.frontiersin.org/journals/neuroscience/articles/
10.3389/fnins.2017.00682.

[5] J. Sjöström and W. Gerstner. «Spike-timing dependent plasticity». In: Schol-
arpedia (2010). doi: 10.4249/scholarpedia.1362.

[6] Mike Davies et al. «Advancing Neuromorphic Computing With Loihi: A
Survey of Results and Outlook». In: Proceedings of the IEEE (2021). doi:
10.1109/JPROC.2021.3067593.

[7] Filipp Akopyan et al. «TrueNorth: Design and Tool Flow of a 65 mW 1
Million Neuron Programmable Neurosynaptic Chip». In: IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems (2015). doi:
10.1109/TCAD.2015.2474396.

[8] Steve B. Furber et al. «Overview of the SpiNNaker System Architecture».
In: IEEE Transactions on Computers 62.12 (2013), pp. 2454–2467. doi: 10.
1109/TC.2012.142.

91

https://doi.org/https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/https://doi.org/10.1016/S0893-6080(97)00011-7
https://www.sciencedirect.com/science/article/pii/S0893608097000117
https://www.sciencedirect.com/science/article/pii/S0893608097000117
http://papers.nips.cc/paper/7415-slayer-spike-layer-error-reassignment-in-time.pdf
http://papers.nips.cc/paper/7415-slayer-spike-layer-error-reassignment-in-time.pdf
https://doi.org/https://doi.org/10.1016/S0925-2312(01)00658-0
https://www.sciencedirect.com/science/article/pii/S0925231201006580
https://doi.org/10.3389/fnins.2017.00682
https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2017.00682
https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2017.00682
https://doi.org/10.4249/scholarpedia.1362
https://doi.org/10.1109/JPROC.2021.3067593
https://doi.org/10.1109/TCAD.2015.2474396
https://doi.org/10.1109/TC.2012.142
https://doi.org/10.1109/TC.2012.142

BIBLIOGRAPHY

[9] SynSense. Xylo. 2023. url: https://www.synsense.ai/products/xylo/.
[10] Mike Davies et al. «Loihi: A neuromorphic manycore processor with on-chip

learning». In: Ieee Micro 38.1 (2018), pp. 82–99.
[11] Garrick Orchard et al. «Efficient neuromorphic signal processing with loihi

2». In: 2021 IEEE Workshop on Signal Processing Systems (SiPS). IEEE.
2021, pp. 254–259.

[12] Sumit Bam Shrestha et al. «Efficient video and audio processing with Loihi
2». In: ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE. 2024, pp. 13481–13485.

[13] Intel. Taking Neuromorphic Computing to the Next Level with Loihi 2. 2021.
url: https://download.intel.com/newsroom/2021/new-technologies/
neuromorphic-computing-loihi-2-brief.pdf.

[14] Steve B. Furber et al. «Overview of the SpiNNaker System Architecture».
In: IEEE Transactions on Computers 62.12 (2013), pp. 2454–2467. doi: 10.
1109/TC.2012.142.

[15] Rodney Douglas, Misha Mahowald, and Carver Mead. «Neuromorphic ana-
logue VLSI». In: Annual review of neuroscience 18.1 (1995), pp. 255–281.

[16] Alan L Hodgkin and Andrew F Huxley. «A quantitative description of mem-
brane current and its application to conduction and excitation in nerve». In:
The Journal of physiology 117.4 (1952), p. 500.

[17] Mike Davies et al. «Loihi: A Neuromorphic Manycore Processor with On-Chip
Learning». In: IEEE Micro (2018). doi: 10.1109/MM.2018.112130359.

[18] Jason K Eshraghian et al. «Training spiking neural networks using lessons
from deep learning». In: Proceedings of the IEEE (2023).

[19] Nicolas Brunel and Mark van Rossum. «Quantitative investigations of electri-
cal nerve excitation treated as polarization: Louis Lapicque 1907 · Translated
by:» in: Biological Cybernetics (2007). doi: 10.1007/s00422-007-0189-6.

[20] Evelina Forno et al. «Spike encoding techniques for IoT time-varying signals
benchmarked on a neuromorphic classification task». In: Frontiers in Neuro-
science (2022).

[21] Peter U. Diehl and Matthew Cook. «Unsupervised learning of digit recogni-
tion using spike-timing-dependent plasticity». In: Frontiers in Computational
Neuroscience 9 (2015), p. 99. doi: 10.3389/fncom.2015.00099.

[22] Junfeng Shao et al. «A Spiking Neural Network for Phoneme Recognition
Using Real Acoustic Feature Vectors». In: International Journal of Compu-
tational Intelligence Systems (2012). doi: 10.1080/18756891.2012.733224.

