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Abstract

Nowadays, Internet of Things (IoT) hardware and technologies are getting more
and more importance in our everyday lives: these small, low-cost devices, com-
posed of sensors and wireless data transmitter, are gaining popularity. Despite all
of this, these systems present some drawbacks and developers are forced to find
compromises between measurement accuracy, battery duration and system costs,
trying to optimize all these variables for deploying amazing smart applications.

Sensor fusion is one of the emerging techniques for analysing heterogeneous data
coming from different sensors, for elaborating information to be exploited in several
IoT applications. However, for the correct implementation of sensor fusion models,
synchronization of the heterogeneous signals is a must. The literature presents some
works on clock alignment, but those are intended for systems based on the same
HW platform, require optimization of low-level connection layers (not available to
developers in most cases), and are not always thought for wireless transmission.
Hence, even if the presented results are promising, those methods can’t be easily
applied to heterogeneous, mass-produced devices.

In this thesis I present the system developed to synchronize the wireless-based
acquisition of signals from four different sensor boards from ST Microelectronics
and three from MBIENTLAB. I also explored the possibility to use the embedded
microphones and the consequent audio data to synchronize and label data, finding
valid ways to stream sound and implement Fast Fourier Transform (FFT) on the
microcontrollers. I gave particular attention in getting the most out of the Blue-
tooth Low Energy protocol (BLE): it is a good solution from the energy-efficiency
and compatibility points of view, but at the same time some optimization is neces-
sary to keep a good throughput and maintain an efficient bi-directional connection.
Finally, I developed time synchronization on the application layer of the BLE stack:
it consists in the periodic exchange of timestamped packets between the client and
the sensors. The client is then aware of the internal timestamp of the sensors in
those re-synchronization moments, and can tag the samples with the precise mo-
ment in time they are acquired. The goals are a) development of firmware for the
open-source ST devices, with a personalized time synchronization mechanism, b)
design of clients for all the devices, formatting data in a consistent way and c)
writing of MATLAB scripts to join together the resulting data.
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The developed system behaves as expected in the experiments that have been
carried out. I made initial tests to determine the best sample rate for the sensors, to
guarantee the correct transmission through the BLE channel and to keep the packet
loss/received ratio lower than 1%, which is 75 Hz. Then, I verified the behaviour of
the time synchronization after 15 minutes of data streaming, showing a precision
of around 70 ms, while the same setup without synchronization presents samples
with delays of more than 1s. Finally, I performed an extensive test by installing
the sensors in a car and collecting data in that environment, with the help of a
camera and GPS devices. In this case, data have been labelled using sounds at
predefined frequencies and elaborated at the node level. A calibration algorithm
has been developed to rotate the sensor reference system for aligning it to the
vehicle reference system. Results demonstrated that sensor information remains
aligned in time and consistent with the recorded audio data. After the application
of the calibration algorithm, data is also well aligned and consistent under this
point of view.
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Chapter 1

Introduction

The electronics market has been recently revolutionized with the massive manu-
facturing of the so-called Micro-Electro-Mechanical Systems (MEMS): micro-scale
devices, with moving parts, that can be manufactured using some of the typical
fabrication processes for Integrated Circuits (IC). Possible applications of these de-
vices include a great number of different sensors, like Inertial Measurement Units
(IMU), composed of accelerometers, gyroscope and magnetometer. Thanks to their
already available assembly lines, silicon foundries started to produce these devices,
making them small, easy to integrate, highly available and, most importantly, low
cost.

In particular, small and low-cost are two important keywords when talking
about Internet of Things (IoT). IoT is a term used to describe those objects com-
posed of sensors, processing abilities, software and technologies for data transmis-
sion. Usually, their goal is fetching data from the environment using sensors, process
that information and send it (raw or elaborated) to other devices, over the Internet
or by custom connections. These devices are pretty easy to be found nowadays:
lots of people have a smartwatch on their wrist, constantly fetching data about
their physical activity and making users aware of their results via a smartphone
application. Even homes are starting to be more IoT-friendly, with security cam-
eras, alarm systems and thermostats that are connected to the Internet. As they
are getting always smaller and cheaper, more and more people are buying them
to make their lives easier. Another important field in which IoT is getting success
is Industry 4.0: this word is used to group all the technological shifts that are
interesting the industry domain in these days, including interconnection between
different machines or assembly lines and smart automation. Also in this case the
role of low-cost sensing and connected devices is important: different conditions
during the manufacturing process can be easily monitored (sensors), fetched (in-
terconnection) and elaborated, in order to understand how the processes currently
used is working, if there is any improvement to be done, and eventually apply these
changes automatically (smart automation). Figure 1.1 reports an example of a
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configuration in which multiple IoT devices are used. Two nodes, represented in
orange, are connected via a low-range transmission protocol (in this case Bluetooth)
to an hub that can receive data from multiple devices. Then, the hub is responsible
to encapsulate them and send them over WiFi to a centralized server. Another
node, in green, overcomes the need of an intermediary and is capable of sending all
the data via Internet. The centralized server is then used to receive all the data,
perform elaboration on them, and generate some outputs that the final user can
see on a website or on a smartphone application.

Figure 1.1: A configuration example for commercial IoT nodes

To sum it up, IoT requires a great number of sensors, and MEMS technolo-
gies can produce them easily and in a cheap way: their development is proceeding
hand-in-hand, and nowadays different vendors, including ST Microelectronics and
Bosch, have their own lines of micro sensors that can be implemented in a lot of
applications. To improve their devices, they also embed functionalities other than
the mere sensing ones, inside these MEMS: for example, some recent IMU devices
from ST offer programmable Finite State Machines (FSM), that can generate in-
terrupts when a particular condition is met. In this way, the microcontroller has
less lines of code to execute, and doesn’t have to continuously poll the sensor, with
consequent energy savings.

For this thesis, I worked on some off-the-shelf boards that include different sen-
sors. Some of them are evaluation boards, on which developers can deploy their
firmware and verify if the available hardware is good for their goals. It’s the case for
the devices from ST Microelectronics, the SensorTile.box and the BlueTile. Other
ones are ready-to-use solutions for motion and environmental data analysis: Meta-
MotionS boards from MBIENTLAB include all the hardware and the software for
this scope.

These boards include different sensors:
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• Environmental sensors: temperature, pressure, humidity and light sensors.

• IMU sensors: accelerometer, gyroscope, magnetometer.

• Microphone for audio data analysis (Fast Fourier Transform FFT) or trans-
mission.

ST boards embed MEMS sensors from their own lineup, while MetaMotionS ones
are primarily from Bosch.

Of course, cheapness and reduced dimensions have their own costs: the signal
coming from the sensors is not high-precision, a lot of noise is present and output
values are subject to bias. Better performing solutions are available, but only at
much higher prices, they require more space and, last but not least important,
more power. They also can’t be wireless and battery-operated, that are the most
important points of the above mentioned sensors boards.

My main goal has been working with these kind of sensors, trying to get the
best out of them. In particular, I set up a data acquisition system in which multiple
sensor boards, from different vendors, can be connected: in this way, it is possible
to join the different information from the different sensors to get more accurate
information. For example, sensors can be all placed on the same spot, to capture
data on the same event happening on the same place, and signals can be compared
to get rid of noise and bias. Another possibility is to place them on independent
spots, capturing data of different nature. Then, with the help of Machine Learning
algorithms, the fetched data can be joined to easily recognize different events: for
example, putting sensors on more parts of the human body can help motion detec-
tion algorithms to return more accurate results. An example is reported in chapter
2.7.

Good part of the work has been the design of a mechanism to keep results syn-
chronized over time. Each sensor board includes its own clock, subject to drift and
offset: it is important that, in the final result, each sample is tagged with the mo-
ment of acquisition with the greatest precision possible, but more importantly that
the timestamps obtained from the different devices are aligned as best as possible.
In this way, the above mentioned sensor fusion algorithms can work correctly and
produce coherent results.

As I have been working with low-cost IoT devices, with a very limited computa-
tional power, it is important that even this synchronization mechanism is low-cost
and easy to implement: a good solution would be a trade-off between precision
and complexity. Also the limitations of the Bluetooth Low Energy (BLE) protocol,
used by all the considered boards, are taken into consideration.

The obtained result from this work is a system of 7 sensor boards, connected via
BLE to a single client (a Linux computer). The client is responsible of collecting all
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the data coming from the nodes, synchronize them over time and elaborate them to
be further analyzed by other software solutions (like MATLAB) or algorithms (like
sensor fusion ones). I tried to keep the time synchronization accuracy under 100 ms.

The system has been tested in different experiments: the first one has been carried
out to understand the best data rate at which the boards can output data using
Bluetooth Low Energy, to find an acceptable trade-off between the percentage of
lost packets and the frequency at which data packets are generated. In this case,
multiple situations have been tested, using different numbers of sensor boards and
Bluetooth adapters. The second experiment, instead, had the goal of understand-
ing how good the developed time synchronization is. In this case, all the devices
streamed data for 15 minutes and, at the end, I gave them an acceleration on the
Z-axis by making them fall (on a soft surface). Then, the delays between the ac-
celerometer values are analyzed and discussed. The last experiment consisted of
installing all sensors inside a car, collecting all the data from the sensors during
a driving session. This was the most extensive test, and the system worked as
expected. Some other simpler test have been performed during the development,
including ones to verify the accuracy of the FFT, ones to test the audio streaming
and ones to verify the direction of the axis for all the sensor boards.

To make the data acquisition campaign on the car, I also developed a calibra-
tion algorithm that is capable of aligning the sensor reference system to the vehicle
reference system. In this way, even if sensors are not correctly aligned during the
installation (as in our case), automation correction can be performed. Applying
this algorithm to the data coming from the car experiment resulted in a correct
rotation of the axes.

Possible applications of the developed system include human activity recognition
for the electronics mass-market, and predictive maintenance for the industry. In my
case, I explored the automotive domain during the last test: the resulting samples
can then be labeled, and eventually a machine learning algorithm would be able
to recognize in real time the different driving conditions (road bumps, left/right
turns, and so on).

14



Chapter 2

Background

The most challenging part of this work has been dealing with low-cost sensors.
These products are considered really interesting from different points of view, from
the power consumption to the easiness of integration in PCBs, but at the same
time some effort is required in order to get the most out from them. This is the
subject of different studies, some of them focused on the performance/energy trade-
off of the Bluetooth Low Energy standard, while others are trying to implement
different mechanisms of time synchronization that could work between different
sensors. Another field of exploration is the so-called sensor fusion: in these studies,
more low-cost sensors are used in parallel, to join all their values and finally get
more precise results by using adequate algorithms. In this background section, the
goal is to sum up some of the most relevant studies and experiments that have been
conducted on these fields, while exploring some state-of-the-art solutions that are
available on the market.

2.1 Bluetooth Low Energy: standard overview
and throughput analysis

The choice of radios and communication protocol is always a hard one when deal-
ing with sensor networks. As different technologies offer different performances in
different areas, the choice should be coherent with the kind of data we are deal-
ing with. For example, some aspects that should be considered are throughput,
latency, number of nodes and compatibility: while the first two could be critical
in healthcare applications, compatibility could be crucial when dealing with sensor
devices aimed at the mass market. In particular, the Bluetooth 4.0 standard (also
called Bluetooth Low Energy) aims at maximizing device connectivity and energy
efficiency, with the drawback of a limited throughput.
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The Bluetooth Application Layer. When dealing with BLE chips, usually
the final user can have control on the Application Layer of the communication
protocol, while lower levels (Host and Controller) usually can’t be optimized by the
developer. In particular, the top level is composed of:

• Logical Link Control and Adaptation Protocol (L2CAP), takes care of proto-
col/channel multiplexing with error and flow control

• Security Manager, responsible for device pairing and key exchange

• Attribute Protocol, allows the device to expose a set of attributes and relative
values

• Generic Attribute Profile (GATT), defines a way to interact with those at-
tributes: devices can be clients or servers.

