
POLITECNICO DI TORINO

Master Degree course in Computer Engineering

Master Degree Thesis

LIF-based Legendre Memory Unit:
neuromorphic redesign of a recurrent

architecture and its application to human
activity recognition

Advisors
Gianvito Urgese
Vittorio Fra

Candidate
Benedetto Leto

October 2024

Abstract

Nowadays traditional artificial neural networks (ANNs) present a significant chal-
lenge in edge devices and embedded systems due to their high power consumption.
This inefficiency in standard machine learning (ML) and deep learning (DL) so-
lutions requires the exploration of more efficient alternatives. Spiking neural net-
works (SNNs), inspired by the interconnections of human brain neurons, constitute
a valid alternative to address this challenge. However, the advancement of these
brain-inspired models is constrained by the limited accessibility to dedicated neu-
romorphic hardware capable of integrating brain-inspired computational principles.
Despite this low hardware availability, SNNs represent a step forward in achieving
more efficient, brain-inspired computation for edge devices and embedded systems.

The goal of neuromorphic computing is to emulate the intricating complexities
that have evolved over millions of years to fine-tune neural processing. Driving
inspiration from the behavior of biological neurons, neuromorphic models trace
a unique path to computational efficiency and adaptability, making a significant
break from the rigid, power-hungry architectures of conventional computing. In-
stead, they adopt a more flexible, energy-efficient, and inherently parallel paradigm.
Unlike the traditional neural network, these brain-inspired models activate neurons
only in response to certain events. This event-based approach simulates brain in-
formation processing. As a result, this leads to a more sparse neuron activation,
decreasing the amount of energy consumption.

The core part of this work is transforming a recursive cell architecture, the
Legendre Memory Unit (LMU), into its neuromorphic version, named the LIF-
based Legendre Memory Unit (L2MU). This architecture redesign reconfigures the
internal states of the original architecture into populations of neurons that are in-
terconnected through synapses, allowing components to communicate via synaptic
currents and facilitating information flow through neuronal spikes in response to
changes in current and voltage.

As a benchmarking stage for the L2MU architecture, a comprehensive com-
parative analysis is presented focusing on the task of human activity recognition
(HAR); including various alternatives built from the L2MU cell and other network
architectures both in the neuromorphic field and in the non-spiking domain. This
also includes an analysis of model compression techniques to keep spiking neural

3

networks lightweight and efficient for low-power environments.
The Thesis hence offers a comparative study with classical artificial neural net-

works, highlighting the advantages and trade-offs in terms of computational effi-
ciency, energy consumption, and processing speed. Real-world scenarios are also
considered, demonstrating the potential of L2MU for various edge computing ap-
plications such as real-time data processing.

4

Contents

List of Figures 9

List of Tables 14

1 Introduction 17

2 Background 21
2.1 Spiking Neural Network . 21

2.1.1 Biologic Foundation of SNNs 21
2.1.2 Spike Generation . 22
2.1.3 Spikes Transmission . 23
2.1.4 Spikes Encoding . 24
2.1.5 Neuromorphic Hardware and SNNs 24
2.1.6 Neurons Dynamic as Synaptic Operations 25

2.2 Human activity recognition . 26
2.3 Network Architectures . 28

2.3.1 RNN . 28
2.3.2 LSTM . 29
2.3.3 Legendre Memory Unit . 30
2.3.4 Focus on LMU . 32

2.4 snnTorch . 33
2.5 NeuroBench . 35

2.5.1 Metrics . 35
2.6 Edge Devices . 38

2.6.1 Edge Devices Characteristics 38
2.6.2 Potential benefits of SNNs on Edge Devices 38

2.7 Model compression . 39
2.7.1 Pruning . 39
2.7.2 Quantization . 42

3 Materials and methods 43
3.1 Encoding module . 44

5

3.1.1 Single Encoder . 44
3.1.2 Stacked Encoder . 44

3.2 LIF-based LMU (L2MU) . 46
3.3 Activities selection and segmentation 49
3.4 Hyperparameter optimization . 51
3.5 Selection of specific hyperparameters 54
3.6 Model Statistics . 54
3.7 Model Compression . 55

3.7.1 Granular magnitude pruning 55
3.7.2 Quantization . 57

3.8 Deployment on hardware . 58

4 Results and discussion 61
4.1 Baseline . 61

4.1.1 LMU insights . 62
4.2 L2MU . 63

4.2.1 Leaky . 63
4.2.2 Synaptic . 64
4.2.3 Leaky vs. Synaptic Model 66
4.2.4 L2MU vs LMU . 66

4.3 Encoded L2MU . 67
4.3.1 Leaky . 67
4.3.2 Synaptic . 69
4.3.3 Leaky vs Synaptic . 69
4.3.4 Encoded L2MU vs L2MU . 70

4.4 Multi-Encoded L2MU . 71
4.4.1 Leaky . 71
4.4.2 Synaptic . 71
4.4.3 Leaky vs. Synaptic . 73
4.4.4 Multi-Encode L2MU vs. Encoded L2MU 74

4.5 Deployment of Multi-Encoded L2MU on Edge Devices 74

5 Conclusion 77

A Conversion of RNN to LIF-based RNN 79
A.1 Conversion Process of an RNN . 79
A.2 Results and Discussions . 79

A.2.1 L-RNN . 79
A.2.2 Encoded L-RNN . 81
A.2.3 Multi-Encoded L-RNN . 82

6

B Learning Curves 85
B.1 LSTM . 86
B.2 LMU . 86
B.3 RNN . 87
B.4 L2MU . 87
B.5 Encoded L2MU . 88
B.6 Multi-Encoded L2MU . 89
B.7 L-RNN . 90
B.8 Encoded L-RNN . 91
B.9 Multi-Encoded L-RNN . 92

C Confusion Matrices 95
C.1 LSTM . 95
C.2 LMU . 96
C.3 RNN . 96
C.4 L2MU . 97
C.5 Encoded L2MU . 98
C.6 Multi-Encoded L2MU . 99
C.7 L-RNN . 100
C.8 Encoded L-RNN . 101
C.9 Multi-Encoded L-RNN . 102

D Hyperparameters 103
D.1 Hyperparameters’ Description . 103

D.1.1 Common Hyperparameters 103
D.1.2 Output Hyperparameters for SNNs 103
D.1.3 Encoder Hyperparameters 104
D.1.4 RNN . 105
D.1.5 LSTM . 105
D.1.6 LMU . 105
D.1.7 L-RNN . 105
D.1.8 L2MU . 106

D.2 Hyperparameters’ Value . 106
D.2.1 LSTM . 106
D.2.2 LMU . 106
D.2.3 RNN . 107
D.2.4 L2MU . 107
D.2.5 Encoded L2MU . 108
D.2.6 Multi-Encoded L2MU . 109
D.2.7 L-RNN . 110
D.2.8 Encoded L-RNN . 110
D.2.9 Multi-Encoded L-RNN . 111

7

Bibliography 115

8

List of Figures

1.1 This illustration presents a comprehensive representation of spiking
neurons and artificial neurons, along with their networks and cor-
responding hardware. On the top left is the spiking neuron model
inspired by its biological structure, and on the top right is an abstract
representation of the artificial neuron. Spiking Neural Networks on
the middle left are shown as sparse configurations of neurons commu-
nicating through discrete spikes, whereas Artificial Neural Networks
on the middle right, are dense, fully connected networks where neu-
rons are continuously interacting. On the bottom left, neuromorphic
chips, such as TrueNorth, Loihi, Tianjic, and Spek, constitute the de-
sign to emulate spiking neural networks in hardware. The right side
features the purpose for which chips are generally utilized regarding
artificial neural networks. 19

2.1 Distribution of signal values captured by both the accelerometer and
gyroscope sensors along their respective X, Y, and Z axes. 28

2.2 RNN Unit architecture. 29

2.3 LSTM Unit architecture. 30

2.4 LMU Unit architecture. 31

2.5 Effect of pruning techniques on the synapse weights of the original
model. 39

2.6 The image illustrates a structured pruned neural network. In struc-
tured pruning, entire neurons and their associated connections are
removed, rather than just setting individual weights to zero. This
is indicated by the shadowed connections and neurons in the im-
age. The red circles symbolize active neurons, while the absence of
shadowed circles and lines where neurons and connections have been
removed illustrates the network after pruning. The solid blue lines
represent the remaining active connections. 40

9

2.7 The image illustrates a pruned neural network graph where the
dashed lines represent connections that have been pruned. Pruning
in this context means that the weights associated with these connec-
tions have been set to zero in the weight matrix, effectively eliminat-
ing their influence on the network’s computations. The solid lines
are likely to represent the active connections with non-zero weights.
This graphical representation emphasizes the distinction between ac-
tive and pruned connections within a neural network’s architecture
after pruning has occurred. 41

3.1 This diagram illustrates the real-time human activity tracking pro-
cess of a smartwatch. Utilizing onboard gyroscope and accelerometer
sensors, the smartwatch collects data over 2 seconds, equivalent to
40 samples. These data are then transmitted to an artificial neural
network. The neural network processes the sensor data and classi-
fies the wearer’s activity such as clapping, dribbling, playing catch,
brushing teeth, writing, typing, or folding clothes. 43

3.2 Illustration of a spiking single layer encoding module consisting of
channel-specific neurons. On the left, the “6-axis input”represents
raw time-series data from the accelerometer and gyroscope sensors.
In the middle, “channel-specific neurons”are shown receiving synap-
tic currents corresponding to each sensory axis. On the right, the
processed signals converge in a spike-based recurrent unit. 45

3.3 Illustration of a spiking multi-layer encoding module consisting of
channel-specific neurons, fusion, and harmonization neurons. On
the left, the same structure of the single encoder is used, the “6-axis
input”connected to the “channel-specific neurons”. These neurons
communicate with the “fusion neurons”which compress the informa-
tion received by the previous neuron layer. Finally, the “harmo-
nization neurons”, receiving the spike signal from the previous layer,
fine-tune the signal trying to minimize any discrepancies raised by
the previous layers. At this point, this layer emits spike trains which
converge to a spike-based recurrent unit. 46

3.4 Illustration of the L2MU where each component is represented with
a population of neurons. The input, denoted as xt,spk, feeds into
the model at time step t, which influences the u and h population
neurons. The recurrent information flow between the m population,
as well as the h population. The output neurons, gather information
from the hidden neuron population to generate the final output. . . 47

3.5 Random sample of 2 seconds recorded by the smartwatch on the 6
IMU sensors for the 7 classes in the “hand-oriented activities related
to general tasks”subset of the WISDM dataset. 50

10

3.6 This image represents a machine learning workflow using the Light-
ning AI framework and Neural Network Intelligence (NNI) for hyper-
parameter optimization in human activity recognition tasks. The left
side shows a neural network model, which is fed time-series data from
a human activity dataset. In the center, the “Trainer”configuration
includes checkpoints, callbacks, and logging mechanisms for model
training. The “Neural Network Intelligence”block indicates the use
of NNI to automate the search for optimal hyperparameters, config-
ured by a “Search Space”and an “Experiment Config”that specifies
the tuner, assessor, etc... The result of this process is a compre-
hensive database containing trial results, a checkpoint of the most
effective model, the finest-tuned parameters, and detailed logs. . . . 51

3.7 STM32MP157F-DK2 board. 59
3.8 Raspberry Pi 3B+ board. 59
3.9 Raspberry Pi 4B board. 60

4.1 Histogram plots representing the inference time probability distri-
bution. Analyses were carried out on the three boards running the
models with either Leaky (left) or Synaptic (right) neurons. 75

B.1 Learning curves for the full-precision Long Short-Term Memory (LSTM)
model retrained with 10 different seeds 86

B.2 Learning curves for the full-precision Legendre Memory Unit (LMU)
model retrained with 10 different seeds 86

B.3 Learning curves for the full-precision Recurrent Neural Network (RNN)
model retrained with 10 different seeds 87

B.4 Learning curves for the full-precision LIF-based LMU (L2MU) model
with Leaky neurons retrained with 10 different seeds 87

B.5 Learning curves for the full-precision LIF-based LMU (L2MU) model
with Synaptic neurons retrained with 10 different seeds 88

B.6 Learning curves for the full-precision Encoded LIF-based LMU (En-
coded L2MU) model with Leaky neurons retrained with 10 different
seeds . 88

B.7 Learning curves for the full-precision Encoded LIF-based LMU (En-
coded L2MU) model with Synaptic neurons retrained with 10 dif-
ferent seeds . 89

B.8 Learning curves for the full-precision Multi-Encoded LIF-based LMU
(Multi-Encoded L2MU) model with Leaky neurons retrained with 10
different seeds . 89

B.9 Learning curves for the full-precision Multi-Encoded LIF-based LMU
(Multi-Encoded L2MU) model with Synaptic neurons retrained with
10 different seeds . 90

11

B.10 Learning curves for the full-precision LIF-based RNN (L-RNN) model
with Leaky neurons retrained with 10 different seeds 90

B.11 Learning curves for the full-precision LIF-based RNN (L-RNN) model
with Synaptic neurons retrained with 10 different seeds 91

B.12 Learning curves for the full-precision Encoded LIF-based RNN (En-
coded L-RNN) model with Leaky neurons retrained with 10 different
seeds . 91

B.13 Learning curves for the full-precision Encoded LIF-based RNN (En-
coded L-RNN) model with Synaptic neurons retrained with 10 dif-
ferent seeds . 92

B.14 Learning curves for the full-precision Multi-Encoded LIF-based RNN
(Multi-Encoded L-RNN) model with Leaky neurons retrained with
10 different seeds . 92

B.15 Learning curves for the full-precision Multi-Encoded LIF-based RNN
(Multi-Encoded L-RNN) model with Synaptic neurons retrained with
10 different seeds . 93

C.1 Confusion matrix for the full-precision Long Short-Term Memory
(LSTM) model. 95

C.2 Confusion matrix for the full-precision Legendre Memory Unit (LMU)
model. 96

C.3 Confusion matrix for the full-precision Recurrent Neural Network
(RNN) model. 96

C.4 Confusion matrix for the full-precision LIF-based LMU (L2MU) model
with Leaky neurons . 97

C.5 Confusion matrix for the full-precision LIF-based LMU (L2MU) model
with Synaptic neurons . 97

C.6 Confusion matrix for the full-precision Encoded LIF-based LMU
(Encoded L2MU) model with Leaky neurons 98

C.7 Confusion matrix for the full-precision Encoded LIF-based LMU
(Encoded L2MU) model with Synaptic neurons 98

C.8 Confusion matrix for the full-precision Multi-Encoded LIF-based
LMU (Multi-Encoded L2MU) model with Leaky neurons 99

C.9 Confusion matrix for the full-precision Multi-Encoded LIF-based
LMU (Multi-Encoded L2MU) model with Synaptic neurons 99

C.10 Confusion matrix for the full-precision LIF-based RNN (L-RNN)
model with Leaky neurons . 100

C.11 Confusion matrix for the full-precision LIF-based RNN (L-RNN)
model with Synaptic neurons . 100

C.12 Confusion matrix for the full-precision Encoded LIF-based RNN
(Encoded L-RNN) model with Leaky neurons 101

12

C.13 Confusion matrix for the full-precision Encoded LIF-based RNN
(Encoded L-RNN) model with Synaptic neurons 101

C.14 Confusion matrix for the full-precision Multi-Encoded LIF-based
RNN (Multi-Encoded L-RNN) model with Leaky neurons 102

C.15 Confusion matrix for the full-precision Multi-Encoded LIF-based
RNN (Multi-Encoded L-RNN) model with Synaptic neurons 102

13

List of Tables

2.1 Summary information of the WISDM dataset. 26
2.2 18 activities represented in the WISDM dataset 27

3.1 Dataset Sizes for Training, Validation, Testing, and Calibration . . 50

4.1 Baseline Recurrent Artificial Neural Networks Models 61
4.2 LMU Model Metrics . 62
4.3 L2MU (Leaky) Performance . 64
4.4 L2MU (Synaptic) Performance . 65
4.5 Encoded L2MU (Leaky) Performance 68
4.6 Encoded L2MU (Synaptic) Performance 70
4.7 Multi-Encoded L2MU (Leaky) Performance 72
4.8 Multi-Encoded L2MU (Synaptic) Performance 72
4.9 Results achieved deploying the L2MU on commercial edge devices

to solve the HAR task through encoding-free classification with two
different neuron models. 75

A.1 L-RNN (Leaky) Metrics . 80
A.2 L-RNN (Synaptic) Metrics . 80
A.3 Encoded L-RNN (Leaky) Metrics 81
A.4 Encoded L-RNN (Synaptic) Metrics 81
A.5 Multi-Encoded L-RNN (Leaky) Metrics 82
A.6 Multi-Encoded L-RNN (Synaptic) Metrics 82

D.1 Base Hyperparameters for all Architectures 103
D.2 Hyperparameters Output Layer (Leaky/Synaptic) 103
D.3 Hyperparameters Single Encoder Layer (Leaky/Synaptic) 104
D.4 Hyperparameters Stacked Encoder Layer (Leaky/Synaptic) 104
D.5 Hyperparameters for RNN Architecture 105
D.6 Hyperparameters for LSTM Architecture 105
D.7 Hyperparameters for LMU Architecture 105
D.8 Hyperparameters for L-RNN (Leaky/Synaptic) Architecture 105
D.9 Hyperparameters for L2MU (Leaky/Synaptic) Architecture 106

14

D.10 Hyperparameters value for LSTM 106
D.11 Hyperparameters value for LMU . 106
D.12 Hyperparameters value for RNN . 107
D.13 Hyperparameters for L2MU (Leaky) 107
D.14 Hyperparameters for L2MU (Synaptic) 107
D.15 Hyperparameters for Encoded L2MU (Leaky) 108
D.16 Hyperparameters for Encoded L2MU (Synaptic) 108
D.17 Hyperparameters for Multi-Encoded L2MU (Leaky) 109
D.18 Hyperparameters for Multi-Encoded L2MU (Synaptic) 109
D.19 Hyperparameters for L-RNN (Leaky) 110
D.20 Hyperparameters for L-RNN (Synaptic) 110
D.21 Hyperparameters for Encoded L-RNN (Leaky) 110
D.22 Hyperparameters for Encoded L-RNN (Synaptic) 110
D.23 Hyperparameters for Multi-Encoded L-RNN (Leaky) 111
D.24 Hyperparameters for Multi-Encode L-RNN (Synaptic) 111

15

List of Algorithms

1 Activation Sparsity . 35
2 Connection Sparsity . 36
3 High-Level Calculation of Synaptic Operations 37
4 ValidationDeltaStopping Callback 53

16

Chapter 1

Introduction

In recent years, there has been a significant paradigm shift in the deployment of
machine learning models from centralized cloud environments to more distributed
architectures that are located closer to sensors and edge devices.