92

https://www.synsense.ai/products/xylo/
https://download.intel.com/newsroom/2021/new-technologies/neuromorphic-computing-loihi-2-brief.pdf
https://download.intel.com/newsroom/2021/new-technologies/neuromorphic-computing-loihi-2-brief.pdf
https://doi.org/10.1109/TC.2012.142
https://doi.org/10.1109/TC.2012.142
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1007/s00422-007-0189-6
https://doi.org/10.3389/fncom.2015.00099
https://doi.org/10.1080/18756891.2012.733224

BIBLIOGRAPHY

[23] Shih-Chii Liu and Tobi Delbruck. «Temporal Coding in Sensing and Decision
Making». In: IEEE Transactions on Neural Networks 21.5 (2010), pp. 758–
770. doi: 10.1109/TNN.2010.2040793.

[24] Chunlin Yu et al. «A Tactile Sensing System for an Anthropomorphic Ar-
tificial Hand Based on Spiking Neural Networks». In: Sensors 19.3 (2019),
p. 683. doi: 10.3390/s19030683.

[25] Patrick Lichtsteiner, Christoph Posch, and Tobi Delbruck. «A 128 x 128 120
dB 15 µs Latency Asynchronous Temporal Contrast Vision Sensor». In: IEEE
Journal of Solid-State Circuits 43.2 (2008), pp. 566–576. doi: 10.1109/JSSC.
2007.914337.

[26] Nikita Skatchkovsky, Garrick Orchard, and Jonathan Tapson. «Detection of
Dynamic Events in Real-World Sensor Data Using Spiking Neural Networks».
In: IEEE Transactions on Neural Networks and Learning Systems 31.2 (2020),
pp. 393–405. doi: 10.1109/TNNLS.2019.2899508.

[27] Jason Yik et al. NeuroBench: A Framework for Benchmarking Neuromorphic
Computing Algorithms and Systems. 2024. url: https://arxiv.org/abs/
2304.04640.

[28] Francesco Fioranelli, Julien Le Kernec, and Syed Aziz Shah. «Radar for
Health Care: Recognizing Human Activities and Monitoring Vital Signs».
In: IEEE Potentials (2019). doi: 10.1109/MPOT.2019.2906977.

[29] Gary Weiss. WISDM Smartphone and Smartwatch Activity and Biometrics
Dataset. UCI Machine Learning Repository. DOI: https://doi.org/10.24432/C5HK59.
2019.

[30] Vittorio Fra et al. «Human activity recognition: suitability of a neuromorphic
approach for on-edge AIoT applications». In: Neuromorphic Computing and
Engineering (2022). doi: 10.1088/2634-4386/ac4c38. url: https://dx.
doi.org/10.1088/2634-4386/ac4c38.

[31] Irvine Univercity of California. UCI Machine Learning Repository. url: https:
//archive.ics.uci.edu/.

[32] Intel. Intel Neuromorphic Research Community. 2021. url: https://intel-
ncl.atlassian.net/wiki/spaces/INRC/overview.

[33] Michael Ehrlich et al. «Adaptive control of a wheelchair mounted robotic arm
with neuromorphically integrated velocity readings and online-learning». In:
Frontiers in Neuroscience (2022). doi: 10.3389/fnins.2022.1007736.

[34] Federico Paredes-Vallés et al. Fully neuromorphic vision and control for au-
tonomous drone flight. 2023. url: https://arxiv.org/abs/2303.08778.

93

https://doi.org/10.1109/TNN.2010.2040793
https://doi.org/10.3390/s19030683
https://doi.org/10.1109/JSSC.2007.914337
https://doi.org/10.1109/JSSC.2007.914337
https://doi.org/10.1109/TNNLS.2019.2899508
https://arxiv.org/abs/2304.04640
https://arxiv.org/abs/2304.04640
https://doi.org/10.1109/MPOT.2019.2906977
https://doi.org/10.1088/2634-4386/ac4c38
https://dx.doi.org/10.1088/2634-4386/ac4c38
https://dx.doi.org/10.1088/2634-4386/ac4c38
https://archive.ics.uci.edu/
https://archive.ics.uci.edu/
https://intel-ncl.atlassian.net/wiki/spaces/INRC/overview
https://intel-ncl.atlassian.net/wiki/spaces/INRC/overview
https://doi.org/10.3389/fnins.2022.1007736
https://arxiv.org/abs/2303.08778

BIBLIOGRAPHY

[35] Tasbolat Taunyazov et al. Event-Driven Visual-Tactile Sensing and Learning
for Robots. 2020. arXiv: 2009.07083 [cs.RO]. url: https://arxiv.org/
abs/2009.07083.

[36] Nabil Imam and Thomas Cleland. «Rapid online learning and robust recall
in a neuromorphic olfactory circuit». In: Nature Machine Intelligence 2 (Mar.
2020), pp. 181–191. doi: 10.1038/s42256-020-0159-4.