• Generic Access Profile (GAP), regulates the procedures of discovery and con-
nection with other devices.

Data Exchange. When the connection completes, a device will assume the role
of the GATT client, while the other one would be the GATT server. This means
that data exchange happens only at the GATT level: the server will expose a
number of characteristics, each one being an array of bytes (with the maximum
set to 512 B), grouped into services. The GATT client can interact with those
characteristics, depending on the properties of each one. Those properties can be:

• Read: the client explicitly requires the value of the characteristic, the server
answers accordingly

• Write: the client writes the value of the characteristic

• Notify/Indicate: the server will inform the client of a new value of the
characteristic, without the need of an explicit request. Indications also include
an application level acknowledgement of the notification.

Usually notifications are preferred, as only one packet should be exchanged for each
new value: no request and no acknowledgment are necessary.

A particular characteristic of the BLE protocol is the usage of the so-called
Connection Events (CE). Data exchange can only happen during these events, and
between them the radio goes to sleep: this duty cycled behaviour is one of the
reasons of the low energy consumption of the standard. The time interval between
two consecutive CEs is called Connection Interval (CI), with allowed values going
from 7.5 ms to 4 s (at 1.25 ms steps). These parameters are negotiated at the
connection setup, but they can be changed at any time during the connection.
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2.2 – Bluetooth performances in Sensor Networks

BLE Throughput. The standard defines the data transfer rate to be 1 Mbit/s,
but the effective value depends on link quality, layer overheads and hardware con-
straints. Some studies tried to calculate it, obtaining different results:

• Gomez (2011) [1] reports a maximum throughput of 236.7 kbit/s, by repre-
senting the connection through an analytical model. The main flaw of this
approach is that it does not take into consideration the hardware constraints
of low-cost BLE nodes.

• In [2], performances of Bluetooth Low Energy are compared to other wireless
solutions, reporting a link layer throughput of 122.6 kbit/s: this value is not
considering upper layers of the standard, hence it is not considering the packet
overhead coming from the application layer.

• In [3] presents an overview on the standard, carrying out a practical experi-
ment on throughput: two CC2540 devices, from Texas Instruments, are con-
figured to send data at the maximum possible speed, with Connection Interval
set to the minimum possible value. The resulting throughput is 58.48 kbit/s.

• [4] is probably the most extensive one, as multiple BLE modules are used, each
one with its own stack and firmware. It underlines the importance of Con-
nection Intervals in maximizing the throughput. To sum up, the study con-
cluded that the maximum application level throughput that can be achieved
is 64 kbit/s, by fine tuning the values of CIs and by using buffer-like structures
to maximize the data to send out at each Connection Event.

2.2 Bluetooth performances in Sensor Networks
After understanding how BLE works and how to get the most out of it when dealing
with a single node, I focused on more complex configurations. In [5], the goal is to
set up a sensor network and to find the highest possible data rate, in order to use
data coming from IMU devices for Human Activity Recognition (HAR) purposes.
The researchers state that, for a good HAR analysis, they would require data
coming from as many sensors as possible, with a sampling data rate between 25 ms
(40 Hz) and 35 ms (28 Hz).

From the technical point of view, they decided to use notifications to reduce the
number of exchanged packets to the bare minimum, left the original setting of the
sensor node with regards to the Connection Interval and used a Python script to
harvest all the data and perform the analysis on them. To make the performance
analysis as complete as possible, they had 20 sensor nodes available, and used
different computers as clients, each one with a different Bluetooth adapter. To be
more precise, they used up to 20 Arduino Nano 33 BLE Sense, with 9-axis IMU,
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barometer and temperature sensors connected at different computers, each one with
its own Bluetooth Adapter.

The main test consisted of finding the maximum number of Bluetooth sensors
that can be connected to a single client, varying the data rate between 25 ms and
35 ms and trying all the different computers. The results then were compared
considering the percentage of lost packets. The results table in the paper makes
it evident that the choice of the Bluetooth adapter is quite important: 10 sensors
connected, with data rate of 35ms, resulted in 20% data loss for the Macbook Pro
2014, while the Intel NUC 8 shows a loss percentage of 0.07% only.

To sum up this experimental analysis and its conclusions:

• Reseachers showed that the best performance are obtained by using a DeLock
Bluetooth Adapter, based on the Broadcom BCM20702A0 chip. It managed
13 simultaneous connections, with a loss percentage of 0.03% with the sensors
set at 35ms data rate.

• Notifications perform better than indications in high performance sensor set-
tings.

• There are big differences in performance between Bluetooth modules.

2.3 An example of time synchronization from Na-
tional Instruments

National Instruments is a company that produces test equipment and virtual in-
strumentation software. One of the most important application for their products
is data acquisition, and they are considered one of the leaders thanks to their ex-
perience in this field.

An article from their website [6] states that data should be appropriately syn-
chronized in time to be accurately analyzed, and they propose a list of approaches
to fulfill such goal using their products. In particular, they focus on their PXI
platform.

The PXI Platform PXI is defined by National Instruments as the standard
for automated test and measurements. It is a family of modular instruments and
I/O elements that can work together, with specialized synchronization algorithms
and software. The main core of the system is the chassis with its own controller,
that accepts a certain number of measurement modules and provides the same
functionalities to all of them.

In the latest version of the platform, called PXI Express, developers included
different elements thought for precise time synchronization:

18



2.3 – An example of time synchronization from National Instruments

• A 10 MHz backplane clock, offered in parallel by the chassis to all connected
component

• A single-ended trigger bus

• A star trigger signal, accurately developed such that the connection to all the
modules have the same length

• 100 MHz differential clock and differential triggers, with increased noise im-
munity.

The user can then freely choose the way to share clock and trigger signals between
all modules. Every option has its own advantages and disadvantages considering
signal skew, signal integrity, compatibility with external modules and necessity
for external controllers. For example, the 100 MHz clock provides a skew that is
less than 250 ps, while the star trigger signal performs a skew that is less than
500 ps. Both of them provide the best signal integrity between all the solutions. Of
course, the listed solutions are intended for modules connected to the same chassis,
but some components can perform synchronization between different ones by using
GPS or IRIG-B standards.

Synchronization Techniques In order to effectively perform time synchroniza-
tion, National Instruments defines the differences between two types of devices:

• Sample Clock Timed Devices. These devices use a sample clock that controls
when the samples are acquired. For example, SAR ADC converters usually
have a dedicated convert line that, when toggled, triggers an immediate con-
version.

• Oversample Clock Timed Devices. In this case, the device requires a free-
running oversample clock that drives the conversion while keeping the ADC
operating: the resulting samples are generated at a rate that is a division
of the original clock. These devices can’t be controlled by external signals,
hence synchronization is more complicated.

To synchronize the sample clock, different options are possible:

• Share sample clock directly. A master device will share its sample clock to
the slave ones, using one or more of the backplane of the PXI chassis.

• Derive the sample clock from a common reference clock. The 100 MHz dif-
ferential clock is divided to generate the sample clock, distributed to all the
devices. A dedicated software from NI is able to perform all the necessary
configuration for the user.

19



Background

• Share the trigger signal. This is the simplest but the loosest synchronization
mechanism, as all the devices will only receive the same trigger signal. In this
case, usually devices drift in time, as sample clocks are not locked together.

When dealing with oversample clock timed devices, the only possibility is the
reference clock synchronization. First of all, the ADCs on the devices are reset and
configured to generate samples after the same number of clock cycles. Then, the
acquisition is started synchronously with a shared trigger signal. During the reset
and sampling procedures, all the devices are locked to the 100 MHz clock signal
provided by the PXI chassis.

Conclusions National Instruments solutions are, of course, the best synchroniza-
tion mechanisms that I found during the research, offering extremely high perfor-
mances and a great software support for easy configuration. All of this comes at
certain costs:

• All the modules should be physically connected to the chassis, and no wireless
connection is possible (it wouldn’t support this kind of synchronization)

• The modules should support the National Instruments standard. Even if it
is open and can be implemented by manufacturers quite easily, it is targeted
at high-cost, high-precision measurement tools.

• The PXI system is extremely expensive: the cheapest controller has a cost
that is around 1400€ (PXIe-1090), with no module installed.

2.4 Precise Sensor Synchronization in Robotic Com-
puting

Paper [7] summarizes the development of time synchronization systems done by a
development team interested in different commercial robotic and autonomous driv-
ing products. They underline the importance of time synchronization by presenting
the example of a camera and a Laser Imaging Detection and Ranging (LiDAR) sen-
sor: if the measurements are not aligned on time, those would cause inaccurate and
ambiguous view of the environment, with the possibility of catastrophic outcomes.

Addressed issues and goals The main goal of the researchers has been to
ensure that sensor samples that have the same timestamps correspond to the same
event. To reach this objective, they developed two kinds of synchronization: intra-
machine (synchronizing sensors within a particular machine) and inter-machine
(synchronizing sensors across different machines). They reported some examples to
motivate the need for synchronization:
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• Perception tasks: in order to fuse 2D information from cameras and 3D in-
formation from LiDARs, their data must be synchronized (intra-machine).

• Localization tasks: autonomous machines use multi-sensor fusion algorithms
to obtain accurate localization estimations, for example fusion of camera and
IMU information (intra-machine). It was observed that a misalignment of
40 ms can cause a 10 m translational error with a 3° rotational error.

• Interaction with other machines: when dealing with robots (or other devices)
collaborating together, their synchronization could be critical (inter-machine).
The example of two Road Side Units is reported: they use the position of a
vehicle with the corresponding timestamp when calculating its speed. If the
timestamps are not coherent, the speed may vary significantly.

Synchronization principles In order to perform the synchronization, two re-
quirements have been found: first, all sensors should be triggered simultaneously,
and secondly, each sensor sample should be associated with a precise timestamp.
This is challenging, as all sensor have different triggering and time-stamping mech-
anisms. Four (theoretical) principles have been found:

• Externally-triggered sensors should be triggered in hardware. Camera and
IMUs can be easily triggered via software, but the driver stack may generate
different latencies that can’t be precisely predicted. The solution is the trigger
through custom hardware.

• Use a shared timer to simultaneously initiate internally-triggered and externally-
triggered sensors. Internally-triggered sensors, such as LiDARs, usually ac-
cept an external initialization signal, then they would generate samples at a
defined rate. It is important to use a common timer to generate both this
initialization signal for them and the trigger signal for the other devices.

• Synchronize machine timer with GPS global clock. If inter-machine synchro-
nization is necessary, it is important that their time sources are aligned to
a global high-precision atomic clock, like the time data transmitted by GPS
satellites.

• Obtain the timestamp for a sensor sample as close to the sensor source as
possible. Again, the easiest way would be to timestamp samples via software,
but as explained before this can be not so precise. A better solution is to
obtain the time information directly at the sensor interface, that is, when the
sensor data is received by the SoC from the off-chip sensor.
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Adopted Solution The researchers decided to adopt an FPGA-based solution
to satisfy all the principles stated above. In particular, the Xilinx Zynq Board
contains a general-purpose ARM CPU to run the software components, with a lot
of I/O interfaces for all the connectivity necessities.