This evolution facilitates real-time data processing, enabling faster response
times and improved decision-making across various applications, including health-
care, fitness, and environmental monitoring. However, running artificial neural
networks (ANNs) locally on devices introduces new challenges. The energy con-
sumption associated with executing these models locally can be substantial, as the
devices must manage not only the data acquisition but also the computational load
of the neural networks.

As the demand for intelligent edge computing grows, the energy constraints of
running complex models on mobile and wearable devices have become increasingly
apparent. Traditional ANN architectures, while effective, often require significant
computational resources and power, which can lead to battery drain and reduced
operational lifetime for mobile devices. This situation emphasizes the urgent need
for alternative computational paradigms that can balance performance with energy
efficiency.

To address this energy challenge, neuromorphic hardware has emerged as a
promising alternative. Neuromorphic systems leverage brain-inspired computing
architectures that emulate the way biological neurons operate. This paradigm al-
lows for the execution of models using significantly less energy than traditional
ANN frameworks, making them well-suited for low-power applications. Spiking
neural networks (SNNs), a subset of neuromorphic models, stand out due to their
ability to process information asynchronously and sparsely, mirroring the dynamics
of biological neural processing. While both ANNs and SNNs are designed for learn-
ing and recognizing patterns, the key difference lies in their information encoding:
ANNs typically use continuous signals, whereas SNNs rely on discrete spikes to
convey information.

Smart devices, wearable sensors, and edge computing can be conceptualized

17

Introduction

as a fire triangle for efficiently implementing miniaturized, intelligent body sensor
networks (BSNs) across diverse domains [1, 2, 3, 4, 5, 6]. This broad range of
potential applications is often encapsulated in the definition of human activity
recognition (HAR). HAR systems typically analyze data collected from wearable
devices equipped with inertial measurement units (IMUs)[7, 8]. They serve not only
as a practical framework for prototyping solutions but also as a means to explore the
effectiveness of algorithms designed for time-varying signals. A variety of machine
learning techniques, including deep learning models, are commonly employed to
enhance HAR accuracy[9, 10, 11, 12].

Moreover, spiking neural networks (SNNs)[13] can be considered as valuable al-
ternatives, offering a dual perspective. On one hand, they present a fresh approach
to traditional models by drawing inspiration from the neuromorphic paradigm
through biologically plausible neuron models. On the other hand, SNNs can be
deployed on specialized chips[14, 15, 16] designed for asynchronous and sparse com-
putations, providing advantages over conventional hardware. However, one major
challenge when interfacing SNNs with real-world data is the encoding step, which
converts continuous data into spike trains suitable for network input.

In this work, we focus on addressing the HAR task using a neuromorphic ap-
proach on commercial edge devices, without the need for encoding continuous data
from the Wireless Sensor Data Mining (WISDM) smartphone and smartwatch ac-
tivity and biometrics dataset [17, 18]. Our proposed L2MU is a fully spiking imple-
mentation of the Legendre memory unit (LMU), where each block consists of leaky
integrate-and-fire (LIF) neuron populations. This framework allows us to adopt the
neuromorphic approach directly on raw sensor data, demonstrating a viable path
for utilizing neuromorphic models on non-dedicated edge devices without prior data
encoding.

This is one of the first attempts to bridge the gap between the neuromorphic
paradigm, characterized by its discrete, sparse, and asynchronous properties, and
the analog world of digital edge devices designed for synchronous computation.
The independence from a spike-encoding step opens up possibilities for real-time
applications in the Internet of Things (IoT) domain, where quick decisions and
energy efficiency are paramount.

The implications of this work extend beyond the theoretical; they also address
practical challenges in deploying intelligent systems in real-world environments. By
reducing the need for complex preprocessing steps, we can streamline the integra-
tion of machine learning models into wearable devices, enhancing user experiences
and expanding the capabilities of these technologies.

18

Introduction

Figure 1.1: This illustration presents a comprehensive representation of spiking neu-
rons and artificial neurons, along with their networks and corresponding hardware.
On the top left is the spiking neuron model inspired by its biological structure,
and on the top right is an abstract representation of the artificial neuron. Spiking
Neural Networks on the middle left are shown as sparse configurations of neurons
communicating through discrete spikes, whereas Artificial Neural Networks on the
middle right, are dense, fully connected networks where neurons are continuously
interacting. On the bottom left, neuromorphic chips, such as TrueNorth, Loihi,
Tianjic, and Spek, constitute the design to emulate spiking neural networks in
hardware. The right side features the purpose for which chips are generally utilized
regarding artificial neural networks.

Innovations proposed by this work

• Direct Use of Raw Sensor Data: Developing a framework that operates
directly on continuous sensor data without requiring spike encoding, thereby
simplifying the data processing pipeline.

• Implementation of L2MU: Proposing a fully spiking implementation of the
Legendre memory unit (LMU) that leverages leaky integrate-and-fire (LIF)
neurons for enhanced temporal pattern recognition.

• Application to HAR: Demonstrating the feasibility of using neuromorphic
computing for human activity recognition in real-world scenarios, with an

19

Introduction

emphasis on real-time processing.

• Real-time IoT Applications: Exploring potential applications in real-time
Internet of Things (IoT) environments, facilitating rapid response to environ-
mental changes and user activities.

• Energy Efficiency Techniques: Investigating model compression methods,
such as pruning and quantization, to enhance energy efficiency across various
devices, making them more suitable for battery-operated systems.

• Scalability and Adaptability: Evaluating the scalability of the proposed
models across different platforms and contexts, ensuring adaptability to var-
ious applications beyond HAR.

• User-Centric Design: Focusing on user-centric applications, ensuring that
the developed solutions meet the practical needs of end-users, ultimately driv-
ing wider adoption of wearable technologies.

20

Chapter 2

Background

2.1 Spiking Neural Network
Spiking Neural Networks (SNNs), a biologically inspired computational paradigm,
fundamentally reimagines how we approach artificial intelligence. Unlike traditional
artificial neural networks, which are built on continuous-valued activations and
operate through parallel processing, SNNs are designed to closely mimic biological
neural networks’ temporal and spiking dynamics.

At the core of SNNs lies the concept of spiking behavior. In biological brains,
neurons communicate through discrete electrical impulses or "spikes". SNNs repli-
cate this process. Each neuron in an SNN emits spikes when its membrane potential
reaches a certain threshold, and these spikes carry information in the form of pre-
cisely timed events. This temporal coding is a fundamental departure from the
rate-based encoding used in traditional ANNs.

Another crucial characteristic of SNNs is their synaptic dynamics. SNN synapses
are typically modeled to capture the biological phenomena of synaptic efficacy
changes over time. One of the most significant factors influencing these changes
is spike-timing-dependent plasticity (STDP) [19], which strengthens or weakens
synapses based on the precise timing of pre-synaptic and post-synaptic spikes. This
process enables SNNs to learn and adapt to dynamic input patterns.

The applications of SNNs span across various domains, including but not limited
to pattern recognition, sensory processing, robotics, and neuromorphic hardware.
Their ability to process information in a time-sensitive and energy-efficient manner
has opened new horizons in creating intelligent systems that closely resemble the
capabilities of biological organisms.

2.1.1 Biologic Foundation of SNNs
The brain is an extraordinarily complex structure with roughly 100 billion neurons
[20]. It is structurally arranged by billions of interconnected synapses. Within this

21

Background

neural network, information is transferred through electrical impulses known as
spikes. The strength of the synaptic connection between a transmitting or presy-
naptic neuron and a receiving neuron determines the impact of a spike as it travels
between these neurons. Both the synaptic strengths and the patterns of connections
among neurons play a pivotal role in shaping the information-processing capabili-
ties of the nervous system. Researchers have been deeply motivated by the brain’s
remarkable capacity to tackle complex problems, driving them to explore its pro-
cessing functions and mechanisms of learning.

Artificial Neural Networks (ANNs) draw inspiration from the biological nervous
system and have found successful applications in a wide range of domains [21], [22],
[23]. However, they are considerably more abstract compared to their biological
counterparts [24], and they struggle to capture the intricate temporal dynamics
observed in biological neurons. As a response to this limitation, a new realm
of artificial neural networks has emerged, focusing on more biologically plausible
neuronal models, known as Spiking Neural Networks (SNNs).

SNNs are gaining prominence due to their exceptional ability to replicate the rich
and intricate dynamics exhibited by biological neurons. They stand out for their
capacity to represent and integrate diverse information dimensions, including time,
frequency, and phase. This feature positions SNNs as a promising paradigm in the
realm of computation, potentially enabling the modeling of complex information
processing in the brain [25], [26], [27], [28], [29], [30], [31].

One of the key advantages of SNNs is their ability to handle substantial vol-
umes of data, and they do so by employing trains of spikes to represent and carry
information [30]. Furthermore, SNNs offer a notable advantage in terms of en-
ergy efficiency, making them well-suited for implementation on low-power hardware
platforms. This multifaceted appeal of SNNs places them at the forefront of neural
network research and opens up exciting possibilities for addressing complex com-
putational challenges while staying aligned with the principles of biological neural
processing.

2.1.2 Spike Generation
Spike generation is a pivotal process in Spiking Neural Networks (SNNs), emulating
the behavior of biological neurons and forming the foundation of SNN computation.
In SNNs, information is encoded and transmitted through discrete electrical events
known as spikes or action potentials. Let’s get into the intricate process of spike
generation in SNNs:

1. Membrane Potential Dynamics: At the core of spike generation lies the
membrane potential of artificial neurons. This potential, akin to the electrical
charge across the cell membrane of biological neurons, plays a central role. It
constantly evolves in response to incoming signals and determines the neuron’s
excitability.

22

2.1 – Spiking Neural Network

2. Input Signals Integration: SNN neurons receive input signals from other
neurons or external sources, and these signals influence the membrane potential.
Excitatory signals depolarize the membrane potential, gradually bringing it closer
to the spike threshold. Inhibitory signals, conversely, hyperpolarize the membrane
potential, making it less likely for the neuron to spike.

3. Spike Threshold Crossing: Spike generation occurs when the membrane po-
tential crosses a predefined threshold. This event mimics the biological phenomenon
where the voltage difference across a neuron’s membrane reaches a critical level,
causing the neuron to “fire”.

4. Action Potential Initiation: When the membrane potential surpasses the
threshold, the neuron initiates an action potential. This is the moment when a
spike is “generated”. It is an all-or-nothing event; either the neuron spikes or it
does not. This binary nature of spiking is a distinctive feature of SNNs.

5. Spike Propagation: Once a spike is generated, it propagates down the neu-
ron’s axon and communicates with other neurons. In SNNs, this spike transmission
is typically achieved through synapses, which modulate the strength and timing of
spike delivery to target neurons.

6. Refractory Period: After generating a spike, the neuron enters a refractory
period, during which it is incapable of firing another spike. This refractory period
aligns with the biological neuron’s recovery phase and ensures that neurons do not
spike too rapidly.

2.1.3 Spikes Transmission

Spike transmission is a pivotal process in Spiking Neural Networks (SNNs) and is in-
strumental in understanding how information is communicated within the network.
In SNNs, neurons communicate through discrete electrical events called spikes or
action potentials, enabling the encoding and transmission of information. Here, we
highlight the intricacies of spike transmission within SNNs:

1. Synaptic Connections: Neurons in an SNN are interconnected through
synapses, forming a complex network. Each synapse links a presynaptic neuron
to a postsynaptic neuron, and it plays a crucial role in transmitting spikes.

2. Spike Generation: The process of spike transmission initiates with the gen-
eration of a spike in a presynaptic neuron. When the membrane potential of a
presynaptic neuron crosses a predefined threshold, it triggers the generation of a
spike.

3. Synaptic Weights: Each synapse has an associated synaptic weight, often
referred to as synaptic efficacy. This weight determines the strength of the connec-
tion between the presynaptic and postsynaptic neurons. It influences how much
the postsynaptic neuron responds to incoming spikes.

23

Background

2.1.4 Spikes Encoding

Spike encoding is a crucial concept in Spiking Neural Networks (SNNs), representing
how information from the external world or other neural networks is transformed
into the language of spikes. SNNs use spikes, or action potentials, as their funda-
mental unit of communication and computation. Here, we explore the process of
spike encoding in SNNs:

1. Signal Transformation: Spike encoding begins with the transformation of
external signals or data into spike trains. These signals can be in the form of
sensory data, real-world events, or the output of other neural networks.

2. Rate Encoding: One common method of spike encoding is rate encoding. In
this approach, the frequency or rate of spikes within a given time window represents
the strength or magnitude of the input signal. Higher rates of spikes indicate more
intense input, while lower rates represent weaker input [32].

3. Time-to-First-Spike Encoding: An alternative approach is time-to-first-spike
encoding. In this method, the timing of the first spike relative to the onset of the
stimulus carries the encoded information. Early spikes represent one aspect of the
input, while later spikes encode another aspect [32].

4. Temporal Encoding: Spike encoding in SNNs relies heavily on precise timing.
The exact timing of each spike carries information, and the relative timing of spikes
between neurons conveys relationships and patterns in the data [32].

2.1.5 Neuromorphic Hardware and SNNs

Neuromorphic hardware and Spiking Neural Networks (SNNs) share a close rela-
tionship, as neuromorphic hardware is designed to mimic the structure and function
of the human brain, and SNNs are a biologically inspired neural network model.

One of the primary motivations behind the development of neuromorphic hard-
ware is its potential for extreme energy efficiency, mimicking the brain’s energy-
efficient operation. SNNs naturally fit this paradigm because they use spikes, which
are events that consume very little energy compared to the continuous computa-
tions in traditional ANNs.

Neuromorphic hardware operates on an event-driven or spike-based paradigm,
closely mirroring the communication pattern of SNNs. Instead of continuously
processing data, these systems respond only when there is a significant change or
event, which is analogous to the sparse activation patterns in SNNs.

The human brain processes information in a massively parallel fashion. Neu-
romorphic hardware and SNNs both leverage this parallelism. In neuromorphic
hardware, specialized hardware components can process multiple spikes in paral-
lel, while SNNs inherently support parallelism as spike events can be processed
independently by neurons.

24

2.1 – Spiking Neural Network

Neuromorphic hardware is often used for real-time processing and control ap-
plications, much like the rapid event processing required by SNNs. SNNs can excel
in tasks that demand low-latency response and real-time adaptation, making them
a natural fit for neuromorphic hardware platforms.

Neuromorphic hardware platforms like IBM’s TrueNorth [33], SpiNNaker [34],
or Intel’s Loihi [35] are designed to support the execution of SNNs efficiently. This
allows researchers to leverage the advantages of SNNs while capitalizing on the
energy-efficient and parallel processing capabilities of neuromorphic hardware. In
summary, the synergy between neuromorphic hardware and Spiking Neural Net-
works is evident in their shared emphasis on biological plausibility, energy efficiency,
event-based processing, parallelism, and real-time adaptation. The combination of
neuromorphic hardware and SNNs holds promise for addressing a wide range of
applications, including sensory processing, robotics, and edge computing, where
energy-efficient, brain-inspired computation is of paramount importance. This in-
tersection represents a frontier in both artificial intelligence and computational
neuroscience, with the potential to unlock new possibilities in machine learning
and neuromorphic computing.

2.1.6 Neurons Dynamic as Synaptic Operations

During spike generation, the neuron modifies its behavior because of the incoming
spikes, updating its membrane potential. This concept of “neuron updating”is still
vague from what emerges from the literature. From a spiking point of view, the
cost associated with this operation could be considered negligible, because it is the
emission of spikes that has more weight. Still, from a hardware point of view, we
should consider the fact that updating the membrane potential requires setting a
variable in the CPU register. Hence, this consumes energy for the needed com-
putational resources. In this second case, the cost to generate a spike increases
more considering the allocation/setting of a variable into the hardware. As high-
lighted in [36] synaptic operations in neuromorphic hardware often overlook stateful
processes, such as memory access and updates.

Focusing on the hardware specifics of Loihi, we can see that one of the core archi-
tecture features called “dendrites”, is responsible for updating the state variables.
These variables include synaptic response current and the membrane potential, in-
tegral components of the neural computation process. This perspective raises the
question of considering the membrane update as part of the synaptic operation to
be considered to generate a spike.

25

Background

2.2 Human activity recognition
In recent years, the task of human activity recognition (HAR) using data collected
from sensors embedded in wearable smart devices has obtained significant attention.
The availability of diverse datasets in this domain continues to expand, followed
by a continuous stream of research publications exploring various deep-learning
methodologies.