[37] Alessandro Pierro et al. Solving QUBO on the Loihi 2 Neuromorphic Pro-
cessor. 2024. arXiv: 2408.03076 [cs.NE]. url: https://arxiv.org/abs/
2408.03076.

[38] Intel. Lava Software Framework. 2021. url: https://lava-nc.org/.
[39] Intel. Lava Deep Learning. 2021. url: https://lava-nc.org/lava-lib-

dl/index.html.
[40] Wikipedia. Kullback–Leibler divergence. 2021. url: https://en.wikipedia.

org/wiki/Kullback%E2%80%93Leibler_divergence.
[41] Farhad Mortezapour Shiri et al. A Comprehensive Overview and Comparative

Analysis on Deep Learning Models: CNN, RNN, LSTM, GRU. 2024. url:
https://arxiv.org/abs/2305.17473.

[42] Philipp Plank et al. A Long Short-Term Memory for AI Applications in
Spike-based Neuromorphic Hardware. 2021. arXiv: 2107.03992 [cs.NE]. url:
https://arxiv.org/abs/2107.03992.

[43] B. Gutkin and F. Zeldenrust. «Spike frequency adaptation». In: Scholarpedia
(2014). doi: 10.4249/scholarpedia.30643.

[44] Alessandro Pappalardo. Xilinx/brevitas. 2023. doi: 10.5281/zenodo.3333552.
url: https://doi.org/10.5281/zenodo.3333552.

[45] Quentin Ducasse et al. «Benchmarking quantized neural networks on FPGAs
with FINN». In: arXiv preprint arXiv:2102.01341 (2021).

[46] Jason K. Eshraghian et al. Navigating Local Minima in Quantized Spiking
Neural Networks. 2022. url: https://arxiv.org/abs/2202.07221.

[47] Simon Narduzzi et al. «Optimizing the consumption of spiking neural net-
works with activity regularization». In: ICASSP 2022-2022 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE. 2022, pp. 61–65.

[48] Jianchuan Ding et al. «Biologically inspired dynamic thresholds for spiking
neural networks». In: Advances in Neural Information Processing Systems 35
(2022), pp. 6090–6103.

[49] Kinjal Patel et al. A Spiking Neural Network for Image Segmentation. 2021.
url: https://arxiv.org/abs/2106.08921.

94

https://arxiv.org/abs/2009.07083
https://arxiv.org/abs/2009.07083
https://arxiv.org/abs/2009.07083
https://doi.org/10.1038/s42256-020-0159-4
https://arxiv.org/abs/2408.03076
https://arxiv.org/abs/2408.03076
https://arxiv.org/abs/2408.03076
https://lava-nc.org/
https://lava-nc.org/lava-lib-dl/index.html
https://lava-nc.org/lava-lib-dl/index.html
https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence
https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence
https://arxiv.org/abs/2305.17473
https://arxiv.org/abs/2107.03992
https://arxiv.org/abs/2107.03992
https://doi.org/10.4249/scholarpedia.30643
https://doi.org/10.5281/zenodo.3333552
https://doi.org/10.5281/zenodo.3333552
https://arxiv.org/abs/2202.07221
https://arxiv.org/abs/2106.08921

	Contents
	List of Figures
	List of Tables
	Introduction
	Background
	From classic ANNs to SNNs
	Leaky Integrate and Fire (LIF)
	Data Encoding
	Training spiking neural network
	snnTorch
	NeuroBench

	Human Activity Recognition
	WISDM dataset

	Intel Loihi 2
	Architecture and Key Features
	Performance Improvements
	Research Applications and Results
	Available Loihi 2 Hardware Systems

	Lava Framework
	Core Structure of Lava
	Process Models
	Execution of Processes
	Inter-Process Communication
	Lava-DL: Deep Learning Extension

	Materials and methods
	Data pre-processing
	Kullback-Leibler Divergence as Separability Metric
	Separability score

	Spiking Network Definition
	Encoding Layer
	Recurrent Block
	Output Loss Function and Rate Coding
	Quantization in Brevitas
	Cosine Annealing Learning Rate and its Role in Quantized Networks
	Sparsity Enforcing

	Lava and Loihi 2 Porting
	Network Definition in Lava
	Neuron Internal Variable Quantization
	Hardware Execution

	Hyperparameter Search
	Neural Network Intelligence (NNI)

	Results
	KDL metrics evaluation
	Training results
	Best results analysis

	Activation sparsity results
	Networks conversion results
	From snnTorch to Lava
	From Floating Point to Fixed Point in Lava
	Lava fine-tuning using local learning rule

	Loihi2 power consumption
	Conclusion

	Bibliography