A serial port interface accepts GPS global data, distributing it to all hardware
and software timers. Trigger and timers units, designed in hardware, manage the
triggering and the initialization of the sensors. Finally, Serial port, CAN and MIPI
interfaces are designed to automatically assign timestamps to the samples as soon
as they’re received from (respectively) the IMU, camera and radar sensors.

The obtained circuit is lightweight (6.9K LUTs and 7.1K Registers). Accuracy
is particularly good, as timestamping is performed at cycle-level precision for most
sensors, while the LiDAR sensor (internally triggered) showed variations within
100 µs.

2.5 Synchronization in Wireless Sensor Networks:
Review

Paper [8] reviews synchronization mechanisms aimed at Wireless Sensor Networks,
in which the single low-cost, low-power nodes should perform synchronization and
transmission by themselves. It also underlines the importance of correlation be-
tween different reports from different devices to perform data fusion, time-division
multiple-access scheduling and to use real-time applications, even if the delay vari-
ability of the wireless connection and the computation limitations of the nodes
make the issue even more complex.

General Concepts The main idea regarding synchronization in this paper is to
mathematically estimate the oscillators in each node, and then implement some sort
of message exchange mechanism between them. The goal is to model the differences
between the clocks in the devices and modify their behaviour accordingly.

The clock models analyzed, on which the synchronization algorithms will base
their estimations, are:

• Offset-only model. The local clock of a node is defined as in 2.1

Ci = t + θi (2.1)

where t is an ideal clock and θi the offset relative to that ideal clock.

• Joint skew-offset model. This provides long-term estimators, at the cost of
augmented calculation complexity. The local clock can be approximated as
done in Equation 2.2

Ci = αit + βi (2.2)
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where α is the absolute skew and β is the offset of the node clock.

Once the clock model has been defined, the message exchange mechanism
should be chosen:

• Sender to Receiver: nodes periodically exchange timestamped synchroniza-
tion messages. This happens in 4 steps. Node n1 sends a packet with times-
tamp t1. The second node n2 receives it, with timestamp t2, and replies with
timestamp t3. At the end, n1 timestamps the reception of the reply with t4.

• Receiver to Receiver: in this case, a reference (defined exploiting the property
of the physical broadcast medium) is used to broadcast messages simultane-
ously to all devices, that will timestamp the reception event as t1 and t2.
Those samples are the only ones used for synchronization purposes.

Timestamps obtained through these mechanisms are not totally accurate, as
the messages go through a path that may vary nondeterministically to different
factors: send time (packet generation and transmission time), medium access time
(MAC level), propagation time, reception time (packet processing). The receiver
to receiver method removes send and access time from this path.

Once the method has been defined, the paper reports three kind of synchroniza-
tion categories: 1) event ordering, which is the simplest form, 2) synchronization
to a reference and 3) relative clocks. The last one is the most used in the analyzed
algorithms, and it consists in maintaining inside the node the information about
relative skew and offset to other nodes.

Main issues The paper proceeds with a list of all the possible problems in main-
taining a good time synchronization between the nodes:

• Fast drifting. This is considered the main issue, and it derives from the us-
age of cheap circuitry components (in particular, oscillators). Usually sensor
nodes present two kind of oscillator, a high-speed one (usually with high drift-
ing), and a lower speed one, used in energy-saving situations, that is usually
more precise but provides less granularity.
Of course, a fast drifting clock requires frequent re-synchronizations, that may
result very expensive.

• Node limitation. If the synchronization requires some calculation at the node
level, usually the calculation power at disposal is very low, and all of it should
be optimized as more as possible. For example, some nodes may not dispose
of FPU units, and FP calculation may be implemented at software level,
causing delays.
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• Delay Variation. This is intrinsic to the message exchange mechanism, as
there is some nondeterminism when considering message delays. Usually,
this issue can be overcome by timestamping packets at the MAC layer, but
this solution is both not portable between different devices/protocols, and
not applicable to devices whose software stack hides the lower level to the
developer.

• Fault Tolerance. These synchronization mechanism neglect aspects like nodes
failure or packet losses, and provide no recovery algorithm in those cases.

• Accuracy measurements. The accuracy of such protocols is extremely difficult
to assess, as instantaneous local times from the nodes should be captured at
the same physical time.

• Impact of empirical parameters. All the possible implementations relay on
some parameters regarding the message exchange, in particular, the number
of rounds before estimation k and the period between rounds T .

Conclusions The main issue found in this paper with regards to time synchro-
nization is, without doubts, the clock drifting issue. Two solutions have been found:
frequent message exchange in the simpler offset-only clock model, or less messages
using the more computationally expensive skew-offset model. The choice of the
final model is up to the developer, that should choose the least expensive of the
two considering the node and the connection protocol at their disposal.

The second big challenge is the delay of message exchange/handling. The usage
of the Receiver to Receiver model will reduce that delay, but optimizations can be
performed using a MAC-layer timestamping solution (when possible).

2.6 Bluesync: a Time Synchronization protocol
for BLE

Paper [9] explains an interesting protocol that can be used for time synchroniza-
tion purposes when dealing with Bluetooth Low Energy devices, like sensor network
nodes. The article stresses the importance of a low-cost and high-efficiency mech-
anism that can work on these resource-constrained IoT nodes.

In particular, BlueSync is defined as a synchronization service for BLE beacon
devices. BLE Beaconing is an advertising mode, supported by Bluetooth Low
Energy, that enables the exchange of data between devices without the need of
entering a bonded connection: the server device will advertise its data, while the
client can read it doing a scanning operation. This protocol does not present any
time synchronization service. BlueSync makes the system work in two different
stages: first, there is a timeslot (few seconds) in which synchronization packages are
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exchanged, then, the second timeslot will allow the execution of synchronous tasks.
Of course, the time interval between the two stages should be decided with care, as
precision will depend on that. The developers showed that the node can proceed
with 10 minutes of synchronous tasks without the need of re-synchronization, still
with a good time precision.

The devices tested in the work are from Nordic Semiconductor, in particular an
nRF51 (16 MHz ARM Cortex-M0) and an nRF52 (64 MHz ARM Cortex-M4).

Implementation The implementation of the BlueSync protocol is presented in
three steps, that are reported and explained as follows.

• Timestamping. The main problem encountered when dealing with BLE bea-
cons is that they usually exchange data in three different channels, with non-
predictable delays. With proper modifications of the registers of the Nordic
devices, the developers managed to set the transmission (advertising) and
the reception (scanning) of the data on a single channel, both on the server
and the client devices. Once this has been resolved, the problem of delays
is addressed and solved by precisely deciding the moment at which packets
are timestamped. Also in this case, a particular function available on Nordic
devices has been used: PPI, Programmable Peripheral Interconnect. It al-
lows the execution of a particular task at the end of a transmission event in
a very precise manner, generating a standard deviation in timestamping of
less than 50 ns. Of course, the timestamps collected after the radio event are
sent in the next packet, hence the synchronization stage requires more than
one packet to be transmitted (to retrieve all the necessary timestamps).

• Frequency Drift Estimation. As soon as all synchronization packets have been
received, the contained timestamps are used to estimate the offset and the
drift of the nodes clocks. This is a calculation that is performed on the node
itself, and should be optimized due to their hardware constraints and avail-
able functionalities (for example, the Floating Point Unit could be missing).
Researchers tried two different algorithms: Linear Regression and Average
Error. Both have been tested with either 8 or 16 timestamps, sent at regular
intervals, with the latest packet initiating the execution of the synchronous
task. The two algorithms show different performances on the two different
processors, due to the different architectures: when dealing with heteroge-
neous hardware, it is important to fine-tune the choice of the algorithm.

• Tick Adjustment. The last part of the mechanism consists in applying the
estimation calculated before to the number of ticks necessary to reach the next
point in time to execute the synchronous task: the floating-point result should
be converted to an integer and then set as timer interrupt. These adjustment
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require clock cycles, and their impact should be taken into consideration, for
example recalculating the ticks every 100 runs.

Conclusions To sum it up, BlueSync is a synchronization protocol aimed at BLE
Sensor Networks, compatible with commercial SoCs. Its implementation consists
mainly in improving timestamping of BLE packets and choosing the most optimized
frequency-drift estimation algorithm. The resulting timing accuracies, in the tests
performed in the laboratory, are around 320 ns for 60 s. They assure that the
system can provide good accuracy with synchronization timeslots every 10 minutes,
with synchronization windows of less than 2 seconds. Even if these results are
particularly good, it is important to notice that they are possible only with the
functionalities available on the particular Nordic devices used, hence they may not
be applicable to other SoCs on the market.

2.7 An application example: IMU-Enabled Pos-
ture Monitor

Paper [10] reports an interesting application for synchronized sensor nodes that is
worth analyzing in this thesis: a monitoring system for sitting posture that uses
wireless motion sensors attached to the user’s back. Different sensors are used, and
data coming from them is then fused together.

Implementation The article focuses on three main points:

• Data Sensing The required hardware needs to be small, comfortable to the
user and compatible with all his possible movements. Of course, it needs to
be powered via rechargeable batteries. All these requirements are the typical
ones of IoT applications, and are supported by the new MEMS-based IMUs:
small, low-power devices that provide all the necessary information.

In this application, 6-degrees of freedom IMU sensors (namely, accelerometer
and gyroscope) are installed on two prototypes modules that are attached to
the upper and lower back of the user, parallel to their spine. The stream of
these devices will then be used and elaborated to provide the spine misalign-
ment devised into a pair of angles. Starting from this data, the system is
capable of detecting spine inclination and lumbar placement in all the four
directions.

Two main problems in using IMUs in this application have been assessed:
first of all, the low-resolution, noise-corrupted and biased signals coming from
these kind of sensors require a quite heavy processing stage to get quality data.
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Secondly, as it is only possible to detect angle changes when using accelerom-
eter and gyroscope sensors, a calibration phase (with the user collaboration)
is necessary before starting to harvest posture data.

• Data Transmission In this application, Bluetooth Low Energy has been
considered the best solution. It has been increasingly used in wearable ap-
plications, it offers power-efficient operation and, mostly important, it is na-
tively compatible with a lot of devices that could work as data aggregator,
like smartphones.

• Data Processing As stated before, data coming from these IMU sensors
requires some sort of refining to clean the signal and get the interesting angle
information. Raw data is processed by means of a weighted moving average
filter, then an Explicit Complementary Filter (ECF) algorithm is used to fuse
all the information together and extract the two angles. All of this is per-
formed on the smartphone of the user, that provides the required calculation
capabilities (not available on the sensor nodes).

User Interface In order to use the posture monitor system, the user will first
participate in a placement and calibration phase. Once it’s done, the monitoring
session starts, and the user is notified via vibration every time the angle threshold
indicating a bad posture are violated. Once the session is complete, the user can
analyze on the smartphone their posture behaviour, while the data is uploaded to
a cloud-based application that can monitor the posture over time, maybe using
Artificial Intelligence algorithms.

Evaluation To perform evaluation of the entire system, the two sensor boards
have been attached on Pan/Tilt units. Then, different pre-defined couple of angles
are simulated by the servo motors of the units, and then compared by the ones
estimated by the IMUs. Repeated tests showed that the system is very reliable,
showing errors that are distributed in a Gaussian shape and that are less than
0.1 degrees. The paper explains that observed errors are caused by the intrinsic
error noise, and that the IMU calibration procedure is very useful to reduce biases,
misalignment and gain errors.