HAR entails the classification of signals generated by human actions, and the
specific sensor or sensor network employed for data acquisition plays a pivotal
role in defining different categories of HAR tasks. Among these sensors, those
relying on Inertial Measurement Unit (IMU) data have gained prominence due to
the increasing adoption of wearable devices for non-invasive motion monitoring.

In this work, we have selected the WISDM dataset [17] among all the available
datasets [37, 38, 39] commonly used in the field of HAR studies. The WISDM
dataset comprises data collected from devices (sensor-equipped) worn by 51 sub-
jects, each instructed to perform 18 tasks lasting 3 minutes each. The data is
collected from both a smartwatch (LG G Watch) worn on the subjects’ dominant
hands and a smartphone (Samsung Galaxy S5 or Google Nexus 5) placed in their
pockets. The sensors capture accelerometer and gyroscope readings at a sampling
frequency of 20 Hz, resulting in data samples with 6 dimensions corresponding to
the readings along the three axes of the IMU sensors. A comprehensive summary
of the dataset is shown in table 2.1.

Table 2.1: Summary information of the WISDM dataset.

Number of subjects 51
Number of activities 18
Minutes collected per activity 3
Sensor polling rate 20Hz
Smartphone used Google Nexus 5/5x or Samsung Galaxy S5
Smartwatch used LG G Watch
Number raw measurements 15,630,426

The 18 activities shown in table 2.2 are classified into three main categories:

• Non-hand-oriented activities include walking, jogging, and standing.

• Hand-oriented activities related to general tasks, such as writing, typ-
ing, or brushing teeth.

• Hand-oriented activities tied to eating actions, like consuming pasta
or soup.

26

2.2 – Human activity recognition

Table 2.2: 18 activities represented in the WISDM dataset

ACTIVITY LABEL
Walking A
Jogging B
Stairs C
Sitting D
Standing E
Typing F
Brushing Teeth G
Eating Soup H
Eating Chips I
Eating Pasta J
Drinking from Cup K
Eating Sandwich L
Kicking (Soccer Ball) M
Playing Catch w/Tennis Ball O
Dribbling (Basketball) P
Writing Q
Clapping R
Folding Clothes S

Compared to its earlier version [40], the dataset in this release demonstrates a
more balanced distribution of samples across the 18 activities. Figure 2.1 illustrates
the distribution of samples across the classes. It appears that the accelerometer
data holds the majority of the discriminative information necessary to categorize
each sample. However, analysis of the distribution reveals significant overlap among
nearly all classes. This issue is even more pronounced in the data from the gyro-
scope.

27

Background

Figure 2.1: Distribution of signal values captured by both the accelerometer and
gyroscope sensors along their respective X, Y, and Z axes.

2.3 Network Architectures
The ideal architecture for understanding temporal dynamics in time series data
is a recurrent neural network-based architecture. These architectures serve as the
fundamental foundation for our investigation because of their capacity to store a
learned representation of previously learned knowledge and their capacity to analyze
any input sequences using the internal state.

2.3.1 RNN
Recurrent Neural Networks (RNNs) [41] are a class of neural networks designed
to handle sequential data. Unlike feed-forward neural networks, RNNs have the
unique capability of maintaining internal memory, which allows them to process
inputs both singly and sequentially. The network uses loops to accomplish this,
whereby a neuron’s output from one time step is stored and sent back into the same
neuron in later time steps. RNNs can display temporal dynamic behavior thanks to

28

2.3 – Network Architectures

this looping process, which makes them ideal for use in time series prediction and
classification, language modeling, and speech recognition, among other applications.

Figure 2.2: RNN Unit architecture.

Credits: https://d2l.ai/chapter_recurrent-neural-networks/rnn.html

2.3.2 LSTM

The development of Long Short-Term Memory networks (LSTMs) [42] was done in
response to the vanishing and exploding vanishing problem presented by the RNNs.
LSTM is a different type of RNN that can recognize long-term dependencies [43].

The main innovation in LSTMs is the cell state, which acts as a sort of conveyor
belt and passes horizontally through the top of the LSTM cell. By transporting
relevant information up and down the processing chain, it alleviates the vanishing
gradient problem that is frequently encountered in traditional RNNs.

The input gate, forget gate and output gate are the three sophisticated gates
that LSTMs use to accomplish this capability. By controlling the information flow
into and out of the cell state, these gates enable the network to efficiently store or
discard data for extended periods. The forget gate permits the cell to forget its
past memories, the output gate regulates how much of the value in the cell state
is utilized to calculate the output activation of the LSTM unit, and the input gate
controls how much of a new value flows into the cell state.

29

https://d2l.ai/chapter_recurrent-neural-networks/rnn.html

Background

Figure 2.3: LSTM Unit architecture.

Credits: https://d2l.ai/chapter_recurrent-modern/lstm.html

2.3.3 Legendre Memory Unit
Within the realm of recurrent neural networks (RNNs), the Legendre Memory Unit
(LMU)[44] emerges as an up-and-coming model, particularly for tasks involving
the classification of time-based signals. This potential has been discovered in a
recent study by Fra et al.[45], highlighting how the LMU distinguishes itself from
conventional RNNs characterized by a high number of parameters. The LMU
addresses this issue by reducing the number of required parameters, resulting in
expedited training and memory-efficient deployment.

The principal component of the LMU network is the memory cell that can
orthogonalize the continuous time history of the input u(t) over a moving window
of length θ. Over time, the memory cell assumes different behaviors reacting to the
input signal. Equation 2.1 represents the linear transfer function that describes the
behavior of the memory cell.

F (s) = e−θs (2.1)

This continuous-time behavior of the memory cell is approximated and imple-
mented thanks to d coupled ordinary differential equations (ODEs). Equation 2.2
describes how a system changes over time based on its current state and inputs.

θṁ(t) = Am(t) + Bu(t) (2.2)

where m(t) represents the state vector. The ideal state-space matrices A and
B are determined using the Padé approximants as derived through the expressions
provided in Equation 2.3 and 2.4.

30

https://d2l.ai/chapter_recurrent-modern/lstm.html

2.3 – Network Architectures

Figure 2.4: LMU Unit architecture.

Credits: [44]

B = [b]i ∈ Rd−1

bi = (2i + 1)(−1)i, i, j ∈ [0, d− 1]
(2.3)

A = [a]ij ∈ Rd×d

aij = (2i + 1)

⎧⎨⎩−1 i < j

(−1)i−j+1 i ≥ j

(2.4)

The essential characteristic of the LMU network is the exceptional decoding
performance of a signal with a temporal delay, denoted as u(t − θ

′), contained in
the sliding time window of duration θ. The input signal u(t) is projected into a
high-dimensional manner and orthogonalized using shifted Legendre polynomials
to accomplish the decoding operation. The mathematical expression for the i-th
shifted Legendre polynomial in this context is provided by Equation 2.5

Pi(x) = (−1)i
i∑︂

j=0

(︄
i

j

)︄(︄
i + j

j

)︄
(−x)i (2.5)

31

Background

and it is effectively employed to introduce a delay to the input signal, as de-
scribed by the Equation 2.6

u(t− θ
′) ≈

d−1∑︂
i=0

Pi

(︄
θ

′

θ

)︄
mi(t) (2.6)

where the highest order, denoted as d−1, within the series expansion is directly
correlated with the state vector’s dimension, denoted as m(t).

2.3.4 Focus on LMU
This work primarily focuses on the Legendre Memory Unit cell. This choice is
because LMU is based on the state-space model representation, a physical system
where inputs, outputs, and internal state variables, which evolve over time, are de-
scribed by differential equations. This approach aligns with the intention to explore
brain-inspired architectures in neuromorphic computing [46, 47]. In contrast, Re-
current Neural Networks (RNNs) and Long Short-Term Memory (LSTM) networks
are effective for handling temporal dependencies, but they often require a large
number of parameters and may struggle with issues like vanishing or exploding
gradients.

The general form of the continuous-time state-space model is given by the fol-
lowing equations [46]:

ẋ(t) = Ax(t) + Bu(t) (2.7)

y(t) = Cx(t) + Du(t) (2.8)

where:

• x(t) is the state vector representing the system’s internal memory at time t,

• u(t) is the input signal,

• y(t) is the output signal,

• A is the state matrix that governs the dynamics of the state x(t),

• B is the input matrix that describes how the input u(t) affects the state,

• C is the output matrix that maps the internal state to the output y(t),

• D is the feedforward matrix that describes the direct influence of the input
on the output.

32

2.4 – snnTorch

This state space model formulation, which is based on LMU, allows storage and
retrieval of temporal information capturing long-term dependencies using “mini-
mal” computation resources, making it suitable for neuromorphic-based architec-
ture.

This is crucial in applications like Human Activity Recognition (HAR), where
activities often consist of different durations and require continuous memory over
extended periods.

In summary, the LMU’s use of a state-space approach, where the system’s dy-
namics are represented through differential equations, provides a more computa-
tionally efficient model for capturing temporal dependencies, which is why we pri-
oritize it in this work [48].

2.4 snnTorch
snnTorch is an open-source Python library built upon the popular PyTorch frame-
work [49]. With snnTorch, it is possible to directly design an SNN, leveraging
PyTorch’s flexibility and efficiency for tensor computations and automatic differ-
entiation. The library provides a comprehensive set of tools, including various
spiking neuron models such as leaky integrate-and-fire (LIF) neurons and adaptive
threshold neurons. It empowers the ability to design and train SNN architectures,
simulate spiking dynamics, and explore spike-based coding and decoding schemes.
snnTorch further enhances the PyTorch ecosystem by allowing users to seamlessly
transition between conventional artificial neural networks and SNNs, enabling a
unified platform for research and experimentation in neural network models. A
range of spiking neuron types, provided by the library, are at the user’s disposal,
conveniently regarded as activation units within the PyTorch framework. This al-
lows each layer of spiking neurons to seamlessly interface with diverse components,
such as fully connected layers, convolutional layers, and residual connections, with-
out requiring specific adaptations.

For the L2MU, by working within the snnTorch framework, we selected two
versions:

Leaky

First-order LIF model. The input is considered to be a current injection and the
neuron’s membrane potential is modeled in time through an exponential decay.
Spike emission is regulated by Equation 2.9, where Ut denotes the membrane po-
tential in time. If such quantity overcomes the threshold potential Uthr, a spike is
emitted.

St =
{︄

1, if Ut > Uthr

0, otherwise
(2.9)

33

Background

The choice of reset mechanism, whether by subtracting a value from the mem-
brane potential or setting it to a baseline, further refines its behavior. The ac-
tivation of this mechanism occurs when St = 1, while it remains inactive when
St = 0.

In the first case (subtracting mechanism) Ut, whenever the neuron generates a
spike, the threshold value is subtracted from its membrane potential, as shown in
Equation 2.10.

Ut = βUt−1 + Iin,t − StUthr (2.10)

Otherwise (zero mechanism), Ut will be set to 0 whenever a spike is generated,
as shown in Equation 2.11

Ut = βUt−1 + Iin,t − St(βUt−1 + Iin,t) (2.11)

Synaptic

Second-order LIF model. In this model, the synaptic current experiences a sud-
den increase upon the arrival of a spike, leading to a corresponding jump in the
membrane potential. Both the synaptic current and the membrane potential sub-
sequently decay exponentially, with respective rates denoted as alpha and beta.
With this model, the temporal dynamics of the neuron’s membrane potential ac-
count for an additional term corresponding to a synaptic conductance. Similarly
to the membrane potential, such quantity decays in time with exponential behav-
ior. As for the Leaky model, the emission of spikes is governed by Equation 2.9,
in fact, they both have the same reset mechanism, with the substantial difference
that synaptic current, Isyn, and membrane potential Ut, are both decayed by two
different factors, α and β respectively.

The equations (2.12) and (2.13) show the behavior of the neuron in case the
threshold value is subtracted from its membrane potential.

Isyn,t = αIsyn,t−1 + Iin,t (2.12)

Ut = βUt−1 + Isyn,t − StUthr (2.13)

Equations (2.12) and (2.14) represent the scenario where the membrane poten-
tial is set to zero.

Ut = βUt−1 + Isyn,t − St(βUt−1 + Isyn,t) (2.14)

34

2.5 – NeuroBench

2.5 NeuroBench
NeuroBench is an open-source benchmark tool for neuromorphic computing al-
gorithms and systems [50]. It is composed of a system track for fully deployed
solutions and an algorithm track for evaluation that is independent of hardware.

The goal of the algorithm benchmark track is to assess algorithms independently
of systems, separating algorithm performance from particular implementation char-
acteristics.

2.5.1 Metrics
The algorithm track defines primary metrics that are independent of the type of
solution and are typically applicable to all kinds of solutions, including spiking and
artificial neural networks (ANNs and SNNs).

Activation Sparsity

The average sparsity of neuron activations throughout execution is defined as fol-
lows: 0 denotes no sparsity (i.e., all neurons are always activated), and 1 denotes
the scenario in which all neurons have zero output. This information is collected
for all timesteps of all examined samples. See Algorithm 1 for the implementation.

Algorithm 1 Activation Sparsity
Require: A neural network model, predictions, and dataset

1: function ActivationSparsity(model, preds, data)
2: Initialize total_spike_num← 0 and total_neuro_num← 0
3: for each hook in model.activation_hooks do
4: for each spikes in hook.activation_outputs do
5: spike_num← count of non-zero values in spikes
6: neuro_num← total number of values in spikes
7: total_spike_num← total_spike_num + spike_num
8: total_neuro_num← total_neuro_num + neuro_num
9: end for

10: end for
11: if total_neuro_num = 0 then
12: sparsity ← 0.0
13: else
14: sparsity ← total_neuro_num−total_spike_num

total_neuro_num

15: end if
16: return sparsity
17: end function

35

Background

Connection Sparsity

The connection sparsity for a certain model is calculated by dividing the total num-
ber of weights, accumulated over all layers, by the number of zero weights. One
represents complete sparsity (no connections), while zero denotes no sparsity (com-
pletely connected). This statistic takes into consideration sparse network designs
and intentional pruning. See Algorithm 2 for the implementation.

Algorithm 2 Connection Sparsity
Require: A neural network model

1: function GetNrZerosWeights(module)
2: Initialize count_zeros← 0 and count_weights← 0
3: children← list of module’s children
4: if children is empty then
5: if module is in supported layer types then
6: count_zeros← number of zeros in module.weight
7: count_weights← module.weight.numel()
8: else if module is a recurrent layer or cell then
9: Compute count_zeros and count_weights for recurrent parameters

10: end if
11: else
12: for each child in children do
13: child_zeros, child_weights← GetNrZerosWeights(child)
14: count_zeros← count_zeros + child_zeros
15: count_weights← count_weights + child_weights
16: end for
17: end if
18: return count_zeros, count_weights
19: end function
20:
21: layers← model’s layers
22: Initialize total_zeros← 0 and total_weights← 0
23: for each module in layers do
24: zeros, weights← GetNrZerosWeights(module)
25: total_zeros← total_zeros + zeros
26: total_weights← total_weights + weights
27: end for
28: sparsity ← total_zeros

total_weights

29: return round(sparsity, 3)

36

2.5 – NeuroBench

Synaptic Operations

Based on neuron activations and the corresponding fanout synapses, the average
number of synaptic operations per model execution is calculated. Dense represents
the number of operations required on hardware that does not support sparsity
and takes into consideration all zero and nonzero neuron activations as well as
synaptic connections. Eff_MACs and Eff_ACs reflect operation cost on sparsity-
aware hardware by counting only effective synaptic operations and ignoring zero
activations (e.g., created by the ReLU function in an ANN or no spike in an SNN).
Multiply-accumulates (MACs) are synaptic operations with non-binary activation,
whereas accumulates (ACs) are those with binary activation. See Algorithm 3 for
the implementation.

Algorithm 3 High-Level Calculation of Synaptic Operations
Require: A neural network model, predictions, and data
Ensure: Synaptic operations (MACs for ANNs, ACs for SNNs)

1: Initialize counters for MACs, ACs, total synaptic operations, and total samples
2: function ResetCounters
3: Reset MAC, AC, total synaptic operations, and total samples counters to

zero
4: end function
5: function CalculateSynapticOperations(model, preds, data)
6: for each connection hook in the model do
7: Extract input activations for the current layer
8: for each set of activations in the input do
9: Determine the type of operations (MAC or AC) for the layer

10: Accumulate the operation counts based on the layer type
11: end for
12: end for
13: Update the total number of samples processed
14: return ComputeAverageOperations
15: end function
16: function ComputeAverageOperations
17: if no samples processed then
18: return default operation counts (zeroes)
19: end if
20: Compute average MACs and ACs per sample
21: Compute total average synaptic operations per sample
22: return average MACs, ACs, and total synaptic operations
23: end function

37

Background

2.6 Edge Devices
Edge devices refer to the computational resources and sensors located at the periph-
ery of a network, close to where data is generated. Unlike traditional centralized
computing models, which rely on processing data in distant data centers (cloud
computing), edge computing decentralizes computation by bringing it closer to the
data source. This paradigm shift is driven by the need for low-latency processing,
improved bandwidth efficiency, enhanced data privacy, and the ability to operate
in real-time environments.

2.6.1 Edge Devices Characteristics
Edge devices exhibit several key characteristics that distinguish them from tradi-
tional computing systems:
Proximity to Data Sources: Edge devices are situated close to the data genera-
tion points, such as sensors, cameras, and user devices. This proximity reduces the
time required for data to travel to the processing unit, thereby minimizing latency.
Resource Constraints: Typically, edge devices have limited computational power,
memory, and storage compared to central servers. This necessitates efficient algo-
rithms and lightweight models to perform computations within these constraints.
Energy Efficiency: Many edge devices operate on battery power or have strict
energy consumption requirements. As a result, they prioritize energy-efficient op-
erations to extend battery life and reduce power usage.

2.6.2 Potential benefits of SNNs on Edge Devices

Energy Efficiency: SNNs’ event-driven nature aligns well with the power con-
straints of edge devices. Neuromorphic hardware, designed to implement SNNs,
can further enhance energy efficiency by emulating the brain’s low-power compu-
tations. However, the actual energy savings can depend on the specific SNN model
and the hardware used.
Low Latency: Processing data locally on edge devices using SNNs reduces the
need for data transmission to centralized servers, decreasing latency and enabling
real-time applications. The complexity of the SNN models should also be taken
into account because it could introduce additional processing delays, especially on
less powerful edge devices.
Adaptability: SNNs can adapt to varying computational loads and data spar-
sity, making them scalable for different edge applications. Their ability to handle
dynamic and temporal data is particularly beneficial for environments where real-
time decision-making is essential. However, this adaptability could be reached by

38

2.7 – Model compression

increasing the design and the implementation complexity, and the advantage may
vary depending on the computational resources on the edge devices.

2.7 Model compression
Model compression is a technique in the field of deep learning, which aims to re-
duce the size of models to optimize both latency and memory footprint, keeping
the model performance reasonably comparable to the uncompressed model. This
optimization is essential for deploying deep learning models on devices with lim-
ited resources, such as mobile phones and embedded systems, and for enhancing
performance in terms of speed and efficiency.

Two main techniques in model compression are pruning and quantization, which,
when applied effectively, can significantly reduce the computational resources re-
quired without substantially compromising the model’s accuracy.

2.7.1 Pruning

Figure 2.5: Effect of pruning techniques on the synapse weights of the original
model.

Pruning is a process that simplifies neural network models by eliminating un-
necessary weights, biases, or parameters, leading to a more compact and efficient
model. The underlying idea is to identify and remove parts of the model that
contribute minimally to its output, by creating a sparse version of the original

39

Background

model. This sparsity is achieved by setting the synaptic weights to zero, effectively
eliminating their contribution to the model’s information flow.

Pruning can be categorized into two main types: structured and unstructured
pruning, each with its own methodology and implications for model performance
and storage.

Structured

Structured pruning involves the systematic removal of entire channels or layers from
the neural network. This approach reduces the model’s complexity by decreasing
the dimensionality of the synaptic weight matrices, which, in turn, reduces the
model’s memory footprint and improves its latency. In structured pruning, the
focus is on identifying and eliminating less significant channels or layers based on
certain criteria, such as their impact on the output or their weight magnitudes.

Figure 2.6: The image illustrates a structured pruned neural network. In struc-
tured pruning, entire neurons and their associated connections are removed, rather
than just setting individual weights to zero. This is indicated by the shadowed
connections and neurons in the image. The red circles symbolize active neurons,
while the absence of shadowed circles and lines where neurons and connections have
been removed illustrates the network after pruning. The solid blue lines represent
the remaining active connections.

40

2.7 – Model compression

Unstructured

Unstructured pruning, on the other hand, targets individual weights within the
neural network, setting them to zero to create a sparse matrix. Unlike structured
pruning, unstructured pruning maintains the original dimensions of the weight
matrices, which means that the computational speedup might not be as significant
unless specialized hardware or software that can efficiently handle sparse matrices
is used.

The advantage of unstructured pruning is its fine-grained approach, which can
maintain higher model accuracy by allowing for an increased number of minor
changes to the network topology. However, the irregularity of the sparsity patterns
can make it difficult to maximize the computational gain, especially on hardware
designed for dense matrix operations.

Figure 2.7: The image illustrates a pruned neural network graph where the dashed
lines represent connections that have been pruned. Pruning in this context means
that the weights associated with these connections have been set to zero in the
weight matrix, effectively eliminating their influence on the network’s computations.
The solid lines are likely to represent the active connections with non-zero weights.
This graphical representation emphasizes the distinction between active and pruned
connections within a neural network’s architecture after pruning has occurred.

41

Background

2.7.2 Quantization
Quantization is a crucial technique in the field of model compression for deep learn-
ing. It involves reducing the number of bits used to represent the weights and ac-
tivations of a neural network. By converting these values from high-precision (e.g.,
32-bit floating-point) to lower precision (e.g., 8-bit integer), quantization aims to
significantly decrease the memory footprint and computational requirements of the
model. This is particularly beneficial for deploying neural networks on resource-
constrained devices such as mobile phones, embedded systems, and edge devices.

Quantization in Spiking Neural Networks

When applying quantization in Spiking Neural Networks, not only the precision of
the weights can be reduced, but it is also possible to quantize the internal state
of the neurons, such as the membrane potential. This also leads to a reduction in
terms of memory footprint, while maintaining the event-driven nature of the SNN.
Quantization of SNNS is also necessary when models are deployed on neuromorphic
chips. This hardware typically operates with lower precision, making quantization
an essential step.

42

Chapter 3

Materials and methods

Figure 3.1: This diagram illustrates the real-time human activity tracking pro-
cess of a smartwatch. Utilizing onboard gyroscope and accelerometer sensors, the
smartwatch collects data over 2 seconds, equivalent to 40 samples. These data are
then transmitted to an artificial neural network. The neural network processes the
sensor data and classifies the wearer’s activity such as clapping, dribbling, playing
catch, brushing teeth, writing, typing, or folding clothes.

Building a neuromorphic model means taking inspiration from discrete and
sparse computation. Nonetheless, just as the human brain must account for real-
world signals, which can be considered continuous unless we enter the quantum
realm, so has every SNN to interface with traditional sensors. In this section, we
describe how we implemented our L2MU and the architecture depicted in Figure 2.4
to work with raw non-spiking signals and how we employed it to solve the HAR
task on commercial edge devices.

43

Materials and methods

3.1 Encoding module
The signal encoding module is a crucial component within the spiking neural net-
work architecture. Its function is to transform the raw sensor data from the ac-
celerometer and gyroscope into spike-based signals, suitable to be processed by
neuromorphic architectures, avoiding the necessity for traditional spike-encoding
techniques such as latency coding or rate coding.

3.1.1 Single Encoder
The single encoder design incorporates channel-specific neurons. The rationale be-
hind these channel neurons stands in the fact that each axis of input (accelerometer
and gyroscope X, Y, and Z) holds information that is distinctive and essential for
the accurate interpretation of motion and orientation. Also, each axis input has a
different dynamic behavior that could cause the increase/decrease of the firing rate
of some neurons to a point where they fire too much because the signal exceeds the
threshold many times, or do not fire at all because the signal never overcomes the
threshold.

Incorporating these channel-specific neurons, the network can independently
analyze the unique characteristics of each axis and enhance the sensitivity of the
network by fine-tuning the neuron’s parameters such that they adapt to the signal
dynamic.

Implementation

In the proposed single encoder shown in Figure 3.2, channel-specific neurons are
aligned with corresponding specific axes from the accelerometer and gyroscope.
This group of neurons receives raw time-series data in the form of synaptic current.

During this phase, the channel-specific neurons act as the first layer of process-
ing. Their spiking responses to input current are carefully calibrated to ensure
that the dynamic of the input current that depends on the raw sensory signals is
preserved.

3.1.2 Stacked Encoder
The stacked encoder consists of a multi-layer structure that transforms six-axis
input data from both the accelerometer and gyroscope into a series of spikes. The
idea behind this encoder is based on the previously described Single Encoder but
with an extension of its functionality. Specifically, the latter tries to compress and
summarize the spike signals generated by the Channel-Specific Neurons, such that
before reaching the spike-based recurrent unit, the signal is consistent.

44

3.1 – Encoding module

Figure 3.2: Illustration of a spiking single layer encoding module consisting of
channel-specific neurons. On the left, the “6-axis input” represents raw time-series
data from the accelerometer and gyroscope sensors. In the middle, “channel-specific
neurons” are shown receiving synaptic currents corresponding to each sensory axis.
On the right, the processed signals converge in a spike-based recurrent unit.

Implementation

The stacked encoder architecture is structured following this hierarchy:
Channel-Specific Neurons: At the first level, separate groups of neurons

are dedicated to each of the three axes (X, Y, Z) for both the accelerometer and
gyroscope. This layer is exactly like the one described before.

Fusion Neurons: The second layer involves fusion neurons that synthesize
the information from the channel-specific neurons. This layer allows for inter-
channel relationships and patterns to emerge. These fusion neurons facilitate the
combination of data from all expanded six axes.

Harmonization Neurons: After fusion, the harmonization neurons serve to
fine-tune the combined spike output, ensuring that the signal maintains coherence
and minimizing any discrepancies that may arise from the fusion process. This
harmonization is vital for maintaining the temporal dynamics of the input data.

45

Materials and methods

Figure 3.3: Illustration of a spiking multi-layer encoding module consisting of
channel-specific neurons, fusion, and harmonization neurons. On the left, the same
structure of the single encoder is used, the “6-axis input” connected to the “channel-
specific neurons”. These neurons communicate with the “fusion neurons” which
compress the information received by the previous neuron layer. Finally, the “har-
monization neurons”, receiving the spike signal from the previous layer, fine-tune
the signal trying to minimize any discrepancies raised by the previous layers. At
this point, this layer emits spike trains which converge to a spike-based recurrent
unit.

3.2 LIF-based LMU (L2MU)

The L2MU design draws its foundation from the original implementation, yet a note-
worthy distinction exists. In this adaptation, every constituent element inherent
to the original LMU, comprising the memory, hidden layer, and its internal encod-
ing module, has transformed, thereby assuming the form of neuron populations.
In this process, all the equations governing the interactions among the different
components of the LMU have been adapted to manage the synaptic currents that
establish connections between the individual neurons. This comprehensive recon-
figuration empowers the entire framework to proficiently manage spiking signals,
fundamentally aligning it with the domain of spiking neural networks. In Figure 2.4,
the resulting architecture is depicted. The conversion of the primary components
of the LMU is accomplished through two alternatives relying on the two neuron
models Leaky and Synaptic. Importantly, these neuron types are not integrated;
rather, separate networks are established for each type. It’s worth noting that the

46

3.2 – LIF-based LMU (L2MU)

Figure 3.4: Illustration of the L2MU where each component is represented with a
population of neurons. The input, denoted as xt,spk, feeds into the model at time
step t, which influences the u and h population neurons. The recurrent information
flow between the m population, as well as the h population. The output neurons,
gather information from the hidden neuron population to generate the final output.

conversion of each block forming the LMU does not merely involve the transfor-
mation into a single neuron. Instead, each block is represented as a population
of neurons. Directing our attention to the interconnection of these components,
which have been translated into neuron populations in our scenario, a key distinc-
tion arises from the notion that each connection is conceptualized as a synapse
linking neurons. Consequently, every component communicates with others under
the synaptic current. This mechanism facilitates the emission of spikes by neurons,
effectively facilitating the flow of information among the components.
Distinguishing inherent neuromorphic feature of the L2MU, compared to the LMU,

47

Materials and methods

is that, by definition, the connection of the different building blocks implies neu-
ral communication through spikes as a response to changes in current and voltage
values.

As explained in the original paper [44], the LMU takes an input signal xt and
produces a hidden state ht, which is subsequently fed to the memory state mt.
This progression is mediated by ut, which operates the transformation onto the
Legendre polynomial basis. The mathematical formulation of this process is recalled
by Equation 3.1:

ut = eT
x xt + eT

y ht−1 + eT
mmt−1 (3.1)

where ex, ey and em are encoding vectors [44]. In the L2MU, these steps are
formulated with Equation 3.2 by modeling the synaptic current across the different
populations of neurons:

ut,curr = eT
x xt,spk + eT

y ht−1,spk + eT
mmt−1,spk (3.2)

where the spike emission is ruled by Equation 3.3 as

ut,spk =
{︄

1, if ut,mem > uthr

0, otherwise
(3.3)

being uthr the threshold voltage to be overcome by the membrane potential ut,mem

for spike emission.
The encoded information is then written into the memory state, which can be

thought of as a reservoir that maintains a history of the input. The evolution in time
of the memory state, originally described through the definitions of Equation 2.2,
2.3, 2.4, and 2.6, is translated into Equation 3.4

mt = Amt−1 + But (3.4)

where (A, B) represent discretized matrices defined as in Equation 3.5

A = (∆t/θ)A + I , B = (∆t/θ)B (3.5)

with ∆t representing a time step within a window of length θ.
With similar arguments as for Equation 3.2 and 3.3, the fully spiking counterpart

of Equation 3.4 can be defined as

mt,curr = Amt−1,spk + But,spk (3.6)

with

mt,spk =
{︄

1, if mt,mem > mthr

0, otherwise
(3.7)

48

3.3 – Activities selection and segmentation

where mt,mem denotes the membrane potential and mthr is the threshold potential.
Adopting the same approach, the hidden state defined by Equation 3.8 as

ht = tanh(Wxxt + Whht−1 + Wmmt) (3.8)

is translated into a neuron population described by Equation 3.9

ht,curr = Wxxt,spk + Whht−1,spk + Wmmt,spk (3.9)

with

ht,spk =
{︄

1, if ht,mem > hthr

0, otherwise
(3.10)

where, coherently with the previous cases, ht,mem and hthr represent the population-
specific membrane voltage and threshold potential respectively.

In contrast to the original paper, wherein an activation function is applied in
Equation 3.8, our version omits this step. The rationale behind this omission comes
from the discrete nature of the signals emitted by neurons. As such, there is no
requirement for an additional activation function, since the neuron itself can be
perceived as an inherent activation function.

3.3 Activities selection and segmentation
Aligned with our goal, the dataset employed remains consistent with the version
featured in the referenced paper [45]. In this version, the signals have been ad-
ditionally partitioned into non-overlapping temporal windows, each consisting of
a duration of 2 seconds (40 sample signals in total). Figure 3.5 shows a random
sample from the selected dataset recorded for 2 seconds with the smartwatch. This
selection is primarily motivated by the aim to create a system that operates ef-
fectively in real-world scenarios, where achieving low response latency is a must
for delivering a consistent user experience. This dataset version constitutes a sub-
set derived from the whole WISDM dataset, concentrating solely on hand-oriented
activities captured by smartwatch devices. This specific focus aligns with the em-
phasis on wearable devices, which boast the potential for individualized application
across an array of domains and have witnessed a notable increase in adoption. The
subset consists of 36,201 samples, including raw signals without any prior feature
extraction. These samples have been partitioned into training, validation, and test
sets, maintaining a distribution of 60%, 20%, and 20% respectively as previously
done in [45]. An analysis of their probability density, based on kernel density esti-
mation, is shown in Figure 2.1. A 60:20:20 partition was then performed to define
training, validation, and test set respectively.

49

Materials and methods

Table 3.1, presents the sizes of training, validation, testing, and calibration
datasets used in this work. The calibration dataset is a small subset of the train-
ing dataset used specifically for post-training quantization, to adjust the model’s
weights and activation to lower precision.

Table 3.1: Dataset Sizes for Training, Validation, Testing, and Calibration

Dataset Samples Time Steps Features

Training 21,720 40 6
Validation 7,240 40 6
Testing 7,241 40 6
Calibration 100 40 6

Figure 3.5: Random sample of 2 seconds recorded by the smartwatch on the 6 IMU
sensors for the 7 classes in the “hand-oriented activities related to general tasks”
subset of the WISDM dataset.

50

3.4 – Hyperparameter optimization

3.4 Hyperparameter optimization
Artificial Neural Networks (ANNs) are characterized by their network structure,
composed of different layers and their interconnections, as well as hyperparameters
controlling the network’s behavior. To avoid unnecessary complexity and find the
best configuration of the network, hyperparameter optimization (HPO) has been
employed. Our HPO was conducted using the Neural Network Intelligence (NNI)
toolkit, employing the Anneal algorithm. These optimization experiments consisted
of multiple trials, each involving four evenly spaced random re-initializations of the
tuner. This strategy aimed to mitigate the impact of local minima, which can af-
fect annealing algorithms. Each trial consists of 300 epochs. The Adam optimizer
was employed, utilizing a constant learning rate that was optimized through exper-
iment trials. To enhance computational efficiency, we incorporated early stopping
mechanisms. An “assessor” within NNI monitored intermediate results of each trial
and halted computations if sub-optimal outcomes were predicted, thereby saving
computational resources.

Figure 3.6: This image represents a machine learning workflow using the Lightning
AI framework and Neural Network Intelligence (NNI) for hyperparameter opti-
mization in human activity recognition tasks. The left side shows a neural network
model, which is fed time-series data from a human activity dataset. In the center,
the “Trainer” configuration includes checkpoints, callbacks, and logging mecha-
nisms for model training. The “Neural Network Intelligence” block indicates the
use of NNI to automate the search for optimal hyperparameters, configured by a
“Search Space” and an “Experiment Config” that specifies the tuner, assessor, etc...
The result of this process is a comprehensive database containing trial results, a
checkpoint of the most effective model, the finest-tuned parameters, and detailed
logs.

Another early stopping mechanism was implemented. This stopper, called “Val-
idationDeltaStopping”, leverages a custom callback mechanism to dynamically halt
training based on fine-grained changes in validation loss and accuracy metrics. By

51

Materials and methods

monitoring the percentage variations in these metrics across consecutive epochs,
our method offers a robust and adaptable stopping criterion. The callback incor-
porates multiple conditions, including constraints on small and significant changes
in validation loss, as well as shifts in validation accuracy. These conditions are de-
signed to capture intricate fluctuations in model performance, enabling the detec-
tion of subtle changes and avoiding prolonged training without meaningful progress.
Our “ValidationDeltaStopping” callback seamlessly integrates into existing training
frameworks and has demonstrated its effectiveness in various experimental settings,
showcasing its potential to contribute to more efficient and effective neural network
training practices.