Conclusions The article showed how data coming from low-cost sensor nodes,
with limited computational capabilities and restrictive power constraint, can be
quite precise when dealing with medical applications. Of course, there is the need
of extensive post-processing work, usually performed by algorithms that run on
more powerful devices, but the result is an user-friendly application that can be
used by anyone.
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2.8 Used Hardware
The following sections will overview the characteristics and the potential of the
hardware that has been used in this thesis project. In particular, seven commercially-
available boards have been employed: two SensorTile.box devices from ST Micro-
electronics, two BlueTile boards from the same vendor, and three MetaMotionS
from MbientLab. The included sensors, microcontrollers and the available APIs for
each one will be listed and explained here.

2.8.1 ST SensorTile.box
The SensorTile.box from ST Microelectronics (STEVAL-MKSBOX1V1) is a kit
that contains all the necessary to start developing IoT applications based on remote
motion and environmental data. In particular, the included board presents a set of
ST MEMS sensors:

• Digital temperature sensor (STTS751)

• 6-axis inertial measurement unit (LSM6DSOX)

• 3-axis accelerometers (LIS2DW12 and LIS3DHH)

• 3-axis magnetometer (LIS2MDL)

• Altimeter / pressure sensor (LPS22HH)

• Microphone / audio sensor (MP23ABS1)

• Humidity sensor (HTS221)

All the data coming from these sensors can be processed with the help of the
embedded STM32L4R9 microcontroller, an ARM Cortex-M4 based processor con-
taining DSP and FPU units. All the information can be then transmitted with the
ST Bluetooth processor BlueNRG-M2, that supports Bluetooth Low Energy 5.2
specifications.

The board comes with a preinstalled firmware that allows to read the sensor
data via ST applications, or to log data inside an SD cart. The Android application
also allows some firmware personalization, adding features like sensor fusion, audio
FFT and so on. Anyway, there is no functionality that allows time synchronization
of any type.

If any developer wants to modify the firmware, it is possible to connect the
peripheral to the computer and write a firmware using the STM32 development
environment [11]. Then, it is possible to write a firmware from scratch or to start
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Figure 2.1: Image of the SensorTile.box, with the included case.

from the available firmware examples (from GitHub or the ST website). The devel-
oper can then decide if they wants to keep compatibility with the ST applications
or not, as they have total freedom on the board behaviour.

ST offers an extensive set of Hardware Abstraction Layer (HAL) procedures,
that makes it easy to develop firmware for the board and access functionality from
both the sensors and the Bluetooth Low Energy stack.

Once the firmware is ready, the microcontroller can be flashed by means of ST
solutions (ST-Link) or via an USB cable. The STM32CubeProgrammer [12] is the
ST software that allows the programming.

To conclude the overview, the kit contains a long-life USB-rechargeable battery
and a case that provides water and dust resistance.

2.8.2 ST BlueTile
The BlueTile from ST Microelectronics (STEVAL-BCN002V1B) is a development
board containing a full set of MEMS sensors connected to a BlueNRG-2 SoC, that
allows Bluetooth Low Energy connectivity. Here’s the list of the embedded sensors:

• BALF-NRG-02D3: ultra-miniature balun and harmonic filter

• LSM6DSO: iNEMO 6DoF inertial module, ultra-low power and high accuracy

• LIS2MDL: magnetic sensor, digital output, 50 Gauss magnetic field dynamic
range, ultra-low power, high performance, 3-axis magnetometer
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• VL53L1X: long range Time-of-Flight sensor based on ST FlightSense tech-
nology

• MP34DT05TR-A: MEMS audio sensor omnidirectional digital microphone,
64 dB SNR, -26 dBFS sensitivity, top-port, 122.5 dBSPL AOP

• LPS22HH: ultra-compact piezo-resistive absolute pressure sensor, 260-1260 hPa,
digital output barometer, full-mold dust resistant, holed LGA package (HLGA)

• HTS221: capacitive digital sensor for relative humidity and temperature

Figure 2.2: Image of the BlueTile, with its programming board.

To perform elaboration and transmission of the resulting data, the embedded
SoC is a network processor for Bluetooth Low Energy that allows its own Cortex M0
core to be programmed by the user. In this way, no overhead is present, as one chip
is enough to perform all the necessary operations for the board. Also in this case,
ST released examples and low-level drivers, allowing the board to be programmed
at high-level under both the BLE connectivity and sensor configuration aspects.

The kit also contains a programming board, to which the small BlueTile can
be connected: then, it can be programmed by means of a USB cable or a program-
ming interface from ST (ST-link or ST NUCLEO board), with the ST RF-Flasher
software [13].

The board can be powered via an USB cable, when connected to its program-
ming board, or via a CR2032 battery. ST advertises the sensors and the micro-
controller to be battery-friendly, thanks to some hardware optimizations and their
enhanced sleep states.
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2.8.3 MBIENTLAB MetaMotionS
While ST solutions give a lot of freedom to the final user, making it easy for them
to develop and personalize the firmware of the boards, MBIENTLAB solutions go
in a different direction, offering devices with a complete set of sensors that are
ready to use. In my case, I had at my disposal three MetaMotionS, containing the
following set of sensors:

• Bosch BMI270 6-Axis Accelerometer/Gyroscope

• Bosch BMM150 3-Axis Magnetometer

• Bosch BMP280 Digital Pressure Sensor

• Lite-On LTR-329ALS-01 Ambient Light Sensor

• I/O analog and digital pins are present for expansion purposes.

Figure 2.3: Image of the MetaMotionS devices, with and without the clip accessory.

All the sensors are connected to a Nordic Semiconductor nRF52840 BLE SoC,
which is the network chip whose Cortex-M4 processor allows heavy data elaboration
(including 9-axis sensor fusion algorithms). The sensors information can be trans-
mitted via both Bluetooth Low Energy protocols and USB. The provided firmware
is closed source and can’t be modified.

The device comes in a water-resistant case enclosure that can be put in (op-
tional) wearable accessories, like clips and wristbands and it contains a USB-
rechargeable battery. The mobile application available, MetaBase [14], allows a
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complete configuration of the sensors, that can be turned on/off and configured in
their data rate and precision. Once everything is set-up, the application can start
the data recording, that can be streamed directly on the mobile device or saved in
the 512 MB internal memory, to be downloaded later.

The most interesting part of these products are the open-source APIs that are
available [15], making the devices easily configurable and usable from any BLE-
supported computer or smartpoone with a reduced number of lines of code. In
particular, they are available for Android (Java), iOS (Swift), Linux (Javascript,
Python), Windows (Python) and already include all the necessary libraries and
procedures for Bluetooth connectivity. A C++ library is also available, to be
adapted to other operating systems and their Bluetooth stacks. The APIs are well-
documented on their website, while their GitHub profile contain a lot of examples
ready to be personalized to the user needs.

To conclude this overview, it is important to add that these boards firmwares al-
ready contain a sort of synchronization mechanism. All the data coming from them
is precisely timestamped with a UNIX Epoch time, in particular with a millisecond
resolution.
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Chapter 3

Materials and methods

After analyzing some previous works on the topic and taking a look at the hard-
ware at disposal, in this chapter, I present the work I carried out to develop the
final system, composed of all the sensors streaming data synchronized in time. In
particular, the focus is on:

• Firmware development for the ST sensor nodes

• Python client development for the computer hub

• MATLAB script development for data processing

Figure 3.1 is a block diagram to represent the entire system I developed. Each
device, represented by a coloured rectangle, is shown with the software/firmware
components built for it. Figure 3.2 is another block diagram, that represents (in
an higher abstraction level) the flow of operation of the system. Sensor boards
can recognize motion, temperature, pressure and other data, and send them via
BLE to a Linux Computer acting as the client. On the client, a Python script is
responsible of fetching data while keeping data synchronized in time, while some
MATLAB scripts can reorganize all the data, represent and analyze them.

The chapter contains the implementation details of the solution, and the tools
used for the process are reported at the end of it .
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Figure 3.1: Block diagram representing the developed system.

Figure 3.2: Block diagram representing the flow of operation of the system.

3.1 Firmware for ST devices
First of it all, I needed to replace the original firmware on the ST boards, applying
the required modifications (for example, the data rate). Examples and documenta-
tion on the Internet have been a good starting point: then, thanks to a step-by-step
approach, I wrote and built the final firmwares for all the boards, keeping in mind
both the desired functionalities and the devices limitations.

3.1.1 ST BlueTile, sensing firmware
The first board I’ve worked on has been the ST BlueTile one, because of its simpler
configuration. In particular, I used the original firmware, called SensorDemo [16],
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as a base for further development: in this way, the compatibility with the ST
application is maintained.

The behavior of the base software is explained in Figure 3.3. It consists in a
main loop, on the left part of the flowchart: at each execution, the value of some
flag variables is checked and the corresponding event is executed. For example, if
the variable imuTimer_expired is 1, it is reset and the value of the motion sensors
is sent to the Bluetooth Low Energy stack for transmission. The value of these
flag variables is set asynchronously by some interrupt procedures (in rectangles),
that are triggered by specific events. For example, a set of hardware timers (Env
Timer and Imu Timer) is configured to publish sensor and environmental data
at specific rates, while other procedures will manage the behaviour at Bluetooth
connection/disconnection.

Figure 3.3: Flowchart of the firmware for the BlueTile that streams sensor data.

The SensorDemo firmware also contains the ST BlueVoice library, that allows
the streaming of compressed sound via Bluetooth Low Energy, optimized for voice
transmission. I’m explaining the firmware functionalities in the following list, un-
derlining the differences from the original one:

• Sensor data readings. The information chosen to be transmitted to the
client are the IMU (accelerometer, gyroscope, magnetometer), pressure, hu-
midity and temperature sensors.

• Data rate modification. I modified the rate at which IMU sensor data is
transmitted over Bluetooth from 25 Hz to 75 Hz (in the last version of the
firmware). Some intermediate tests have been done with other frequencies,
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in order to find the best one, with the corresponding results reported in the
Results chapter. To perform this task, I modified the intervals of the timers
which trigger sensor data updates accordingly. The rate for environmental
sensor data has been lowered from 2Hz to 1Hz.

• Timestamping. The sensor data is timestamped at the moment in which the
sensor is read, and immediately before sending the packet to the BLE stack.
The getTimestamp function returns the number of milliseconds elapsed since
the board power up.

• BlueVoice disabled. Even if no audio streaming is enabled, leaving BlueVoice
enabled on the small Cortex-M0 processor of the BlueTile causes some impor-
tant performance degradation in sensor data streaming. This is due to some
interrupts that are remaining active for audio data processing and, eventu-
ally, activation of the audio streaming functionality. For these reasons, I’ve
commented out all the code relative to BlueVoice initialization and processing.

• Connection parameter update. In order to enable the maximum possi-
ble throughput, as explained in the Background part, I set the Connection
Interval parameter to 7.5ms. This value is the same one configured on all the
other devices.

• Timer modification. When battery-operated, a timer will shut down the
device if no connection is performed before 20 seconds, for battery life pur-
poses. As this is not useful for our application, I disabled the relative timer.

• Time synchronization mechanism. As the time synchronization system
requires two-way communication between the server and the client, the GATT
database of the device should be set accordingly: I therefore added a GATT
characteristic that can be read and written. Moreover, I re-wrote the inter-
rupt procedure that is called when the GATT characteristic is written, to
implement the synchronization behaviour that I explain later.

3.1.2 ST BlueTile, audio streaming firmware
While one of the two BlueTile board has been used to only stream sensor data
at the maximum data rate possible, the other one has been used to only perform
audio streaming, to take advantage of the onboard microphone and the BlueVoice
library from ST. Also in this case, I used as starting point the SensorDemo firmware
example, that already contains the library.

In this case, the resulting firmware is quite similar to the original one, with the
modifications explained in the flowchart in Figure 3.4 and in following list:
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Figure 3.4: Flowchart of the firmware for the BlueTile that streams audio data.

• Sensor Data Streaming. I left the data rate of the sensors to the default
value (25Hz). There is no necessity to fully disable the functionality from the
firmware, because when voice streaming is active, the sensor data streaming
is automatically disabled.

• DMA configuration. The microphone on the BlueTile board outputs data
in the Pulse-Density modulation form (PDM): the frequency of ones is pro-
portional to the sound pressure level. Usually, audio is represented using a
different standard, called Pulse-Coded modulation (PCM), composed of 16
bits words ranging from 0 (no pressure) to 216 (maximum pressure). This
conversion can be performed in hardware using the Direct Memory Access
(DMA) component of the BlueTile SoC, that can asynchronously update the
value of a variable (containing audio data) and then inform the main pro-
gram through an interrupt. Hence, the DMA should be configured in the
initialization phase to perform this operation.

• Timestamping. The BlueVoice library has been thought to stream audio
information in real time, hence there was no need to timestamp the audio
data. In my case, as this data is necessary for further analysis, there is the
need to provide timestamps along with the audio samples. To do so, I added a
GATT characteristic on which timestamping information is published. I also
modified one of the BlueVoice callback procedures, in particular the SendData
one, responsible of sending out samples once processed: just before publishing
the audio data on its own GATT characteristic, the current timestamp is
published on the other one. The client will then join them together.
I put the implementation of this system in the separated timestamp_helper.c
file, that contains the variables (GATT characteristic handle) and the two
procedures (GATT characteristic creation, timestamp publishing) necessary
for all of this to work.

• Timer modification. As done for the other firmware, I disabled the timer
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that automatically turns off the device after 20 seconds of inactivity if the
device is battery-operated.

• Time synchronization mechanism. Also in this case, I modified the
GATT database to introduce the time synchronization mechanism.

3.1.3 ST SensorTile.box firmware
The SensorTile.box presents some differences from the other device from ST. Even
if the software stack is similar, there is no possibility to program the BlueNRG
microcontroller, that is controlled by the STM32 Cortex-M4 processor, the only
one accessible by the developer. This difference unlocks a great number of other
possibilities, thanks to the computing power and the STM32 libraries, but the
firmware development becomes a little more complex.

The definitive solution consisted in using the ALLMEMS-1 firmware example
from ST [17], modifying it according to my needs. In this case, this software has
been the best choice, as other ones didn’t include support for some sensors like the
microphone. It is worth noticing that the SensorTile.box presents no support for
the BlueVoice library, hence it is possible to extract information from the audio
stream, but not to send it real-time to the client.

Finally, regarding the BLE stack, it is interesting that its abstraction layer is
providing C functions working in the same way as they’re working in the BlueTile,
even if the hardware is quite different. As a consequence, full compatibility with
parts of BlueTile firmware is assured: GATT characteristic creation/update, con-
nection configuration, callback procedures all work in the same way. The final
firmware is represented in Figure 3.5.

The following list explains the functionalities of the firmware and the work I’ve
done on it:

• Sensor data streaming. The information chosen to be transmitted to the
client are the IMU (accelerometer, gyroscope, magnetometer), pressure, hu-
midity and temperature sensors.

• Data rate modification. Like what’s has been done on the BlueTile, I
modified the motion sensors data rate to 75Hz and environmental sensors
data rate to 1Hz, setting accordingly the timer variables.

• Timestamping. The timestamping on the SensorTile.box firmware had a
different behaviour from the BlueTile one. It would still send the number
of milliseconds elapsed from power on, but the three LSBs were shifted out
and not sent to the client. To create consistency between devices and add
precision (we need time to be as accurate as possible), I disabled the shifting,
to transmit the entire timestamp.
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Figure 3.5: Flowchart of the firmware for the SensorTile.box.

• Time synchronization mechanism. Also in this case, I modified the
GATT database to make the time synchronization mechanism possible.

• Audio processing. One of the interesting features of the SensorTile.box
is the presence of a digital microphone. The ALLMEMS firmware from ST
leverages this component offering the streaming of audio level information (in
dB). To enrich the details on the surrounding audio, I added the information
on the dominant frequency: the samples used to extract the dB informa-
tion are also input for the arm_rfft_fast_f32 function from the Common
Microcontroller Software Interface Standard (CMSIS) from ARM, that is a
a vendor-independent abstraction layer for microcontrollers that are based
on ARM Cortex processors. For my use case, it provides an easy way to
take advantage of the DSP included in the Cortex-M4 core available on the
board. After getting the discrete real Fast Fourier Transform (FFT), the
maximum magnitude for each output value is extracted, and the correspond-
ing frequency index is sent on its own GATT characteristic, that I configured
before. I would like to underline that, also in this case, the configuration of
the DMA has been necessary (as explained in the BlueTile chapter).

• Removing undesired functionalities. The ALLMEMS firmware contains
a lot of libraries from ST, used for sensor fusion and feature extraction (ac-
tivity, gesture, position recognition and so on). To save battery, space and
computational power (the FFT operation is pretty intensive), I disabled all
these functionalities by commenting out their initialization code lines, along
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with the relative callback functions.

3.2 The Time Synchronization Mechanism
One of the most challenging parts of this thesis has been the development of a time
synchronization mechanism for the ST devices, as MetaMotion ones already embed
their own closed-source implementation. Three main issues should be overcome
to do so: first of all, the limited computational power available on the sensor
nodes (in particular, the BlueTile ones), the need to implement this system at the
higher application layer of the BLE stack (as lower levels are not accessible by the
developers), and the need for a compromise between time accuracy and high data
rates.

The main idea is to leverage on the client, that is a Linux computer running
a Python script and a fundamental part of our sensors system. It can be used to
provide a reference clock for all the data coming from the sensor nodes. To reduce
the number of exchanged packets, an application similar to the receiver-to-receiver
one could be used, in which a reference broadcasts messages simultaneously to all
devices, and then they can use their reception timestamps to synchronize.

In particular, the system I implemented consists in the client sending packets to
all devices at regular intervals, using the WRITE_NO_RESPONSE property of a
GATT characteristic specifically created for this scope on the sensor nodes. That
particular property is the fastest way to send data to a BLE device, as no response
is necessary and only one packet is sent. As soon as the remote device receives the
packet, the relative callback procedure is automatically called by the BLE stack
of the node: in that function, the packet is sent back with its original content (a
number) incremented by one, and the internal timestamp.

The client will then receive that information, and associate the received times-
tamp to the current Unix epoch time expressed in milliseconds using the time
library of Python 3.10, which returns a precise value (while previous versions of
Python weren’t able to do so). Then, the successive samples will be timestamped
using the available information: 1) the UNIX time obtained in the resynchroniza-
tion moment tUNIX , 2) the timestamp of the resynchronization moment tR and 3)
the device timestamp of the sample under analysis. tS. The result is calculated
with Equation 3.1.

T = tUNIX + (tS − tR) (3.1)

The resynchronization procedure can be executed at any desired interval by
simply modifying the value in the Python script of the client. In the experiments
explained in this thesis, the interval is set to 1s, which was able to give good
performances when keeping a data rate of 75 Hz. More details in the Results
section.
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3.3 Client for ST devices
The client for the ST sensor board is a Python script for Linux hosts that handles
connection, data collection and time synchronization with all the sensor boards from
ST. Of course, the client is compatible with the firmware that has been developed
for this thesis only, as the time synchronization and other details do not follow any
existing standard.

I’m reporting more details on the client structure and behaviour in the following
list and flowchart (Figure 3.6).

Figure 3.6: Flowchart of the client for ST sensor nodes.

• Connection. In the first part of the script, I used the BluePy library for
Python to perform connection to all of the devices. All the information neces-
sary for the connection are reported in a list of dictionaries, each one present-
ing a) the device name, b) the device MAC address, c) the device type and
d) the interface to use for connection. The device type is necessary for the
client to understand which features are available (for example, audio domi-
nant frequency is available for the SensorTile.box, only). Also the interface is
quite important for our use case, because using multiple Bluetooth adapters
leads to better performances (more details in the Results part). It is possible
to connect to multiple devices using only one client.
Once the connection to a device is performed, an object, inherited from the
BluePy library, is created for each device. It is called a Delegate, and it
contains information for the connection to that device: it is fundamental in
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our environment, where more than one device is connected. In particular,
in this implementation the Delegate holds a) the name of the device; b) the
handles used to recognize the type of received data (IMU, environmental,
time, audio...) c) the file handles, to write the data into, d) the procedure to
be called each time data is received from the device.

• Notification handling. As soon as connection is performed and all Del-
egates are ready, the clients subscribes to the GATT characteristics it is
interested to. This procedure varies, based on the type of the device the
client it’s working with. For example, in the case of the BlueTile (sensing
firmware), the client subscribes to IMU sensors, environmental sensors and
time synchronization characteristics.
After the subscription, each time the sensor node sends data on a particular
characteristic, the handle_notification function of the Delegate is called. It
will compare the handle with the ones saved in it, understand the type of data
received and behave accordingly: in case of sensor data, it is further processed
(to use consistent measurement units with MBIENTLAB devices) and written
to file, while if it is time synchronization data, the received timestamp and
the immediate Unix epoch are saved in the Delegate and used to process
successive packets.
It is important to add that the BluePy library makes use of the
wait_for_notification blocking function, that waits for notification from the
precise device it is called from. As we are dealing with more than one device,
it is necessary to create different threads, one per node, and then call the
function in them using a while condition. As soon as the while condition
becomes false, the thread will terminate.

• BlueVoice data handling. In case the ST client is connected to a device
of type bluevoice (i.e. a BlueTile with the audio streaming firmware), the
behaviour is the same of the other ones, but the data received from the node
is (of course) treated differently.
First, timestamps are received from a different GATT characteristics, and
should be joined to the audio samples packet. This is performed by using
FIFOs lists for both data.
Second, data is received compressed, using the ADPCM codec. It means
that 16B samples are reduced to 4B samples, that contains only the differ-
ences from the previous set of samples. As some packets may get lost, the
reconstruction process may not work on the long period: to solve this, the
BlueVoice library also sends the so-called sync packets (at lower frequencies).
Those contain uncompressed data on which the difference packets can be ap-
plied to reconstruct the original signal even if some segment went lost. All
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this information is processed inside the corresponding functions, process_sync
and process_audio, that are released by ST in their GitHub account.

• Time Synchronization. After completing the subscription to all GATT
characteristics, the so-called Repeated Timer it is created. It is a small Python
module making use of the time and threading libraries to generate a timer
that fires at defined intervals, executing a defined function. It is important
to note that it has been designed to consider the real interval between firings:
the time needed to perform the instructions inside the function will not count.

In my implementation, one timer is configured to be fired each second: in
the procedure, the synchronization packet is sent to all devices. As explained
in Section 3.2, those will respond with a notification, that will be managed
accordingly. Other firing intervals can be configured, but smaller ones cause
bigger number of packets to be elaborated and exchanged: 1 s is the best
tradeoff I found between the number of lost packet and the synchronization
accuracy, while 0.5 s caused big percentages of packet loss.