52

3.4 – Hyperparameter optimization

Algorithm 4 ValidationDeltaStopping Callback
1: Initialize thresholds for validation loss decrease, loss increase, accuracy de-

crease, and accuracy increase.
2: On validation epoch end, update the current validation loss and accuracy.
3: if Current epoch ≥ 2 then
4: Calculate the percentage change in validation loss and accuracy from the

previous epoch.
5: Check if the change in validation loss is less than the threshold for decrease.
6: if Change in validation loss is small for a specified number of epochs then
7: Prepare to trigger early stopping due to minor loss improvement.
8: end if
9: Check if the increase in validation loss exceeds the threshold for increase.

10: if Validation loss increases significantly for a specified number of epochs
then

11: Prepare to trigger early stopping due to loss worsening.
12: end if
13: Check if the change in validation accuracy is less than the threshold for

increase.
14: if Change in validation accuracy is small for a specified number of epochs

then
15: Prepare to trigger early stopping due to minor accuracy improvement.
16: end if
17: Check if the decrease in validation accuracy exceeds the threshold for de-

crease.
18: if Validation accuracy decreases significantly for a specified number of

epochs then
19: Prepare to trigger early stopping due to accuracy decline.
20: end if
21: if Any early stopping condition is met then
22: Trigger early stopping and record the epoch number.
23: Log the reason for stopping if in verbose mode.
24: end if
25: end if

53

Materials and methods

3.5 Selection of specific hyperparameters
In line with our network implementation, an input encoding module is integrated.
In this context, the initial layer of this module is designed to transform the six
raw input signals into spikes. These signals have varying dynamics. For instance,
the gyroscope’s x-axis and accelerometer’s x-axis and y-axis have a range of about
±20, while the other axes are within ±2. These differences are important for setting
hyperparameters, especially the neuron threshold, for each input channel. Notably,
each of these signals has distinct dynamics. Referring to Figure 2.1, it is evident
that the gyroscope’s x-axis values and the accelerometer’s x-axis and y-axis values
have a distribution spanning approximately ±20, while the other axes from both the
gyroscope and accelerometer exhibit a distribution within ≈ ±2. These differences
are crucial in determining hyperparameters’ search space related to the threshold
of neuron populations for each input channel.

Specifically, we adjusted the search space threshold intervals based on signal
characteristics: wider intervals for broader signal distributions, and narrower for
others. This prevents excessive spikes from low thresholds and avoids no-spiking
with high thresholds. for signals characterized by a broader distribution, we es-
tablish a wider interval in the search space of the neuron’s threshold. Conversely,
for other signals, the interval is more constrained. This approach is based on the
rationale that an excessively low threshold could generate an excessive number of
spikes that fail to accurately encode the signal. Moreover, we limit the search space,
as having a threshold close to the distribution’s maximum might result in neurons
failing to spike altogether.

3.6 Model Statistics
Following the optimization of hyperparameters, the best model obtained was re-
trained with various seeds to extract insights into its training behavior. This phase
was crucial not only for understanding the training dynamics but also for confirm-
ing the model’s robustness. By introducing different seeds, we altered the initial
configuration of the synaptic weights, offering a unique viewpoint on how these
initial conditions impact the model’s stability and performance.

This retraining with varied seeds is imperative in the machine learning field
as it tests the model’s sensitivity to the initial starting points, ensuring that the
hyperparameter tuning has not led to a model that is overly dependent on a specific
set of initial weights. Such an investigation is fundamental for affirming that the
model’s performance is consistent across different initializations, thus reinforcing
the validity of the hyperparameter optimization results.

Ultimately, this rigorous approach to retraining serves as a stress test for the
model, ensuring that it is not only optimized for performance but also exhibits

54

3.7 – Model Compression

stability and reliability across a range of initial conditions, consequently enhancing
its applicability and reliability in real-world scenarios.

3.7 Model Compression
In this section, we describe the process of model compression applied to the pre-
trained model, utilizing two techniques described before, pruning and quantization.

3.7.1 Granular magnitude pruning
Granular Magnitude Pruning is a model compression technique that focuses on
reducing the number of parameters in a neural network by systematically pruning
less significant weights. This method leverages the observation that many weights
in a trained neural network are close to zero and have minimal impact on the overall
network performance. By removing these negligible weights, the model can achieve
a significant reduction in size and computational complexity.

Steps of Granular Magnitude Pruning (GMP)

The GMP process involves systematically pruning weights from the model based
on their magnitude. Below are the key mathematical steps corresponding to the
implementation.

1. Sensitivity Scan
The sensitivity scan measures how sensitive each layer in the model is to
pruning by gradually increasing the sparsity of its weights. Let Wl denote
the set of weights in layer l and Sl the corresponding sparsity level.

• Define a range of sparsity levels:

S = {s1, s2, . . . , sn}, s1 = 0.1, sn = 1.0, ∆s = 0.05

where si represents the sparsity level (fraction of weights to prune) for
layer l.

• For each layer l, scan through the sparsity values si and evaluate the val-
idation accuracy Al(si) after pruning to si sparsity. Choose the sparsity
level s∗

l that results in minimal accuracy degradation:

s∗
l = arg max

si
(Al(si)) such that |Al(si)−Adense| ≤ δ

where Adense is the accuracy of the unpruned model and δ is the allowed
accuracy degradation.

55

Materials and methods

2. Fine-Grained Pruning for Each Layer
For each layer, l, given the chosen sparsity level s∗

l , performs magnitude-based
pruning.

• Let Wl = {w1, w2, . . . , wm} represent the weights in layer l.
• The sparsity s∗

l indicates the fraction of weights to be set to zero. Com-
pute the number of weights to prune:

nzeros = ⌊s∗
l ·m⌋

where m = |Wl| is the total number of weights in layer l.
• Define the importance of each weight as its absolute value:

importance(wi) = |wi| ∀wi ∈Wl

• Determine the pruning threshold τl by selecting the nzeros-th smallest
weight in Wl:

τl = k-thvalue(Wl, nzeros)
• Create a binary mask Ml where weights below the threshold are pruned

(set to zero):
Ml = {mi = 1 if |wi| > τl, 0 otherwise }

• Apply the mask to the weights:
W′

l = Wl ⊙Ml

where ⊙ denotes element-wise multiplication.

3. Group-wise Pruning Across Layers
Perform this pruning operation for each layer in the model. The sparsity level
for each layer is determined from the sensitivity scan, and the pruning process
is applied independently to each layer’s weight tensor.

W′
l = Prune(Wl, s∗

l) ∀l
where Prune is the fine-grained pruning function defined above.

4. Fine-Tuning the Pruned Model
After pruning, retrain (fine-tune) the model with the pruned weights W′

l to
regain any potential accuracy loss.
The fine-tuning step minimizes the loss function L over the remaining weights
in the pruned model:

min
W′
L(W′,D) = 1

N

N∑︂
i=1

ℓ(f(xi, W′), yi)

where D = {(xi, yi)} is the dataset, f(xi, W′) is the model’s prediction with
the pruned weights, and ℓ is the loss function.

56

3.7 – Model Compression

Fine-tuning Strategy

• Learning Rate: The learning rate was set to 10% of the original learning
rate. This adjustment allowed for more sensitive weight updates during the
fine-tuning process post-pruning, facilitating a more effective adaptation of
the model’s parameters.

• Number of Epochs: The number of training epochs was reduced to 10% of
the original epochs. This reduction aimed to expedite the retraining process
while still allowing the model to adjust its weights adequately after pruning.
The shorter training duration was deemed sufficient to regain any potential
accuracy losses incurred during pruning.

This GMP strategy not only aids in achieving a more compact model but also
enhances the overall efficiency of the pruning process, making it suitable for de-
ployment in resource-constrained environments.

3.7.2 Quantization
As previously highlighted in Section 2.7.2, quantization can be applied to different
components of a spiking neural network model. Specifically, Dynamic Quantization
(DQ) usually quantizes only the synaptic weights leaving the neurons’ state unaf-
fected. In contrast, Post-training Quantization (PTQ) and Quantization-Aware
Training (QAT) target both the synaptic weights and the neuron states, offering
a more comprehensive approach in terms of reducing the precision of the entire
network model.

Dynamic Quantization

Dynamic quantization converts model weights from floating-point to integer during
inference. This technique applies quantization dynamically, meaning the conversion
happens on the fly as the model runs. It is straightforward to implement since it
does not require changes to the training pipeline. Dynamic quantization provides
a significant boost in inference speed with minimal impact on accuracy, making it
suitable for deployment on CPUs where computational resources are limited.

PTQ

Post-Training Quantization (PTQ) involves quantizing a model’s weights and acti-
vations from floating-point to a lower precision, such as int8, after the model has
been trained. This method does not require access to the original training data
and can be applied to a wide range of pre-trained models. While PTQ is easier to
implement and offers reductions in model size and latency, it may result in some
accuracy loss, particularly for models that are sensitive to quantization.

57

Materials and methods

QAT

Quantization-Aware Training (QAT) integrates quantization into the training pro-
cess by simulating the effects of quantization during forward and backward passes.
This approach allows the model to adapt to quantization and learn to mitigate its
adverse effects, resulting in higher accuracy compared to PTQ. QAT requires mod-
ifying the training pipeline and typically demands more computational resources.
It is particularly beneficial for models where precision is critical and quantization-
induced accuracy loss must be minimized.

QAT Strategy

• Learning Rate: The learning rate was set to 1% of the original value. This
adjustment aimed to allow more gradual and precise updates to the model’s
weights during the quantization-aware training process, ensuring the model
adapts well to the quantization effects.

• Number of Epochs: The number of training epochs was reduced to 10% of
the original epochs such as the fine-tuning strategy after pruning.

3.8 Deployment on hardware
Given the poor availability of neuromorphic boards to use with event-based sensors
or to interface with other traditional hardware, and taking into account on the
other hand the enormous interest for applications of on-edge models to work with
data easily collected through a variety of sensors, we focused on the deployment
of our encoding-free neuromorphic model on conventional edge devices. Specifi-
cally, we identified three different hardware boards on which to deploy our trained
model. These boards are commercially available and embed different ARM-based
microprocessor units (MPU) oriented to edge applications.

The first is the ST Microelectronics STM32MP157F-DK2 board shown in Figure
3.7, based on the ST STM32MP157F MPU, which is composed of two ARM-A7
cores running at 800 MHz and featuring a 32-bit architecture, and accompanied by
500 MB of DDR3 RAM.

The second is a Raspberry Pi 3B+, shown in Figure 3.8, with a Broadcom
BCM2837B0 MPU (four ARM-A53 cores, 1.4 GHz, 64-bit) and 1 GB of DDR2
RAM.

The last one is a Raspberry Pi 4B, shown in Figure 3.9, embedding a Broadcom
BCM2711 (four ARM-A72 cores, 1.8 GHz, 64-bit) and 4 GB of DDR4 RAM.

From the software standpoint, all the boards can count on a full Linux distribu-
tion: OpenSTLinux for the ST Microelectronics one, based on the OpenEmbedded
project, and Raspbian for the Raspberry Pi ones, based on Debian. This ensures

58

3.8 – Deployment on hardware

Figure 3.7: STM32MP157F-DK2 board.

Figure 3.8: Raspberry Pi 3B+ board.

great flexibility, as Python and different AI engines are available and easy to install
on them.

The first step needed to implement our model on these boards is the conversion
of the models built in snnTorch into an ONNX model. This is necessary because the
employed framework, based on PyTorch, is not available for 32-bit ARM processors,

59

Materials and methods

Figure 3.9: Raspberry Pi 4B board.

while the ONNX interpreter is. In addition, the ONNX engine is proven to perform
better for CPU-based inferences [51]. Once the trained model is exported, inference
can be performed on the target hardware using Python and the ONNX Runtime
library.

60

Chapter 4

Results and discussion

We defined two different neuron-based models, one made by leaky neurons and the
other by synaptic neurons, to classify the 7 classes of the selected dataset. For each
model, we conducted many experiments and consistently obtained high levels of
accuracy during the training, validation, and test phases.

4.1 Baseline

To evaluate the performance of spiking neural networks (SNNs), we first estab-
lished a baseline using traditional artificial neural networks (ANNs). We adopted
recurrent neural networks such as LSTM, LMU, and RNN due to their excellence in
solving time-series-related tasks. As outlined in Section 2.3.4, the focus is primarily
on the LMU, due to its foundation in state-space modeling, which offers an efficient
method for capturing temporal dynamics.

Table 4.1: Baseline Recurrent Artificial Neural Networks Models

Model
Accuracy (%)

Median Std. Dev. Max.
LSTM 95.98 0.622 96.20
LMU 94.77 1.018 95.65
RNN 94.45 0.442 94.89

Through the experiments outlined in Table 4.1, we evaluated the performance
of these architectures on the HAR tasks, focusing on the model accuracy. These
baseline results, particularly the LMU, will serve as a reference point for assessing
the potential advantages of spiking neural networks.

61

Results and discussion

Table 4.2: LMU Model Metrics

Tot.
Params

Conn.
Sparsity

Act.
Sparsity

Synaptic Operations
MACs ACs Dense

748× 105 0.0 0.0 30.2× 106 0.0 30.6× 106

4.1.1 LMU insights

Table 4.2 presents key metrics for the LMU network, providing a detailed view of
its structural and computational characteristics. These insights form the baseline
against which we will compare LIF-based LMUs, both with and without additional
encoding modules, to evaluate their performance and efficiency.

One significant observation from the table is that the connection sparsity is 0.0,
indicating that the network is fully connected, with no zero-valued weights. This
is typical for traditional artificial neural network (ANN) architectures, where all
weights contribute to the model’s operations. As a result, the LMU model performs
a relevant number of synaptic operations, specifically 30.2×106 multiply-accumulate
(MAC) operations. These operations are essential for processing input data and
updating the network’s internal state. Nevertheless, they can be computationally
expensive due to the absence of sparsity, which could otherwise reduce the number
of active computations.

In this fully connected architecture, both activation sparsity and connection
sparsity are absent. This means that every artificial neuron in the network is active
during the computation process, leading to a high computational load. While
this is characteristic of many conventional ANN models, it becomes particularly
relevant when benchmarking against spiking neural networks (SNNs), where the
introduction of sparsity and event-driven computations can drastically reduce the
number of active synapses and overall power consumption.

Furthermore, the Dense operations metrics (30.6 × 106) highlights the total
synaptic workload of the LMU, accounting for the dense matrix multiplications
that drive the temporal processing capabilities of the model. For neuromorphic ar-
chitectures, reducing these operations through sparsity or event-driven computation
could lead to more efficient processing, which is crucial for real-time applications.

By comparing these results to LIF-based LMUs, we can explore how neuro-
morphic principles like sparse connectivity and sparse activations can enhance the
efficiency of temporal processing networks while maintaining or even improving per-
formance. This analysis will provide a deeper understanding of how brain-inspired
models such as LMUs can benefit from transitioning to spiking paradigms in neu-
romorphic computing.

62

4.2 – L2MU

4.2 L2MU
This section presents the results obtained by the L2MU with both Leaky (Table
4.3) and Synaptic (Table 4.4) neuron models. In this case, raw data are directly fed
to the model without any encoding module. This also serves as a second baseline
for comparison with models that incorporate signal encoding mechanisms.

From now on, we refer to the original model as the one trained with full precision
following the HPO experiment. The pruned model, instead, refers to the model
obtained by applying the GMP technique for weight compression. There are also
different quantized models: models that have been quantized starting from the
original model (quantized from original) and model quantized starting from the
pruned model (quantized from GMP)

4.2.1 Leaky
The L2MU with Leaky neurons demonstrates strong overall performance, as shown
in Table 4.3. The key metrics taken into consideration for the analysis include
model accuracy, memory footprint, sparsity, and synaptic operations.

Accuracy The original model achieves a high accuracy (95.63%), slightly im-
proved by GMP pruning (95.87%). Quantization introduces a small accuracy drop
when starting from the original model for QAT (93.66%) and PTQ (93.34%). How-
ever, Dynamic Quantization (DQ), nearly restores the original accuracy (95.18%).
When the quantization starts from the pruned model, the accuracy remains quite
stable with DQ (95.72%) and QAT (94.45%), while PTQ sees a more significant
reduction (89.95%). Of course, in the case of Dynamic Quantization, only the
weights are quantized and the neuron’s internal states are in full precision.

Model Size The model parameters (593 × 103) are constant across all the dif-
ferent compressed models. For both the original and pruned models, the memory
footprint (2.38 MB) remains unchanged despite the increased sparsity in the model
weights, due to the injected zeros. This is because the model is stored in a dense
format, where all weight values, including the zeros, are saved without any specific
compression to take advantage of the sparsity. Evolving from the original 32-bit
precision to 8-bit reduces the model size to 0.61 MB, making this reduction crucial
for resource-constrained hardware.

Sparsity Connection sparsity increases significantly after GMP pruning (from
0.26 to 0.85 for the 32-bit precision model). Quantization applied to the original
model does not have a significant impact on the connection sparsity. In contrast,
when quantization is performed starting from the pruned model, it fully leverages

63

Results and discussion

all the benefits of the pruning process. Activation sparsity remains high, around
0.92–0.93, meaning that only 7-8% of the neurons are active.