• Program termination. The Ctrl+C signal has been configured to call a
procedure that will change the value of the waiting variable. That variable
is the one that keeps the notification waiting threads alive. In this way, the
threads can terminate and join to the main program, that will disconnect
from all nodes, close the files and terminate.

• BluePy modification. The BluePy library suffers from a bug that gen-
erates exceptions if a GATT characteristic is written while there are multi-
ple threads waiting for notifications. In particular, an object indicating the
correct transmission of the packet should be returned to the writeToChar-
acteristic function, that will terminate afterwards. Sometimes that object is
received by one of the wait_for_notification procedures, that are not expect-
ing it, generating an exception. To resolve it, I implemented a workaround,
consisting of a) making wait_for_notification ignore that particular object
when received and b) forcing writeToCharacteristic to return without wait-
ing for the confirmation object. This does not seem to cause problems in
the resynchronization procedure, and we can be confident that the packet
is sent by the BLE stack without the need for confirmation. Anyway, this
should be considered as only a workaround, because the problem should be
resolved by re-thinking this part of the library (confirmation of the successful
transmission is quite important in any case).
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3.4 Client for MBIENTLAB devices
I found writing the client for MBIENTLAB MetaMotionS much simpler, as the
available APIs and examples are easy to understand and implement. There is no
need to implement any time synchronization mechanism, as it’s already available
by default. Starting from the available Python example, available from the ven-
dor’s Github page [18], that is performing the streaming of accelerometer data, I
wrote the final version of the script with the following features, with the flowchart
represented in Figure 3.7.

Figure 3.7: Flowchart of the client for MBIENTLAB sensor nodes.

• Connection. Also this script support the connection to multiple devices,
represented in a list of dictionaries, using multiple Bluetooth adapters. For
each sensor node, it is reported a) a name, b) the MAC address of the device
and c) the MAC address of the interface to use for connection. The connection
is performed by the APIs, so no need to use BluePy (or similar libraries).
After the connection, similar to the script for ST nodes, a set of objects, called
States, is created. Each of them is responsible for one device, and contains
a) the device name, b) the pointers to the functions to be called when data
is received and c) the handles of the files in which data is stored.
The functions are used to take the data from the received packets and save it
inside .csv files correctly formatted. To do so, the function parse_data, from
the MBIENTLAB APIs is used to get a string containing all data: a regular
expression will extract the interesting values from the string and write them
into the file.
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• Configuration. In the configuration phase, each sensor is configured in its
ODR (Output Data Rate), power mode (low power or high accuracy and so
on) and range. The sensors configured are IMU (accelerometer, gyroscope,
magnetometer), temperature and pressure. This procedure is repeated for
each sensor node. At the end, the data collection is started.

• Data collection stop. To perform the data collection, I used the Python
sleep function to make the client wait for notifications. Of course, in the
meantime all the received data is processed by the functions pointed inside
the State objects. The sleep function, configured to wait for 1s, is repeated
until the sampling variable remains True: as soon as the Ctrl+C signal makes
it become False, the sleep will not be repeated and the Python script will
continue its execution. The last lines of code will stop the sampling, reset the
sensors, close all the files and print a sum up of the received information.

3.5 MATLAB data extraction scripts
Thanks to the ton of already available libraries and functions for data processing,
MATLAB has been the first choice when dealing with the elaboration of all the
sensor information retrieved from the data collection campaigns. Transforming
CSV values into MATLAB data structure is immediate (the readtable function is
enough), and then the Signal Analysis Toolbox contains an extensive set of tools
to work on those values with ease. In particular, I prepared the following scripts:

• Data Extraction for ST devices: works with Acceleration, Gyroscope and
Magnetometer data. It reads all the values, and plots them over time using
the MATLAB plotting feature. Then, all the data is modified for the Signal
Analyzer application: the timesync set of values is transformed into a square
wave, to represent the moments in which the re-synchronization happens,
then all the signals are coupled with their timestamp generating timeseries
data structures. Those timeseries are further analyzed, to order them in the
time domain and remove duplicates. In this way, the signals are ready to be
shown and elaborated with MATLAB toolboxes.

• Data Extraction for Meta devices: it behaves like the one for ST devices,
but takes into account the slight differences of CSV data generated by the
MBIENTLAB ones. Then, everything remains the same: plots are shown,
timeseries are generated and elaborated. In particular, the timeseries vari-
ables have been called in a different way, in order for them to be distinguished
from the ST ones.

• Data Extract for Voice: the goal of this script is to reconstruct the audio
signal from the CSV file generated by the BlueTile with BlueVoice enabled. As
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the timestamping mechanism is not as precise as the one used for sensor data
(due to the closed-source BlueVoice library), only the timestamps generated
at resynchronization events are used, and all the samples in the middle receive
regularly intervalled timestamps between the two events. Reducing the re-
synchronization interval could be advantageous in this case, but the number
of packet loss could be higher, making the audio quality sensibly lower. Also
in this case timeseries structures are created and elaborated to be shown
afterwards in the Signal Analyzed application.

• Data Extract for Frequencies: it works only with the frequencies in the
CSV generated by the SensorTile.box device. It behaves like the accelera-
tion/gyroscope script, but works with frequencies, that are transformed from
the indexes between 0-128 into the real frequencies values, and then scaled
by a factor of 1000: this is necessary to make them show in the same plot of
the acceleration values, for example. Also in this case, everything is modified
to be shown correctly in the Signal Analyzer application.

3.6 Calibration Script
An important step when dealing with accelerometer and gyroscope data is taking
care of axes alignment. For example, if the application involves installation of the
sensors system on a car, it is important for the boards to be positioned in a coherent
way: all the sensor chips have their own axes orientation, and it’s a good idea to
align them to the vehicle ones.

A problem may arise if the final user puts the sensors in a wrong way, rotated
with respect to the desired direction. In this case, the obtained data should be post-
processed accordingly, to get reasonable results: in particular, a rotation matrix
should be calculated and then multiplied to the raw acceleration data.

I had at my disposal an algorithm, wirtten for MATLAB, able to calculate
the roll, pitch and yaw angles, developed by the research group I’m working with
for this thesis (Electronic Design Automation Group) and optimized for embedded
systems application: this algorithm iterates over GPS and IMU data, performing
two kinds of calibration, explained as follows.

• Static Calibration. Working on a subset of samples, the available data is
analyzed to verify if the vehicle the sensor is mounted on is static. If this
is the case, the subset of samples is passed to a dedicated procedure able to
extract two angles: alpha (roll) and gamma (pitch).

• Dynamic Calibration. Also in this case a subset of samples is analyzed,
but here the algorithm verifies if the vehicle is proceeding in a straight path.
This step is necessary because, if that condition is met, the buffer of samples
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undergoing this condition is elaborated, along with the alpha and gamma
angles: the output is the beta (yaw) angle.

Once the three angles have been calculated, it is possible to generate the three
rotation matrices to be applied to the motion data mα, mβ, mγ as represented in
Equations 3.2, 3.3 and 3.4. The goal, given the reference system RS of the IMU
sensors, is to achieve the alignment with the reference system RM of the vehicle,
as explained in Figure 3.8.

Figure 3.8: Example of sensors reference system compared to vehicle reference
system.

mα =

⎡⎢⎣ cos(α) 0 sin(α)
0 1 0

−sin(α) 0 cos(α)

⎤⎥⎦ (3.2)

mβ =

⎡⎢⎣cos(β) −sin(β) 0
sin(β) cos(β) 0

0 0 1

⎤⎥⎦ (3.3)

mγ =

⎡⎢⎣1 0 0
0 cos(γ) −sin(γ)
0 sin(γ) cos(γ)

⎤⎥⎦ (3.4)

The system I’m working on does not include any GPS sensor, hence this algo-
rithm required some modifications in order to be useful. In particular, I modified
the two functions that are responsible of recognizing the static and dynamic con-
ditions, generating the corresponding sample subsets. In the new version of the
script, these functions are no more accepting GPS data as inputs, and they ver-
ify (a) the static condition by checking if the variance of both acceleration and
gyroscope samples is below a certain threshold and (b) the dynamic condition by
calculating the variance of the gyroscope samples and comparing it to a threshold.
Then, the calculation of the angles remains as before, because that step requires
the IMU samples only. Some work was necessary to correctly fix the thresholds
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for the variance values, that have been decreased from the original values to reach
more precise results in calibration.

In Figure 3.9 the flowchart of the algorithm is reported. The two different kind
of calibration are reported in different colors.

It is evident that the calibration is performed in an iterative way, by repeating
the static and dynamic calibration over different chunks of samples (moving the
start index). Each cycle will generate different values for the angles, and at the
end the median value is calculated and shown as output. The two calibration
procedures will take the sample corresponding to the start index, and then add
values (one second of samples per cycle) until the variance of the buffer overcomes
the threshold value. In this case, the last second of samples is flushed (because the
condition is no more met), and, if the remaining ones represent the static/dynamic
condition for at least a certain number of seconds, those IMU samples are used to
perform calculation of the required angles (alpha and gamma for static, beta for
dynamic).
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Figure 3.9: Flowchart of the script that perform calibration of the axes.
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3.7 Used tools
The development part of this work has been carried out using professional tools
currently used in the field. In particular:

• Firmware Development: uVision IDE from KEIL for BlueTile, STM32CubeIDE
(based on Eclipse) from ST for SensorTile.box

• Client Development: PyCharm IDE from JetBrains

• Data Processing: MATLAB

• Version Control System: GIT
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Chapter 4

Results and discussion

Finally, I performed some tests and experiment with the developed system to verify
if it is working properly and whether the original requirements are met.

The first experiment had the goal of finding the best data rate at which the
boards can send samples with an acceptable loss of information (due to lost packets).
I tried different configurations of sensors and Bluetooth adapters to find the best
working condition.

The second one tested time synchronization performances: I moved all the
sensors coherently, and analyzed the delays between the signals, comparing the
results from the ST devices (with my version of the time synchronization) with the
ones from MBIENTLAB.

The last test is the most extensive one, as I mounted the system on a car
and tested the data sampling for around 1 hour. It has been a good benchmark
for system reliability and time synchronization. At the same time, I used all the
data generated during this experience to test some further elaboration, including
calibration of the axes and event labeling through audio.

4.1 Maximum data rate on Bluetooth Low En-
ergy

One of the first experiments done for the entire system has been a simple test to
determine the maximum speed for the data to be transmitted via Bluetooth Low
Energy. In particular, the ST devices have been programmed to only transmit a
number that is incremented at each transmission, instead of the accelerometer data.
The number of packets to be transmitted is fixed, and corresponds to the number
of packets to transmit in 5 minutes. For example, if the data rate is set to 25 Hz,
the number of packets is limited to: 25 ∗ 60 ∗ 5 = 7500. Once all the expected
packets have been received, the number in them is used to understand how many
packets have been lost.
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At the same time, as MBIENTLAB devices have closed source firmware, the
estimation on them is done by making them stream data for 5 minutes: the number
of effectively received packets is compared to the expected number of packets, and
then the percentage is calculated.

Different tests have been performed, using a different number of connected de-
vices and Bluetooth adapters. In particular, the dongles at my disposal have been:

• 1x Intel internal Bluetooth Adapter.

• 6x ASUS BT-400 Bluetooth 4.0 USB Adapter, based on the Broadcom BCM20702
chip.

For both ST and MBIENTLAB devices, values in the tables have been calcu-
lated with Equation 4.1:

loss(%) = (1 − ( received_packets

expected_packets
)) ∗ 100 (4.1)

• Table 4.1 reports the experiment of two devices, a BlueTile and a Sensor-
Tile.box, connected to one ASUS BT-400 adapter.