Synaptic and Stateful Operations A major benefit of quantization is the re-
duction in computational load. The original model requires 101 × 103 MACs and
961×103 ACs. Post-quantization, these figures drop dramatically, with DQ showing
the lowest computational requirements (as low as 12×103 MACs and 31×103 ACs)
for the GMP-quantized model, while for the original-quantized model, the drop re-
mains constant for all the quantization methods (17 × 103 MACs and 39 × 103

ACs)
Another drastic reduction characterizes the dense operations, which are reduced

by a factor of 171.43 in the quantized models.
Membrane updates, representing the stateful neuron operations, are affected by

a substantial reduction in the quantized models, especially QAT and PTQ, while
DQ maintains the same average updates, coherently with the original and pruned
model.

Table 4.3: L2MU (Leaky) Performance

Metrics Orig. GMP
Quantized

From Original From GMP
QAT PTQ DQ QAT PTQ DQ

Accuracy (%) 95.53 95.87 93.66 93.34 95.18 94.45 89.95 95.72
Params (×103) 593
Precision (bit) 32 8
Footprint (MB) 2.38 0.62 0.61 0.62 0.61
Conn. Sparsity 0.26 0.85 0.28 0.85
Act. Sparsity 0.92 0.93 0.92 0.93

M. Upd. (×103) 45 52 28 25 45 36 26 52
MACs (×103) 101 62 17 12 13
ACs (×103) 961 560 39 31 32 33

Dense (×106) 24 0.14

4.2.2 Synaptic
Accuracy The original synaptic model (95.18%) performs similarly to the Leaky
version. After GMP pruning, the accuracy remains almost unchanged (95.70%).
However, quantization starting from the original model shows a more substan-
tial drop in accuracy, particularly in PTQ (85.35%), though DQ performs better

64

4.2 – L2MU

Table 4.4: L2MU (Synaptic) Performance

Metrics Orig. GMP
Quantized

From Original From GMP
QAT PTQ DQ QAT PTQ DQ

Accuracy (%) 95.18 95.70 94.02 85.35 94.78 93.97 87.60 94.96
Params (×103) 845
Precision (bit) 32 8
Footprint (MB) 3.38 0.87 0.86 0.87 0.86
Conn. Sparsity 0.37 0.81 0.45 0.81
Act. Sparsity 0.93 0.93 0.93 0.93

Mem. Upd. (×103) 51 50 31 15 50 21 18 50
MACs (×103) 1053 89 6 18 18 18
ACs (×103) 1596 1131 73 2 71 69

Dense (×106) 34 0.21 0.18 0.19 0.19

(94.78%). Quantizing from GMP yields a somewhat better balance, with DQ main-
taining accuracy at 94.96%.

Model Size The synaptic model has a larger parameter count (845× 103) com-
pared to the Leaky model, and its footprint is larger in the original state (3.38MB).
However, after quantization, both models converge to similar footprints (around
0.86MB), still higher than the Leaky counterpart.

Sparsity GMP pruning drastically improves connection sparsity for the synaptic
model (0.81 from an original 0.37). Activation sparsity, again, remains high, close
to 0.93.

Synaptic and Stateful Operations The Synaptic model is initially much more
computationally intensive, requiring 1053× 103 MACs and 1596× 103 ACs in the
original state. However, quantization drastically reduces these figures, especially
in the GMP-quantized models, where the MAC count drops to 18× 103, and ACs
reduce to 69× 103.

Again, the dense operations are subject to a drastic reduction when the model
is quantized (from 34× 106 to 0.19× 106)

Membrane updates see a substantial reduction after quantization, especially in
the GMP-quantized models (as low as 15).

65

Results and discussion

4.2.3 Leaky vs. Synaptic Model
Accuracy The Synaptic model has a slightly lower performance in terms of accu-
racy compared to the Leaky one for the original and pruned model, but its accuracy
drops more significantly after quantization, particularly for PTQ. In contrast, the
Leaky model remains more stable after quantization, particularly when dynamic
quantization is applied. This means that The Leaky model could be more suitable
to be deployed on neuromorphic hardware since all the states of the neurons are
required to be on a lower precision.

Model Size and Sparsity The Synaptic model has a larger number of param-
eters (845 × 103 vs. 593 × 103 for the Leaky model) and a correspondingly larger
footprint in the original state. However, both models achieve similar sizes after
quantization. GMP pruning results in a higher connection sparsity for the Synap-
tic model, which may be beneficial for certain neuromorphic architectures.

Computational Load The Leaky model is more computationally efficient, re-
quiring fewer MACs and ACs compared to the Synaptic model. Quantization dras-
tically reduces the computational load for both models, but the Synaptic model
remains more demanding in general. Additionally, the number of membrane up-
dates is lower for the Synaptic model after quantization, which may be better for
hardware where that type of operation requires more time to be performed (retrieve,
check, and set are the low-level operations executed by the hardware to possibly
update the value of the cell memory unit where the value is stored).

Efficiency vs. Performance Trade-offs The Leaky model offers a better bal-
ance between efficiency and performance, especially in quantized forms, making it a
good choice for environments with limited computational resources. The Synaptic
model is more complex in terms of operation and footprint and does not present
the advantages shown by the Leaky one.

4.2.4 L2MU vs LMU
The LMU and L2MU represent two different paradigms for time-series classification
tasks, with the LMU being the baseline for comparison. Table 4.2 and 4.1 provide
insightful metrics for the baseline LMU.

Accuracy In terms of accuracy, the LMU achieves a median accuracy of 94.77%,
with a maximum of 95.65%. Both the L2MU Leaky and Synaptic models achieve
competitive accuracies, with the Leaky model performing slightly better after dy-
namic quantization (95.18%) compared to the Synaptic model (94.96%). This
demonstrates that despite the added complexity of spiking dynamics, the spiking

66

4.3 – Encoded L2MU

models can match or even surpass the performance of the LMU, especially when
fine-tuned with GMP pruning and Dynamic Quantization.

Model Size and Sparsity The LMU has 748 × 103 parameters and exhibits
no connection or activation sparsity (0.0). In contrast, both L2MU models, espe-
cially the Leaky variant, benefit significantly from sparsity, with connection sparsity
reaching up to 0.85 and activation sparsity of 0.93 after pruning. This sparsity en-
ables more efficient computation, particularly in energy-constrained environments,
making the L2MU models more attractive for neuromorphic systems.

Computational Efficiency The LMU requires 30.2 × 106 MACs for synaptic
operations and 0 ACs due to nonbinary activations. By comparison, before quan-
tization, the L2MU models (particularly the Leaky variant) require significantly
fewer MACs and more ACs (more binary activations due to spike-trains data). For
example, the L2MU Leaky model operates with as few as 101 × 103 MACs and
961× 103 ACs, the sum of these operations equal to 1.062× 106, is still drastically
lower compared to the one given by the LMU. This drastic reduction in operations
for the spiking variants showcases the potential computational savings offered by
the spiking architecture, especially after GMP pruning and quantization.

A key distinction between the LMU and the L2MU models is the concept of
membrane updates. The LMU, being a non-neuromorphic model, does not require
these updates, while both LIF-based models rely on membrane updates to maintain
their stateful operations. This introduces an additional computational overhead for
the L2MU models.

4.3 Encoded L2MU
As with the L2MU, the results for this section are presented in the same man-
ner. The model under consideration is an L2MU which features a single-layer
encoding mechanism described in section 3.1.1. This model takes the name of
Encoded L2MU. Refer to Table 4.5 and 4.6, for a comprehensive overview of the
performance metrics associated with both the Leaky and Synaptic versions of the
Encoded L2MU.

4.3.1 Leaky
Accuracy The original model achieves an accuracy of 94.77%, with a slight drop
to 94.58% following GMP pruning. When applying QAT and PTQ, the accuracy
decreases further to ∼ 90% and ∼ 62%, respectively. Dynamic Quantization (DQ),
however, recovers much of the lost accuracy, reaching 95.18%, demonstrating a
minimal trade-off between quantization and accuracy.

67

Results and discussion

Model Size One of the most prominent benefits of quantization is the reduction
in model size. The original Leaky model, with 2.14 MB, shrinks to 0.58 MB post-
quantization. The number of parameters constituting the model is equal to 533×
103.

Sparsity The GMP pruning method improves the connection sparsity from 0.29
to 0.86, leading to a more efficient model without significantly impacting perfor-
mance. Activation sparsity remains stable at around 0.92, indicating the model
maintains efficiency in neural activations even after pruning.

Synaptic and Stateful Operations Quantization also brings considerable com-
putational savings. The original model requires 12 × 103 MACs and 1291 × 103

(ACs). After quantization, ACs values are dramatically reduced, while MACs are
the same as the original model when applying DQ and lower in all the other quan-
tization cases. Such reductions make the model highly suitable for deployment in
scenarios where computational resources are limited.

In terms of neuron dynamics, membrane updates decrease substantially in the
quantized versions. For QAT and PTQ, updates drop (25-28) compared to the
original model (48), reflecting advantages in computational efficiency.

Table 4.5: Encoded L2MU (Leaky) Performance

Metrics Orig. GMP
Quantized

From Original From GMP
QAT PTQ DQ QAT PTQ DQ

Accuracy (%) 94.77 94.58 91.49 62.53 93.96 90.62 62.23 92.79
Params (×103) 533
Precision (bit) 32 8
Footprint (MB) 2.14 0.58 0.57 0.58 0.57
Conn. Sparsity 0.29 0.86 0.30 0.86
Act. Sparsity 0.92 0.93 0.92 0.94

Mem. Upd.(×103) 48 42 30 25 47 28 26 41
MACs (×103) 12 0.88 0.98 12 7.4 8.8
ACs (×103) 1291 464 42 26 27 26

Dense (×106) 22 0.14

68

4.3 – Encoded L2MU

4.3.2 Synaptic
Accuracy The Synaptic model starts with an original accuracy of 94.14%, which
decreases to 93.61% after GMP pruning. Quantization impacts accuracy signifi-
cantly, with QAT showing an accuracy of 83.70% and PTQ dropping to 71.84%.
However, DQ performs relatively well, achieving 93.77% from the original model
and 93.19% from the GMP model.

Model Size The original Synaptic model has a larger footprint of 3.09 MB,
reflecting its higher parameter count of 770 × 103. Following quantization, the
footprint decreases to 0.81 MB, comparable to the Leaky model, thus ensuring
that both models remain suitable for deployment in resource-constrained scenarios.

Sparsity GMP pruning significantly enhances connection sparsity in the Synaptic
model from 0.41 to 0.91. The activation sparsity remains consistently high at
around 0.93, ensuring efficient parameter usage.

Synaptic and Stateful Operations In terms of computational load, the Synap-
tic model is more demanding than the Leaky model, requiring 7 × 106 MACs in
the original state. However, post-quantization, it benefits from reduced computa-
tional requirements, indicating a more favorable balance for efficient operations in
neuromorphic systems.

The Synaptic model shows a reduction in membrane updates per timestep,
from 50× 103 in the original state to 28× 103 with QAT and 27× 103 with PTQ.
This reduction indicates improved efficiency in the stateful processing of neuronal
activities.

4.3.3 Leaky vs Synaptic
Accuracy The Synaptic model displays slightly higher accuracy in the original
and GMP states but suffers more significant accuracy drops post-quantization,
especially with PTQ. The Leaky model remains more stable after quantization,
particularly with DQ.

Model Size and Sparsity The Synaptic model has a greater number of param-
eters (770k vs. 533k for the Leaky model), resulting in a larger original footprint.
However, both models converge to similar sizes after quantization. The Synaptic
model achieves higher connection sparsity post-pruning.

Computational Load The Leaky model proves to be more computationally ef-
ficient, requiring fewer MACs and accumulations than the Synaptic model. Quan-
tization greatly reduces the computational demands for both models, although the

69

Results and discussion

Table 4.6: Encoded L2MU (Synaptic) Performance

Metrics Orig. GMP
Quantized

From Original From GMP
QAT PTQ DQ QAT PTQ DQ

Accuracy (%) 94.14 93.61 83.70 71.84 93.77 82.65 65.50 93.19
Params (×103) 770
Precision (bit) 32 8
Footprint (MB) 3.09 0.82 0.81 0.82 0.81
Conn. Sparsity 0.41 0.91 0.43 0.91
Act. Sparsity 0.93 0.95 0.93 0.95

Mem. Upd.(×103) 50 57 28 27 51 32 31 57
MACs (×103) 7 5 6 7 4 5
ACs (×103) 849 306 62 42 44 43

Dense (×106) 31 0.18

Synaptic model generally remains more intensive. Additionally, the number of
membrane updates is lower in the Synaptic model post-quantization.

Efficiency vs. Performance Trade-offs. The Encoded L2MU model with
Leaky neurons presents a more favorable balance between efficiency and perfor-
mance, particularly in quantized forms.

4.3.4 Encoded L2MU vs L2MU
What stands out from the Encoded L2MU is the reduction of the number of pa-
rameters, which causes a small degradation in terms of accuracy. Even though
the model is more complex due to the presence of an encoder, the model size (pa-
rameters) has decreased, consequently decreasing the model footprint. In terms of
Synaptic Operation for the pruned model the Encoded L2MU has better perfor-
mances compared to the L2MU for both the Leaky and Synaptic version, this is
also reflected in the GMP-quantized version.

Overall the Encoded L2MU seems to exceed the expectation, particularly with
the Leaky variant where there is not a substantial degradation of the accuracy.

This version proves to be well-suited for scenarios requiring a model that is not
only efficient in its operations but also capable of handling resource-constrained
environments. The Leaky variant, in particular, strikes an excellent balance be-
tween maintaining high accuracy and minimizing computational demands, power
consumption, and memory usage. Its lower operational complexity compared to the
L2MU makes it a highly suitable option for edge devices where both performance

70

4.4 – Multi-Encoded L2MU

and resource efficiency are critical.

4.4 Multi-Encoded L2MU
The model under evaluation in this section is a Multi-Encoded L2MU, which em-
ploys a stacked encoding mechanism outlined in Section 3.1.2.

For a detailed overview of the performance metrics associated with both the
Leaky and Synaptic variants of the Multi-Encoded L2MU, please refer to Tables
4.7 and 4.8.

4.4.1 Leaky
Accuracy The original model accuracy (94.14%) is subjected to degradation in
the compressed models. A slight decrement is observed in the pruned model, but
whenever the quantization is applied (starting from the original or the pruned
model) there is a significant degradation with QAT and PTQ, while with DQ the
accuracy almost remains unchanged

Model Size At 1.09 MB for the original model and just 269 × 103 parameters,
the model is reduced to as low as 0.31 MB after quantization.

Sparsity The connection sparsity of the original model (0.25) is increased through
the pruning process (0.85) and the same performance effect also the quantization.
Particularly advantageous is the model where the quantization started from the
pruned.

Activation sparsity with 0.85 on the original model displays some improvement
in the quantized models, showing that the active neurons are consistent across the
original and compressed models.

Synaptic and Stateful Operations The original model shows 7× 103 MACs,
which remains consistent in most quantized versions. However, ACs drop from
1629× 103 to as low as 50× 103 after quantization. The dense operations, reduced
from 11 million to just 0.12 million after quantization, highlight a drastic reduction
in complexity post-compression, making the model far more efficient. Membrane
Updates are subjected to reduction during QAT and PTQ while they are almost
the same when applying DQ.

4.4.2 Synaptic
Accuracy Slightly better in certain configurations than the Leaky model, with
the highest accuracy of 93.95% achieved through GMP on the original model.

71

Results and discussion

Table 4.7: Multi-Encoded L2MU (Leaky) Performance

Metrics Orig. GMP
Quantized

From Original From GMP
QAT PTQ DQ QAT PTQ DQ

Accuracy (%) 94.14 93.70 80.64 69.57 93.34 77.36 69.52 93.23
Params (×103) 269
Precision (bit) 32 8
Footprint (MB) 1.09 0.33 0.31 0.33 0.31
Conn. Sparsity 0.25 0.52 0.29 0.53
Act. Sparsity 0.84 0.85 0.87 0.85 0.84 0.87 0.86 0.85

Mem.Upd.(×103) 33 32 20 18 33 18 17 32
MACs (×103) 7 6 6 7 5 6
ACs (×103) 1629 1189 51 59 57 50 51 50

Dense (×106) 11 0.12

Table 4.8: Multi-Encoded L2MU (Synaptic) Performance

Metrics Orig. GMP
Quantized

From Original From GMP
QAT PTQ DQ QAT PTQ DQ

Accuracy (%) 93.48 93.95 87.28 79.6 93.12 83.96 78.52 92.72
Params (×103) 868
Precision (bit) 32 8
Footprint (MB) 3.5 0.93 0.91 0.93 0.91
Conn. Sparsity 0.18 0.80 0.25 0.80
Act. Sparsity 0.94 0.95 0.94 0.95

Mem. Upd.(×103) 49 45 31 32 49 30 31 44
MACs (×103) 7 6 6 7 5 6
ACs (×103) 1659 629 73 73 74 63 62 64

Dense (×106) 35 0.21

Quantization from the original model results in high accuracy drops with QAT
and PTQ.

Model Size The original Synaptic model has a significantly higher memory foot-
print at 3.5 MB, the highest among all the analyzed models and the largest num-
ber of parameters (868× 103). However, after quantization, it compresses down to
0.91 MB.

72

4.4 – Multi-Encoded L2MU

Sparsity The connection sparsity of the original model (0.18) increases substan-
tially with GMP, reaching 0.80. Quantization from the original model leads to a
connection sparsity of 0.25, while from GMP, the model retains the high sparsity
of 0.80

The Synaptic model starts with higher activation sparsity at 0.94. This sparsity
level remains almost unchanged across all quantized versions, peaking at 0.95.

Synaptic and Stateful Operations The original Synaptic model is heavier,
with 7× 103 MACs and 1559× 103 activation counts (ACs), but compression tech-
niques reduce ACs to as low as 62×103, maintaining some computational advantages
while lowering complexity. Dense operations see a reduction from 35 million to just
0.21 million post-quantization, which is substantial but still more than the Leaky
version. Again, the same behavior is observed for membrane updates, where there
is a reduction only when applying QAT and PTQ.

4.4.3 Leaky vs. Synaptic
Accuracy The Leaky model achieves slightly lower performance in terms of ac-
curacy across the quantized variants, particularly when compared to the Synaptic
model.

Model Size and Sparsity The Leaky model is characterized by its smaller
memory footprint. The model size for the Leaky variant is significantly smaller than
the Synaptic variant, which reflects the trade-off between simplicity and biological
realism. In terms of sparsity, both models benefit from pruning techniques, but the
Synaptic model generally exhibits greater sparsity. This allows the Synaptic model
to achieve higher connection sparsity after pruning.

Computational Load The Leaky model requires fewer operations overall, which
translates into lower power consumption and faster inference times. This makes
it a more attractive option for real-time applications where latency and energy
efficiency are paramount. The Synaptic model, while providing richer and more
accurate temporal representations, demands significantly more operations.

Efficiency vs. Performance Trade-offs. The Leaky model provides a highly
efficient option in terms of memory usage and computational cost, making it ideal
for lightweight hardware. However, this efficiency comes at the expense of reduced
accuracy, especially for quantized models. The Synaptic model, while demanding
more resources, offers improved accuracy and is more suited for complex tasks
where performance is a priority.

73

Results and discussion

4.4.4 Multi-Encode L2MU vs. Encoded L2MU
The comparison between the Multi-Encoded L2MU and the Encoded L2MU re-
veals clear differences in terms of complexity, memory footprint, and operational
efficiency. Both models use the L2MU as a recursive network but differ in their
approach to encoding layers.

The most surprising result is the Multi-Encode L2MU model with Leaky neu-
rons footprint, compared to all the others. Even though it is constituted by a
different number of neuron encoding layers, it surpasses the Synaptic version and
the Encoded L2MU. Of course, this comes with a noticeable cost of accuracy drop
for the quantized model (QAT and PTQ)

The Synaptic version instead, requires a higher computational demand in terms
of operations and footprint compared to the Encoded L2MU, while the model ac-
curacy is quite stable for both the architectures.

4.5 Deployment of Multi-Encoded L2MU on Edge
Devices

The rationale behind choosing the Multi-Encode L2MU from the different models
previously described is due to several reasons.

The Multi-Encoded L2MU with Synaptic neurons has the highest memory foot-
print and computation complexity among all the other models. This choice allows
us to evaluate the performance of the most resource-intensive version of the model.
If this configuration can fit and run efficiently on the target hardware, it ensures
that all the other models with smaller memory footprint and computational demand
will also fit and perform well.

The results achieved by the deployed models on the selected conventional hard-
ware are presented in Table 4.9, including RAM usage, load and inference times,
mean power consumption, mean energy per inference, and accuracy, for both the
Leaky and Synaptic neurons. We further analyzed the inference times by running
the models for 2 hours on the devices: the plots in Figure 4.1 represent the dis-
tribution of probability for the inference times of the two neuron models analyzed.
Data obtained with such analyses showed that both the types of LIF neuron can
be deployed on traditional hardware with good results: in particular, the Multi-
Encoded L2MU with the Leaky neurons model provided 93.89% test accuracy with
reasonable power consumption, inference, and load times. Also, the model with
Synaptic neurons revealed a satisfactory behavior, but the Leaky model seems a
better trade-off.

Running such models with success on this hardware highlights the possibility
of further integrating neuromorphic and traditional computation paradigms to en-
hance low-power computation.

74

4.5 – Deployment of Multi-Encoded L2MU on Edge Devices

Table 4.9: Results achieved deploying the L2MU on commercial edge devices to
solve the HAR task through encoding-free classification with two different neuron
models.

Device Neuron
model

Used
RAM

Mean
inference

time

Mean
power

Mean
energy
per in-
ference

Accuracy
(%)

STM32MP1
Leaky 110 MB 0.29 s

1.6 W
230 mJ 93.89

Synaptic 235 MB 27.4 s 504 mJ 93.71
Raspberry

Pi 3B+
Leaky 135 MB 34.0 s

3.4 W
337 mJ 93.89

Synaptic 245 MB 0.38 s 900 mJ 93.71
Raspberry

Pi 4B
Leaky 135 MB 9.2 s

5.0 W
151 mJ 93.89

Synaptic 245 MB 0.11 s 396 mJ 93.71

Focusing on the differences among the three boards, especially on the hardware
side, it is possible to see different performances using different power values, with
the Raspberry Pi 4B being the fastest one, and the STM32MP1-based board being
the most low-power. The choice could depend on the final application and on
the rate at which the input values are generated. The probability distribution
graphs can be useful to make the best choice, as inference could last longer than
the average time, and the frequency at which the input port is updated should be
decided accordingly. For example, the Raspberry Pi 3B+ shows a large variance
under that point of view, while values for the STM32MP157F-DK2 are generally
nearer to the average one.

Figure 4.1: Histogram plots representing the inference time probability distribution.
Analyses were carried out on the three boards running the models with either Leaky
(left) or Synaptic (right) neurons.

75

76

Chapter 5

Conclusion

In this study, we chose the LMU network over various RNN architectures due to its
remarkable ability to keep the constrained number of parameters while delivering
performance comparable to other RNNs. This efficiency leads to a memory-efficient
model, making it suitable for resource-constrained environments.

With this foundation, we converted the model into a fully spiking network re-
ferred to as L2MU. We achieved this by adopting the LIF neurons to transform each
component of the traditional LMU into a neuron population. We simultaneously
designed an encoding module that aims to transform the raw signal into spikes and
feed them to the L2MU such that it can operate with discrete signals. The potential
for a complete network conversion into a spiking network opens up the possibility
of future deployment into neuromorphic hardware.

To evaluate our network design, we applied it to the Human Activity Recog-
nition (HAR) classification task. The performance of the L2MU, particularly in
its leaky and synaptic variations, was thoroughly assessed against the traditional
LMU. The results demonstrated competitive accuracy, with the Leaky version of
the L2MU achieving up to 95.87% accuracy in full precision, which closely rivals
the performance of the more traditional model, but with a significant reduction
in memory footprint and computational complexity. The Synaptic version offered
a competitive performance in some configurations but at the expense of increased
computational cost and memory requirements.

We also introduced both single-encoded and multi-encoded versions of the L2MU.
The multi-encoded version, which incorporates multiple encoding layers, displayed
small accuracy degradation and robustness at the cost of higher memory usage and
computational demands. In contrast, the single-encoded L2MU struck a balance
between performance and operational efficiency, proving that even with minimal
encoding layers, the L2MU architecture could achieve competitive results while
maintaining a low memory footprint. This balance makes the encoded L2MU well-
suited for deployment in edge devices where memory and computational resources
are limited.

77

Conclusion

Beyond theoretical evaluations, we deployed the full precision Multi-Encode
L2MU models on commercial edge devices, such as the STM32MP1 and Raspberry
Pi boards, to solve the HAR task in a real-world, operational environment. The
deployment tests were carried out for both the Leaky and Synaptic models, reveal-
ing important trade-offs between computational load, memory usage, and energy
efficiency.

The results showed that the Leaky Multi-Encoded L2MU, with its lower memory
footprint, was the most efficient for deployment on edge devices. It exhibited shorter
inference times, lower RAM usage, and reduced energy consumption, making it
ideal for real-time applications on devices with limited hardware capabilities.

In conclusion, our fully spiking neural network (L2MU) presents an innovative
and effective approach to solving the HAR task, showing competitive accuracy
while maintaining operational efficiency. The deployment of both the Leaky and
Synaptic L2MU models on commercial edge devices underscores their adaptability
for real-world implementation, with the Leaky model standing out as the more
efficient choice for resource-constrained applications. Furthermore, the successful
transformation of the LMU into a spiking network lays the groundwork for potential
future deployment on neuromorphic hardware, which could further enhance energy
efficiency and scalability.

Future work could explore further optimizations of the L2MU for specific hard-
ware architectures and additional neuromorphic platforms. Additionally, enhancing
the encoding mechanisms may lead to further performance improvements. The flex-
ibility of the L2MU architecture ensures that it can continue to evolve, standing
the way for more widespread adoption in real-world, edge-based AI applications.

78

Appendix A

Conversion of RNN to LIF-based
RNN

In addition to the conversion of the Legendre Memory Unit (LMU) into a LIF-
based LMU, the same process was applied to a traditional Recurrent Neural Net-
work (RNN). The reason for this additional conversion was to explore if a model
that does not have its foundation in State-Space Representation, could have good
performance in terms of neuromorphic efficiency.

A.1 Conversion Process of an RNN
The RNN conversion process doesn’t require the conversion of any equation as
it happened for the LIF-based LMU. It simply involves replacing the activation
mechanism with a population of neurons, which in our case would be Leaky or
Synaptic neuron population. Substituting the activation function the conversion
into a spiking behavior was straightforward.

A.2 Results and Discussions
For the LIF-based RNN (L-RNN), as with the L2MU, we tested two different neuron
models (Leaky and Synaptic) and explored the use of encoding modules, including
both single-layer and multi-layer encoders. In this section, we present the results
of these models without applying any pruning or quantization. Consequently, all
the results reported reflect the model running at full precision (32 bit).

A.2.1 L-RNN
In this configuration, the RNN has been converted into a LIF-based model, where
the neurons follow the leaky integrate-and-fire dynamics. However, the input data

79

Conversion of RNN to LIF-based RNN

remains in its raw form and is not converted into spike trains.

Leaky

Table A.1: L-RNN (Leaky) Metrics

Acc. Tot.
Params

Conn.
Sparsity

Act.
Sparsity

Mem.
Upd.

Synaptic Operations
MACs ACs Dense

94.92% 83k 0.0 0.75 280 67K 790K 3.3M

The result of L-RNN with Leaky neurons demonstrates good overall performance,
achieving an accuracy of 94.92% as shown in Table A.1.

83× 103 parameters constitute the network architecture with a 0% connection
sparsity, meaning that the network maintains a fully connected architecture, which
contributes to a higher number of synaptic operations (3.3×106 dense operations).
The model activation sparsity is 0.75, suggesting 75% of the neurons are inactive
during inference. This metrics suggests moderate computational savings.

This model also requires 67×103 multiply-accumulate operation with non-binary
activation and 790× 103 multiply-accumulate with binary activation.

Synaptic

Table A.2: L-RNN (Synaptic) Metrics

Acc. Tot.
Params

Conn.
Sparsity

Act.
Sparsity

Mem.
Upd.

Synaptic Operations
MACs ACs Dense

95.12% 72K 0.0 0.74 270 62K 715K 2.8M

The Synaptic version of the L-RNN, presents a slightly better performance with
an accuracy of 95.12%, as shown in Table A.2 and 72× 103 parameters which are
lower than the Leaky model. This model is still fully connected, as suggested by
the 0.0 connection sparsity. Not a significant reduction is shown in the activation
sparsity of 0.74, but this implies that fewer neurons are inactive during inference.

The synaptic operation metrics show a reduction of the synaptic model com-
pared to its counterpart. Specifically, MACs are reduced by 5×103, ACs by 75×103,
and Dense operations by 0.5×106. This reduction of synaptic operations, combined
with the marginal improvement in accuracy, suggests that the synaptic model has
better optimized performance than the Leaky one.

80

A.2 – Results and Discussions

A.2.2 Encoded L-RNN

In this configuration, the LIF-based RNN is enhanced with an encoding neuron
population layer, which transforms the input data into spike trains. This layer
allows the recurrent network to operate with spike-encoded data.

Leaky

Table A.3: Encoded L-RNN (Leaky) Metrics

Acc. Tot.
Params

Conn.
Sparsity

Act.
Sparsity

Mem.
Upd.

Synaptic Operations
MACs ACs Dense

95.41% 110K 0.0 0.93 280 7K 607K 4.4M

As we observe from Table A.3, the encoding layer increases the model complexity,
leading to a total of 110 × 103 parameters which is notably higher than the one
without encoding. The activation sparsity suggests that 93% of the neurons are
inactive during inference, which is significantly higher than the one observed by the
model without encoding. This increased activity could be attributed to the spike
encoding layer, which increases the number of firing neurons.

In terms of synaptic operations MACs and ACs, respectively 7× 103 and 607×
103, are lower compared to the Leaky model without encoding, while the Dense
operations are extremely higher, almost twice the previous value.

Synaptic

Table A.4: Encoded L-RNN (Synaptic) Metrics

Acc. Tot.
Params

Conn.
Sparsity

Act.
Sparsity

Mem.
Upd.

Synaptic Operations
MACs ACs Dense

94.15% 103K 0.0 0.94 275 7K 595K 4.1M

The Synaptic version of the encoded L-RNN achieves slightly lower accuracy at
94.15% (Table A.4) but requires fewer parameters than the Leaky counterpart.
The activation sparsity is quite similar to the Leaky version, suggesting both mod-
els activate a large proportion of neurons when working with spike-encoded data.
Synaptic operations remain efficient 7× 103 MACs and 595× 103 ACs, except for
the Dense operation, which shows a slightly better performance.

81

Conversion of RNN to LIF-based RNN

A.2.3 Multi-Encoded L-RNN
The Multi-Encoded L-RNN introduces three encoding layers made of neurons pop-
ulation, increasing the model complexity and ability to handle spike-encoded data.

Leaky

Table A.5: Multi-Encoded L-RNN (Leaky) Metrics

Acc. Tot.
Params

Conn.
Sparsity

Act.
Sparsity

Mem.
Upd.

Synaptic Operations
MACs ACs Dense

94.71% 68K 0.0 0.91 280 7K 423K 2.7M

As shown in Table A.5, this architecture achieves an accuracy of 94.71%, a slight
drop compared to the single encoded Leaky version. The total parameters are
68 × 103, which is lower than the L-RNN model and Encoded L-RNN in both
Leaky and Synaptic neurons. This drop in parameters suggests that while the
number of layers increases, the overall model complexity is managed. Activation
sparsity is still high with 91% of neurons inactive.

The model maintains 7× 103 MACs and lower ACs and Dense operations com-
pared to the previous models. These results suggest that the introduction of a
multi-layer encoding does not drastically increase the computational requirements,
making the model relatively efficient.

Synaptic

Table A.6: Multi-Encoded L-RNN (Synaptic) Metrics

Acc. Tot.
Params

Conn.
Sparsity

Act.
Sparsity

Mem.
Upd.

Synaptic Operations
MACs ACs Dense

94.48% 44K 0.0 0.81 15.7K 7K 382K 1.7M

The Synaptic version of the Multi-Encoded L-RNN performs slightly worse in term
of accuracy 94.48% (Table A.6) that the Leaky counterpart, but it has an extreme
reduction of parameters, 44 × 103, the lower compared to all the different L-RNN
versions.

Activation sparsity of 0.81, lower than The Leaky model, suggest fewer inactive
neurons during inference, which may contribute to increased efficiency in term of
synaptic operations.

82

A.2 – Results and Discussions

The model performs the same in term of MACs, compared to the Leaky coun-
terpart and there is a reduction in terms of ACs and Dense operations, respectively
328×103 and 1.7×106, which are the lowest among all the L-RNN model versions.

83

84

Appendix B

Learning Curves

This chapter presents a series of training statistics plots that illustrate the learning
behavior and performance metrics of various neural network models after optimiza-
tion. Each figure depicts learning curves, including accuracy and loss metrics, of
models that have been retrained with different seeds. The plots provide insights
into the effectiveness of the training process, highlighting mean values and standard
deviation, illustrated by solid lines and shaded areas respectively, across training
epochs.

Figures are organized by model type, with each section dedicated to a specific
neural network architecture. The left side of each figure illustrates the accuracy
development over time, while the right side focuses on the loss metrics. This ar-
rangement allows for a comparative analysis of model behavior under different
training dynamics.