• Table 4.2 presents the test of three devices, a SensorTile.box (ST.b), a BlueTile
(BT) and a MetaMotionS (MM), all connected to one, two or three different
ASUS-BT400 adapters.

• Table 4.3 describes the results obtained from connecting all the seven devices
to different number of Bluetooth adapters (the Intel internal adapter has been
used only in the case of 7 dongles). In the 75 Hz case, MetaMotionS have
been configured at 50 Hz, because that particular data rate is not present in
the device’s APIs.

Table 4.1: Test 1. Two devices, both connected to one adapter.

Frequency BlueTile losses SensorTile.box losses
25Hz 0% 0%
50Hz 0% 0%

100Hz 0.14% 0%
200Hz 3.4% 0.22%

333.3Hz 42.3% 0%
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Table 4.2: Test 2. Three devices. One, two or three adapters

Frequency Device 1 Dongle 2 Dongles 3 Dongles
25Hz ST.b 0% 0% 0%

BT 0% 0% 0%
MM 0% 0% 0%

50Hz ST.b 0% 0% 0%
BT 0% 0% 0%
MM 0% 0% 0%

100Hz ST.b 0% 1.26% 23.7%
BT 0.2% 0.19% 0.6%
MM 0% 0% 0%

200Hz ST.b 33.3% 21% 6.96%
BT 20% 26.9% 0.74%
MM 17.3% 14.9% 3,33%
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Table 4.3: Test 3. All devices. Two, four or seven adapters.

Frequency Device 2 Dongles 4 Dongles 7 Dongles
25Hz ST.b 1 0% 0% 0%

ST.b 2 7.6% 0% 0%
BT 0% 0% 0%

MM 1 0% 0% 0%
MM 2 0% 0% 0%
MM 3 0% 0% 0%

50Hz ST.b 1 0.73% 0% 0%
ST.b 2 0% 0% 0%

BT 0.06% 0% 0%
MM 1 0% 0% 0%
MM 2 0% 0% 0%
MM 3 0% 0% 0%

75Hz ST.b 1 0.51% 0% 0%
ST.b 2 0% 0% 0%

BT 3.7% 1.2% 0.06%
MM 1 0% 0% 0%
MM 2 0% 0% 0%
MM 3 0% 0% 0%

100Hz ST.b 1 41.5% 0% 24.18%
ST.b 2 0% 0% 0%

BT 0% 22.4% 0.36%
MM 1 0% 0% 0.25%
MM 2 0% 0% 9.4%
MM 3 0% 0% 6.37%
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In conclusion, it is evident that the percentage of loss packets heavily depends on
the output data rate, that should be chosen accordingly to the desired application.
To get higher data rates with the same number of devices, it is a better idea to find
a good tradeoff using multiple Bluetooth Adapters.

Nevertheless, other issues may come into play in this situation. For example,
in Chapter 2.2 I reported the results of a study, which found that the Bluetooth
adapter heavily impacts the percentage of received packets, so maybe these results
can be expanded by trying different dongles.

Another point is that the same test performed in different moments can cause big
changes in the results. I noticed that repeating a test immediately usually returns
similar numbers of losses, while repeating the same experiment the following day
generated different results. A possible explanation of this behaviour can be the fact
that Bluetooth uses the 2.4 GHz wireless band: a lot of other devices use it (WiFi,
alarm systems). The BLE protocol includes a frequency hopping mechanism, to find
the best channel for every connection event, but the Wireless traffic is usually not
deterministic and prone to immediate variations, that can impact the performances
of these nodes.

Also, the remote node seems to make a difference. In particular, MetaMotionS
seems to perform better in these tests. As their firmware is not open-source, I can
only make some assumptions to try to explain this: (1) the Nordic Bluetooth stack
may act differently from the ST one, giving better results, (2) the design of their
boards (and antennas) allows better transmission performances, or maybe (3) the
library used by their Python APIs performs better than BluePy (that is the one I
used for the ST client).

In any case, even if the percentage of loss packets may not vary that much, the
usage of multiple dongles is recommended. During the tests done with 7 devices
and 7 dongles, the connection procedure was fast and I never encountered failures,
while using less dongles may require more time to perform the connection and
sometimes it fails.

For further experiments, and for the final version of the acquisition system,
I chose 75 Hz as the data rate for ST devices, and consequently 50 Hz for the
MBIENTLAB ones.

4.2 Time Synchronization Accuracy
To validate the time synchronization mechanisms, two tests have been carried out.
Both of them consist of 15 minutes of sampling, keeping the sensors steady. When
the time expires, all the boards are moved in the same direction on the Z-axis, with
a coherent movement. The difference between the two tests is that one of them
is performed using the last version of the client, while I carried out the second
test using a different version of the script that ignores synchronization packets: the
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association between the device timestamp and the current UNIX timestamp is done
at the moment of connection only.

ST devices are streaming data at a rate of 75 Hz, with a re-synchronization time
(for the time synchronization mechanism) of 1 s. MBIENTLAB ones are set with
an Output Data Rate (ODR) of 50 Hz.

The re-synchronization time has been set at that particular value because, after
some tests at different intervals, I found 1 s to be the best trade-off between the
synchronization accuracy and the packet loss percentage. This happens because
each re-synchronization requires an interrupt procedure to be performed on the
sensor boards, with an additional exchange of data between it and the client, and
all of this comes at a cost from the performance point of view.

The results are presented in the following Figures, which compare the delay
between the first sample of the first registered peak and the last sample of the same
peak. In an ideal condition, they should be perfectly aligned.

Figure 4.1 represents the data without the time synchronization mechanism,
while Figure 4.2 contains the results with the mechanism turned on. In the first
case, a delay of 1.18 seconds is evident. The second case shows a better situation:
65 ms of difference, which is more than acceptable for our applications.

Figure 4.1: Experiment with no time synchronization: delay > 1s.

Then, in Figure 4.3 I compare the results got in the second case (experiment
with time synchronization) with the ones from the MBIENTLAB devices, that
include a personalized, closed-source system for time synchronization. It is easy
to notice that the samples of the MetaMotionS devices (dotted lines) are better
synchronized in time, with a maximum delay of 20 ms.
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Figure 4.2: Experiment with time synchronization: delay around 65ms.

Figure 4.3: Experiment with time synchronization: comparison with MBIENTLAB
devices.

Finally, Figure 4.4 reports the worst case I found analyzing the results of these
experiment. In this case, the delay between the samples of the same event is 70 ms.
Hence, I chose 70 ms as the precision value for this synchronization mechanism.
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Figure 4.4: Experiment with time synchronization: worst result.

In light of these results, I can consider this implementation of the time syn-
chronization as satisfying. The accuracy of commercial solutions is better, but
my solution can be considered comparable, also considering the easiness of imple-
mentation. The benefits of including this mechanism instead of using the device
timestamp only are pretty evident.

4.3 Extensive test in car environment
To perform a real-life use case test, we set up a complete data-acquisition system
composed of:

• All the seven sensor boards of this thesis: 2 ST SensorTile.box, 2 ST BlueTile,
3 MBIENTLAB MetaMotionS.

• A SONY Action Cam HDR-AS200V, to match recorded data with video infor-
mation. As the device contains a GPS module, also localization information
is recorded.

• A smartphone equipped with the Physics Toolbox application, used to sample
reference data from accelerometers, gyroscope and GPS sensors.

• A device from Tierra SpA with high-precision IMU sensors and a GPS module.

The data collection phase lasted for about one hour, in which we went through
different paths around the Politecnico di Torino, including roundabouts, different
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round surfaces and start/stop conditions. Every particular condition have been
signaled with precise audio frequencies, generated by another smartphone with the
Physics Toolbox application and reported in Table 4.4. Figure 4.5 shows a map
of the road traveled for the experiment, while Figure 4.6 reports the setup of the
sensors inside the car.

Figure 4.5: Map of the road traveled for the car experiment (OpenStreetMap).

Table 4.4: Car experiment: events and corresponding audio frequency.

Event Sound Frequency (Hz)
Experiment start 400

Roundabout 800
Road bump (long) 1200
Road bump (short) 1600

Start from traffic light 2000
Braking for traffic light 2400

Right turn 2800
Left turn 3200
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(a) First SensorTile.box on the right of the
car dashboard

(b) Second SensorTile.box on the left of the
car dashboard

(c) BlueTile and BlueVoice boards on the
center of the car dashboard

(d) One MetaMotion fixed on the driver’s
seat

(e) One MetaMotion fixed on the passen-
ger’s seat, with the Tierra device

(f) One MetaMotion fixed on the belt of a
rear seat

Figure 4.6: Images of the positioning of the sensor boards in the car.
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As results, I’m reporting in the following figures the graphs obtained by consid-
ering both the acceleration and the gyroscope data.

Figure 4.7 reports acceleration data coming from all the sensors. I reported the
X axis for ST sensors (x1, x2, x3), and Z axis for MetaMotionS sensors (mz1, mz2,
mz3). In this way, the direction plotted is the same for all sensors: in the way they
were mounted, axis X for ST devices coincided with axis Z of the other ones when
compared to the car movement.

Figure 4.7: Graph representing acceleration on the X axis for all the sensor boards.

Figure 4.8 represents data for a particular acceleration event that happened in
the last part of sampling. From this, I noticed that a MetaMotionS (mz3, light
blue) is providing data differently from the other ones: it is the one mounted on
the rear seat belt. First, it is 180° rotated (the front of this sensor board is facing
the windscreen, while other ones are facing the rear window): hence, it is reporting
data upside down. Then, it isn’t perfectly perpendicular to the pavement, and a
component of the gravity acceleration is generating an offset that is more evident
than the one sensed by the other boards.

Figure 4.9 shows acceleration samples in a smaller time interval. In particular,
I wanted to represent the accuracy of time synchronization: the samples are taken
from one of the final acceleration events of the experiment, but the peaks are still
well aligned. Also in this case, the third MetaMotionS is behaving in an interesting
way as its samples seems delayed. This seemed strange at first, because I tested
the performances of MBIENTLAB time synchronization mechanism and it worked
perfectly every time. I think that the motivation of the difference is due to the
installation on the seat belt, that is not as stiff as the other points on which the
sensors were put.

Figure 4.10 is reporting the acceleration data from one of the sensor boards (in
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Figure 4.8: Detail of acceleration in the minute domain.

Figure 4.9: Detail of acceleration in the seconds domain.

green) compared to the dominant value of the audio frequency for each instant (in
light blue, dashed lines). To make the values comparable inside the same graph, the
frequency values have been scaled: fGRAP H = fORIGINAL

1000 . During the experiment,
we played some frequencies more times with respect to what is shown here, so this
was not the result I was expecting.

Figure 4.11 reports two particular audio events, with an acceleration event be-
tween them. In particular, after the right turn tone (2.8 kHz), acceleration is
present, and after the left turn tone (3.2 kHz), acceleration is 0 for some moments
(probably because we were giving the right to pass at the intersection). Hence, the
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Figure 4.10: Graph of the acceleration data accompanied by audio frequency data.

frequency analysis is working correctly, but some issues should be resolved. I’m
discussing this later.

Figure 4.11: Graph of the acceleration data accompanied by audio frequency data,
detail between two audio events.

Figures 4.12 and 4.13 represent the gyroscope data, both an overall view and
a more detailed one. Also in this case, I noticed a different behaviour of the third
MetaMotionS board, again because it’s mounted on a seat belt and motion is
transmitted differently. It is interesting to notice that these sensors are able to
show this difference so precisely.
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Figure 4.12: Graph representing gyroscope data on the X axis for all the sensor
boards.

Figure 4.13: Detail of gyroscope data.

Figures 4.14 and 4.15 have been reported to show data sensed by the smartphone
application compared to the sensor ones. To synchronize them over time, the clock
of the smartphone (updated via Internet) have been used: it is interesting how
the data coming from our sensors system is well aligned (even with a more rough
precision).
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Figure 4.14: Graph of acceleration data from a sensor board compared to smart-
phone data.

Figure 4.15: Detail of sensor board data compared to smartphone data.

The raw data reported until now can be corrected using the calibration algo-
rithm explained in section 3.6. In the following images I’m reporting the results of
the execution of the MATLAB script on the results coming from the sensor boards.

First, I run the calibration on the MetaMotionS (MMS) board that has been
installed on the rear seat belt, as it is the one that requires more corrections.

Figure 4.16 compares the overall data between raw Z (pointing in the direction
of the car) and the calibrated Y. It is evident from this image that all the samples
have been moved from one axis to the other. Another detail is that the average
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(i.e. the acceleration of the vehicle while static) is now around 0: the offset of the
raw data is removed.

Figure 4.16: Comparison between raw data for Z axis and calibrated data for Y
axis (MMS).

Figure 4.17 is a more detailed representation of the previous one. All the things
said before can still be noticed, but it is also evident that the samples have been
transferred symmetrically around the horizontal axis of the graph: this is because
the axis of the sensor that was pointing to the car movement was 180° rotated.

Figure 4.18 compares the raw and calibrated data for the X axis. The X axis
was the one pointing to ground, so raw data contained the gravity acceleration.
Calibrated data is representing, instead, the real acceleration on the X axis, so
there is no gravity component.
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Figure 4.17: Detail of the comparison between raw data for Z axis and calibrated
data for Y axis (MMS).

Figure 4.18: Comparison between raw data for X axis and calibrated data for the
same axis (MMS).
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Figure 4.19 compares raw and calibrated data for Y axis. Also in this case, due
to rotation, the data represented in the calibrated version is composed of different
components from the axis, so original and elaborated samples are not dependent.

Figure 4.19: Comparison between raw data for Y axis and calibrated data for the
same axis (MMS).

Figure 4.20 compares raw and calibrated data for Z axis. The calibrated samples
average to 9.81, that is the gravity acceleration: it has been moved from the X axis
to this one.

Figure 4.20: Comparison between raw data for Z axis and calibrated data for the
same axis (MMS).
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Then, I performed the calibration on the results of one of the ST sensors. They
were correctly positioned with regards to the Z axis, but the X and Y axis would
require some rotation.

Figure 4.21 reports calibrated data for the Z axis compared to the raw one.
Values are the same, but calibrated one is mirrored with respect to the horizontal
axis.

Figure 4.21: Comparison between raw data for Z axis and calibrated data for the
same axis (ST).

Figure 4.22 compares raw X data and calibrated Y data. They represent the
same values, as originally the sensor had its X axis coherent with the car movement,
but the calibration algorithm moved those acceleration components on the Y axis.

Figure 4.23 is a detail of the previous one and it shows that also in this case data
is mirrored: in this way, the acceleration of the car is positive after staying steady.
Raw data (in blue) represents negative acceleration in all cases, but it doesn’t make
sense, as the car didn’t go reverse.
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Figure 4.22: Comparison between raw data for X axis and calibrated data for the
Y axis (ST).

Figure 4.23: Detail of the comparison between raw data for X axis and calibrated
data for the Y axis (ST).
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Figures 4.24 and 4.25 both show comparison between raw Y and calibrated
X. Also in this case, data from Y axis is moved on the X one, as the algorithm is
designed in this way, but it’s also mirrored: this happens because, when rotating the
sensor axis 90 degrees (to bring X acceleration on Y axis), also the other component
is rotated, causing it to be the negative of the original one.

Figure 4.24: Comparison between raw data for Y axis and calibrated data for the
X axis (ST).
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Figure 4.25: Detail of comparison between raw data for Y axis and calibrated data
for the X axis (ST).

To show the potential of the acquisition system, I prepared some videos com-
bining the data acquired from IMUs and the images acquired by the video camera.
In this case, the synchronization between the two was not immediate, as the video
shooting is not considered in the time synchronization mechanism: it required some
manual adjustment. In any case, the video had the current time (obtained from
GPS data) superimposed, and thanks to the MATLAB timetables structures gener-
ated from the elaboration scripts, finding the corresponding sample (with 1 second
accuracy) has been quite easy. Then, thanks to the MATLAB VideoWriter func-
tionality, I created an animation that can be easily integrated to the shot images
thanks to a video editing program, like DaVinci Resolve 18 by BlackMagic [19]. A
snapshot of the result is reported in Figure 4.26, and I’m reporting some conclusions
on the experiment in the following paragraphs.

Overall behaviour of the system The system demonstrated strong reliability
during the experiment, as no disconnection happened and the stream of data worked
continuously all the time (around 1 hour). The fetched data is coherent with all
the different devices inside my system, and comparing them with the samples of an
external device (the smartphone) gave good results. Time synchronization worked
as expected for all the duration of the experiment, keeping the same performance
as in section 4.2.

72



4.3 – Extensive test in car environment

Figure 4.26: Snapshot from the final video with both images and IMU data.

Board positioning It is important to put the sensor boards accurately in the
car, choosing stiff points in which vibrations are limited. For example, fixing the
boards on the dashboard with adhesive tape is a good idea, as data coming from
the ST devices is clean and coherent. Also the clip accessories for MetaMotionS
are a good idea, but they shouldn’t be put on the seat belt or other moving parts,
as the motion data is compromised (Figure 4.9). During the sensors installation,
it is also important to remember the axis direction, but anyway an appropriate
calibration algorithm is enough to fix it.

Data elaboration As explained for Figure 4.8 in particular, it’s important to
consider the differences between the sensors during data elaboration in Matlab. In
this case, it could be convenient to remove the offset from all the devices data, to
set the steady state around the value 0 (and not -0.3). It would be also a good idea
to analyze the positioning of the sensors and align correctly the data (in this case,
it simply means to put a minus to the mz3 values).

Audio and Frequencies The main idea behind the analysis of audio frequencies
was to automatically label all the events using these values. Figure 4.11 shows that
this can be possible, even if Figure 4.10 is proof that, in this experiment, this
solution needs some further analysis. In particular, it seems that lower frequencies
are not distinguishable from the background noises, and other frequencies are not
shown probably because they were not the dominant ones. Possible solutions can
be:

• Use higher frequencies, that seem to be recognized more easily
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• Do some experiments in car with the same sensors, maybe with real-time
results on the computer screen, to understand which frequencies are better
to use.

• Put the speaker of the audio frequency generator nearer to the sensor micro-
phone.

• Analyze more dominant frequencies than the first. In this case, only the
frequency with the maximum power spectrum have been considered: maybe
taking also the second and the third one could be beneficial in finding the
reproduced ones.

• Make the car environment better for the noise propagation (for example, close
all windows, put sensors on different parts of the car that don’t vibrate and
so on).

Another problem we noticed during the experiment is that programming the audio
frequency to be played on the Android app is not easy. Every time, the old value
should be deleted, the new one should be written, and so on. This procedure is slow
and error-prone. An idea could be to pre-record audio data at certain frequencies,
and use those audio files. In this way, the time duration of the sound is already
known, the user is not confused between different frequency values and at the same
time the correct one can be played without hassle.
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Conclusion

In this thesis I propose a complete system designed to acquire data from heteroge-
neous sensors, with time synchronization. I put particular attention in finding the
best configuration for all of them, both on the data sensing and transmission parts.
To complete it all, I also explored some possibilities to automatically label samples
using audio information.

The developed firmware for the ST devices tries to get the most out of the
available hardware, with the personalized time synchronization mechanism. I wrote
Python clients for the computer to collect the data from all the sensor boards, using
different Bluetooth adapters to maximize stability and throughput. As I had to
deal with different devices, those scripts are personalized to generate coherent and
synchronized output files. Finally, the MATLAB scripts I prepared can be used to
analyze the resulting data and eventually perform some elaboration on them, using
the tools available in the Signal Processing Toolbox.

Tests performed in different environments, including the real-life case of a car
driven for about an hour on different paths, confirmed that all the parts of the
system are working as expected: data is coherent between the different sensors and
is correctly aligned.

In this last test I also used microphone data to label the data, and this idea
gave interesting results that can be analyzed in further works.

Also the calibration algorithm, that automatically rotated the reference system
of the sensors to the reference system of the vehicle, gave a good outcome even
without GPS data.

I can consider the obtained results satisfying when compared to the expected ones.
The time synchronization accuracy is around 70 ms, that is less than the desired
100ms. The relative mechanism is easy to implement on any BLE-capable micro-
controller, as it only makes use of the standard Application Layer of the protocol.
It is also low-power, as it has been designed to impact performances as less as
possible (only two packets are exchanged).
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Multiple devices are well-supported, and new ones can be easily integrated. If
the developer has the ability to personalize the firmware of new devices, it is possi-
ble to add them inside the system with the already available client: the new board
should be programmed using the ST devices firmware as an example. If the device
is closed-source, a new client should be written for them using their APIs, but then
it can work in a parallel way. The current configuration, used in the experiments
reported in this thesis, is represented in Figure 5.1.

Figure 5.1: Image representing the components of the developed system.

A nice part of this work is that it can be considered a part of a bigger framework
that can be further developed. For example, I’m reporting some possible ideas:

Labeling Improvement The last experiment tried to use audio data for labeling,
but as discussed in 4.3, the results can be improved. If automatic labeling is a
priority in the desired framework, it is easy to implement all the proposed fixes and
then use the audio frequencies analysis to tag data.

Labeling using voice Another exciting possibility, that would require a more
powerful device (but maybe can be implemented inside the client) is to do the
automatic labeling using a voice recognition engine. In this way, the driver could
simply express by voice the current condition, and the system would then label the
IMU data in the required way.

Edge Computing The entire system relies on a central device, the client, that
gathers all the output data and is responsible of the time synchronization. The
main problem of this solution is that this device is a powerful but power-hungry
one, as it is a personal computer, with a complete operating system on it. A pos-
sible way that can be explored is, depending on the target application, to leverage
the computing power available on the boards (for example, SensorTile.box provide
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a quite powerful microcontroller from the STM32 line) to perform data analysis
directly on them and export on BLE only the desired features. ST Microelectron-
ics already provides some Machine Learning libraries, optimized for their hardware.

To conclude the discussion, I imagined some possible applications for this sys-
tem:

• Predictive Maintenance Everyday, people are using different high-cost ma-
chines. It could be the case of a car engine, when someone is reaching their
workplace, but it could be also the case of big appliances in industries. In
both cases, one of the most wanted things for both the end-user of the car
and the managers of the industry is to reduce the costs for maintenance. The
system developed in this thesis can help: data from IMUs, microphone and
environmental sensors can be used to recognize any abnormality in the mon-
itored system before it would cause any irreversible (and expensive) harm to
other components.

• Sports and Healthcare Another interesting possibility is applying the set of
sensor on different spots of the human body, in order to analyze how a person
is moving and, eventually, study their motion during a sport or in everyday
life. In this way, possible dangerous patterns can be recognized, helping the
patient in avoiding useless harm. An example is the posture recognition as in
section 2.7.
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