85

Learning Curves

B.1 LSTM

Figure B.1: Learning curves for the full-precision Long Short-Term Memory
(LSTM) model retrained with 10 different seeds

B.2 LMU

Figure B.2: Learning curves for the full-precision Legendre Memory Unit (LMU)
model retrained with 10 different seeds

86

B.3 – RNN

B.3 RNN

Figure B.3: Learning curves for the full-precision Recurrent Neural Network (RNN)
model retrained with 10 different seeds

B.4 L2MU

Leaky

Figure B.4: Learning curves for the full-precision LIF-based LMU (L2MU) model
with Leaky neurons retrained with 10 different seeds

87

Learning Curves

Synaptic

Figure B.5: Learning curves for the full-precision LIF-based LMU (L2MU) model
with Synaptic neurons retrained with 10 different seeds

B.5 Encoded L2MU

Leaky

Figure B.6: Learning curves for the full-precision Encoded LIF-based LMU (En-
coded L2MU) model with Leaky neurons retrained with 10 different seeds

88

B.6 – Multi-Encoded L2MU

Synaptic

Figure B.7: Learning curves for the full-precision Encoded LIF-based LMU (En-
coded L2MU) model with Synaptic neurons retrained with 10 different seeds

B.6 Multi-Encoded L2MU

Leaky

Figure B.8: Learning curves for the full-precision Multi-Encoded LIF-based LMU
(Multi-Encoded L2MU) model with Leaky neurons retrained with 10 different seeds

89

Learning Curves

Synaptic

Figure B.9: Learning curves for the full-precision Multi-Encoded LIF-based LMU
(Multi-Encoded L2MU) model with Synaptic neurons retrained with 10 different
seeds

B.7 L-RNN

Leaky

Figure B.10: Learning curves for the full-precision LIF-based RNN (L-RNN) model
with Leaky neurons retrained with 10 different seeds

90

B.8 – Encoded L-RNN

Synaptic

Figure B.11: Learning curves for the full-precision LIF-based RNN (L-RNN) model
with Synaptic neurons retrained with 10 different seeds

B.8 Encoded L-RNN

Leaky

Figure B.12: Learning curves for the full-precision Encoded LIF-based RNN (En-
coded L-RNN) model with Leaky neurons retrained with 10 different seeds

91

Learning Curves

Synaptic

Figure B.13: Learning curves for the full-precision Encoded LIF-based RNN (En-
coded L-RNN) model with Synaptic neurons retrained with 10 different seeds

B.9 Multi-Encoded L-RNN

Leaky

Figure B.14: Learning curves for the full-precision Multi-Encoded LIF-based RNN
(Multi-Encoded L-RNN) model with Leaky neurons retrained with 10 different
seeds

92

B.9 – Multi-Encoded L-RNN

Synaptic

Figure B.15: Learning curves for the full-precision Multi-Encoded LIF-based RNN
(Multi-Encoded L-RNN) model with Synaptic neurons retrained with 10 different
seeds

93

94

Appendix C

Confusion Matrices

This chapter presents confusion matrices for various neural network models, high-
lighting their classification performance on test datasets. Confusion matrices are
crucial for visualizing the performance of a classifier and are particularly valuable
for identifying classes that are frequently misclassified. Each matrix shows the num-
ber of predictions for each class, with rows representing actual classes and columns
representing predicted classes. Diagonal elements indicate correct classifications,
while off-diagonal elements show misclassification.

C.1 LSTM

Figure C.1: Confusion matrix for the full-precision Long Short-Term Memory
(LSTM) model.

95

Confusion Matrices

C.2 LMU

Figure C.2: Confusion matrix for the full-precision Legendre Memory Unit (LMU)
model.

C.3 RNN

Figure C.3: Confusion matrix for the full-precision Recurrent Neural Network
(RNN) model.

96

C.4 – L2MU

C.4 L2MU

Leaky

Figure C.4: Confusion matrix for the full-precision LIF-based LMU (L2MU) model
with Leaky neurons

Synaptic

Figure C.5: Confusion matrix for the full-precision LIF-based LMU (L2MU) model
with Synaptic neurons

97

Confusion Matrices

C.5 Encoded L2MU

Leaky

Figure C.6: Confusion matrix for the full-precision Encoded LIF-based LMU (En-
coded L2MU) model with Leaky neurons

Synaptic

Figure C.7: Confusion matrix for the full-precision Encoded LIF-based LMU (En-
coded L2MU) model with Synaptic neurons

98

C.6 – Multi-Encoded L2MU

C.6 Multi-Encoded L2MU

Leaky

Figure C.8: Confusion matrix for the full-precision Multi-Encoded LIF-based LMU
(Multi-Encoded L2MU) model with Leaky neurons

Synaptic

Figure C.9: Confusion matrix for the full-precision Multi-Encoded LIF-based LMU
(Multi-Encoded L2MU) model with Synaptic neurons

99

Confusion Matrices

C.7 L-RNN

Leaky

Figure C.10: Confusion matrix for the full-precision LIF-based RNN (L-RNN)
model with Leaky neurons

Synaptic

Figure C.11: Confusion matrix for the full-precision LIF-based RNN (L-RNN)
model with Synaptic neurons

100

C.8 – Encoded L-RNN

C.8 Encoded L-RNN

Leaky

Figure C.12: Confusion matrix for the full-precision Encoded LIF-based RNN (En-
coded L-RNN) model with Leaky neurons

Synaptic

Figure C.13: Confusion matrix for the full-precision Encoded LIF-based RNN (En-
coded L-RNN) model with Synaptic neurons

101

Confusion Matrices

C.9 Multi-Encoded L-RNN

Leaky

Figure C.14: Confusion matrix for the full-precision Multi-Encoded LIF-based RNN
(Multi-Encoded L-RNN) model with Leaky neurons

Synaptic

Figure C.15: Confusion matrix for the full-precision Multi-Encoded LIF-based RNN
(Multi-Encoded L-RNN) model with Synaptic neurons

102

Appendix D

Hyperparameters

This chapter provides a comprehensive overview of the hyperparameters used for
each architecture presented in this work. Hyperparameters are critical settings that
control the learning process of a model and significantly impact its performance.
For each architecture, we detail the key hyperparameters, their description, and
display a full table with their value.

D.1 Hyperparameters’ Description

D.1.1 Common Hyperparameters

Table D.1: Base Hyperparameters for all Architectures

Hyperparameter Description
lr Learning rate

batch_size Batch size

D.1.2 Output Hyperparameters for SNNs

Table D.2: Hyperparameters Output Layer (Leaky/Synaptic)

Hyperparameter Description
beta_spk_output β value for output population neurons
alpha_spk_output α value for output population neurons

threshold_spk_output Threshold value for output population neurons

103

Hyperparameters

D.1.3 Encoder Hyperparameters

Table D.3: Hyperparameters Single Encoder Layer (Leaky/Synaptic)

Hyperparameter Description
pop_size Neuron Population size per axis

beta_spk_x_acc β value for X-axis accel. population neurons
alpha_spk_x_acc α value for X-axis accel. population neurons

threshold_spk_x_acc Threshold value for X-axis accel. population neurons
beta_spk_x_gyro β value for X-axis gyro population neurons
alpha_spk_x_gyro α value for X-axis gyro population neurons

threshold_spk_x_gyro Threshold value for X-axis gyro population neurons
beta_spk_y_acc β value for Y-axis accel. population neurons
alpha_spk_y_acc α value for Y-axis accel. population neurons

threshold_spk_y_acc Threshold value for Y-axis accel. population neurons
beta_spk_y_gyro β value for Y-axis gyro population neurons
alpha_spk_y_gyro α value for Y-axis gyro population neurons

threshold_spk_y_gyro Threshold value for Y-axis gyro population neurons
beta_spk_z_acc β value for Z-axis accel. population neurons
alpha_spk_z_acc α value for Z-axis accel. population neurons

threshold_spk_z_acc Threshold value for Z-axis accel. population neurons
beta_spk_z_gyro β value for Z-axis gyro population neurons
alpha_spk_z_gyro α value for Z-axis gyro population neurons

threshold_spk_z_gyro Threshold value for Z-axis gyro population neurons

Table D.4: Hyperparameters Stacked Encoder Layer (Leaky/Synaptic)

Hyperparameter Description
... Single Layer Hyperparameters (refer to Table D.3)

beta_spk_encoder β value for fusion population neurons
alpha_spk_encoder α value for fusion population neurons

threshold_spk_encoder Threshold value for fusion population neurons
beta_spk_decoder β value for harmonization population neurons
alpha_spk_decoder α value for harmonization population neurons

threshold_spk_decoder Threshold value for harmonization population neurons

104

D.1 – Hyperparameters’ Description

D.1.4 RNN

Table D.5: Hyperparameters for RNN Architecture

Hyperparameter Description
hidden_size Size of hidden layer

D.1.5 LSTM

Table D.6: Hyperparameters for LSTM Architecture

Hyperparameter Description
hidden_size Size of hidden layer

D.1.6 LMU

Table D.7: Hyperparameters for LMU Architecture

Hyperparameter Description
order Maximum degree of Legendre polynomials
theta Size of the sliding window

hidden_size Size of hidden layer
memory_size Size of memory layer

D.1.7 L-RNN

Table D.8: Hyperparameters for L-RNN (Leaky/Synaptic) Architecture

Hyperparameter Description
... RNN Hyperparameters (refer to Table D.5)

beta_hidden β value for hidden population neurons
alpha_hidden α value for hidden population neurons

threshold_hidden Threshold value for hidden population neurons
beta_output β value for the output population neurons
alpha_output α value for the output population neurons

threshold_output Threshold value for output population neurons

105

Hyperparameters

D.1.8 L2MU

Table D.9: Hyperparameters for L2MU (Leaky/Synaptic) Architecture

Hyperparameter Description
... LMU Hyperparameters (refer to Table D.7)

beta_spk_u β value for encoder population neurons
alpha_spk_u α value for encoder population neurons

threshold_spk_u Threshold value for encoder population neurons
beta_spk_h β value for hidden population neurons
alpha_spk_h α value for hidden population neurons

threshold_spk_h Threshold value for hidden population neurons
beta_spk_m β value for memory population neurons
alpha_spk_m α value for memory population neurons

threshold_spk_m Threshold value for memory population neurons

D.2 Hyperparameters’ Value

D.2.1 LSTM

Hyperparameter Value

lr 0.0023
batch_size 256.0
hidden_size 250.0

Table D.10: Hyperparameters value for LSTM

D.2.2 LMU

Hyperparameter Value

lr 0.00035
batch_size 256
order 9
theta 3.2
hidden_size 200
memory_size 190

Table D.11: Hyperparameters value for LMU

106

D.2 – Hyperparameters’ Value

D.2.3 RNN

Hyperparameter Value

lr 0.0003
batch_size 256
hidden_size 230

Table D.12: Hyperparameters value for RNN

D.2.4 L2MU

Leaky

Hyperparameter Value
lr 0.0005
batch_size 256
order 8.0
theta 13.4
hidden_size 280
memory_size 140
beta_spk_u 0.4
threshold_spk_u 0.15
beta_spk_h 0.2
threshold_spk_h 0.65
beta_spk_m 0.55
threshold_spk_m 0.9
beta_spk_output 0.7
threshold_spk_output 0.75

Table D.13: Hyperparameters for
L2MU (Leaky)

Synaptic

Hyperparameter Value
lr 0.00085
batch_size 64
order 8
theta 1.1
hidden_size 230
memory_size 210
beta_spk_u 0.75
alpha_spk_u 0.55
threshold_spk_u 0.5
beta_spk_h 0.15
alpha_spk_h 0.2
threshold_spk_h 0.7
beta_spk_m 0.5
alpha_spk_m 0.4
threshold_spk_m 0.5
beta_spk_output 0.7
alpha_spk_output 0.25
threshold_spk_output 0.75

Table D.14: Hyperparameters for
L2MU (Synaptic)

107

Hyperparameters

D.2.5 Encoded L2MU

Leaky

Hyperparameter Value
lr 0.0009
batch_size 256
pop_size 50
beta_spk_x_acc 0.85
threshold_spk_x_acc 2.75
beta_spk_x_gyro 0.7
threshold_spk_x_gyro 3.95
beta_spk_y_acc 0.2
threshold_spk_y_acc 2.05
beta_spk_y_gyro 0.65
threshold_spk_y_gyro 0.45
beta_spk_z_acc 0.45
threshold_spk_z_acc 0.3
beta_spk_z_gyro 0.2
threshold_spk_z_gyro 0.2
order 9
theta 17.9
hidden_size 190
memory_size 130
beta_spk_u 0.8
threshold_spk_u 0.8
beta_spk_h 0.2
threshold_spk_h 0.8
beta_spk_m 0.35
threshold_spk_m 0.85
beta_spk_output 0.5
threshold_spk_output 0.35

Table D.15: Hyperparameters for En-
coded L2MU (Leaky)

Synaptic

Hyperparameter Value
lr 0.00185
batch_size 128
pop_size 30
beta_spk_x_acc 0.15
alpha_spk_x_acc 0.55
threshold_spk_x_acc 4.0
beta_spk_x_gyro 0.15
alpha_spk_x_gyro 0.45
threshold_spk_x_gyro 3.4
beta_spk_y_acc 0.65
alpha_spk_y_acc 0.65
threshold_spk_y_acc 2.2
beta_spk_y_gyro 0.75
alpha_spk_y_gyro 0.5
threshold_spk_y_gyro 0.45
beta_spk_z_acc 0.2
alpha_spk_z_acc 0.25
threshold_spk_z_acc 0.25
beta_spk_z_gyro 0.75
alpha_spk_z_gyro 0.65
threshold_spk_z_gyro 0.3
order 8
theta 19.2
hidden_size 190
memory_size 200
beta_spk_u 0.25
alpha_spk_u 0.4
threshold_spk_u 0.5
beta_spk_h 0.3
alpha_spk_h 0.15
threshold_spk_h 0.75
beta_spk_m 0.15
alpha_spk_m 0.2
threshold_spk_m 0.85
beta_spk_output 0.35
alpha_spk_output 0.4
threshold_spk_output 0.8

Table D.16: Hyperparameters for En-
coded L2MU (Synaptic)

108

D.2 – Hyperparameters’ Value

D.2.6 Multi-Encoded L2MU

Leaky

Hyperparameter Value
lr 0.0014
batch_size 128
pop_size 30
encoding_size 170
output_transformer_size 10
beta_spk_x_acc 0.55
threshold_spk_x_acc 4.7
beta_spk_x_gyro 0.6
threshold_spk_x_gyro 3.8
beta_spk_y_acc 0.2
threshold_spk_y_acc 3.95
beta_spk_y_gyro 0.25
threshold_spk_y_gyro 0.3
beta_spk_z_acc 0.3
threshold_spk_z_acc 0.2
beta_spk_z_gyro 0.3
threshold_spk_z_gyro 0.35
beta_spk_encoder 0.7
threshold_spk_encoder 0.85
beta_spk_decoder 0.2
threshold_spk_decoder 0.4
order 7
theta 13.6
hidden_size 60
memory_size 150
beta_spk_u 0.3
threshold_spk_u 0.3
beta_spk_h 0.8
threshold_spk_h 0.7
beta_spk_m 0.35
threshold_spk_m 0.25
beta_spk_output 0.35
threshold_spk_output 0.3

Table D.17: Hyperparameters for
Multi-Encoded L2MU (Leaky)

Synaptic

Hyperparameter Value
lr 0.0009
batch_size 128
pop_size 30
encoding_size 180
output_transformer_size 10
beta_spk_x_acc 0.75
alpha_spk_x_acc 0.6
threshold_spk_x_acc 2.05
beta_spk_x_gyro 0.85
alpha_spk_x_gyro 0.55
threshold_spk_x_gyro 3.55
beta_spk_y_acc 0.3
alpha_spk_y_acc 0.15
threshold_spk_y_acc 1.55
beta_spk_y_gyro 0.15
alpha_spk_y_gyro 0.15
threshold_spk_y_gyro 0.1
beta_spk_z_acc 0.45
alpha_spk_z_acc 0.25
threshold_spk_z_acc 0.25
beta_spk_z_gyro 0.1
alpha_spk_z_gyro 0.5
threshold_spk_z_gyro 0.25
beta_spk_encoder 0.65
alpha_spk_encoder 0.35
threshold_spk_encoder 0.85
beta_spk_decoder 0.3
alpha_spk_decoder 0.6
threshold_spk_decoder 0.25
order 8
theta 1.8
hidden_size 180
memory_size 230
beta_spk_u 0.25
alpha_spk_u 0.25
threshold_spk_u 0.3
beta_spk_h 0.7
alpha_spk_h 0.65
threshold_spk_h 0.6
beta_spk_m 0.15
alpha_spk_m 0.75
threshold_spk_m 0.5
beta_spk_output 0.5
alpha_spk_output 0.15
threshold_spk_output 0.6

Table D.18: Hyperparameters for
Multi-Encoded L2MU (Synaptic)

109

Hyperparameters

D.2.7 L-RNN

Leaky

Hyperparameter Value
lr 0.0017
batch_size 128
hidden_size 280
beta_hidden 0.3
threshold_hidden 0.2
beta_output 0.25
threshold_output 0.4

Table D.19: Hyperparameters for L-
RNN (Leaky)

Synaptic

Hyperparameter Value
lr 0.00075
batch_size 256
hidden_size 260
alpha_hidden 0.15
beta_hidden 0.15
threshold_hidden 0.95
alpha_output 0.3
beta_output 0.6
threshold_output 0.75

Table D.20: Hyperparameters for L-
RNN (Synaptic)

D.2.8 Encoded L-RNN

Leaky

Hyperparameter Value
lr 0.001
batch_size 64
pop_size 40
beta_spk_x_acc 0.45
threshold_spk_x_acc 1.0
beta_spk_x_gyro 0.1
threshold_spk_x_gyro 3.45
beta_spk_y_acc 0.6
threshold_spk_y_acc 3.2
beta_spk_y_gyro 0.3
threshold_spk_y_gyro 0.45
beta_spk_z_acc 0.45
threshold_spk_z_acc 0.45
beta_spk_z_gyro 0.2
threshold_spk_z_gyro 0.5
hidden_size 300
beta_hidden 0.4
threshold_hidden 0.6
beta_output 0.6
threshold_output 0.4

Table D.21: Hyperparameters for En-
coded L-RNN (Leaky)

Synaptic

Hyperparameter Value
lr 0.00075
batch_size 128
pop_size 30
alpha_spk_x_acc 0.65
beta_spk_x_acc 0.35
threshold_spk_x_acc 0.7
alpha_spk_x_gyro 0.65
beta_spk_x_gyro 0.2
threshold_spk_x_gyro 2.5
alpha_spk_y_acc 0.4
beta_spk_y_acc 0.3
threshold_spk_y_acc 2.7
alpha_spk_y_gyro 0.5
beta_spk_y_gyro 0.35
threshold_spk_y_gyro 0.25
alpha_spk_z_acc 0.5
beta_spk_z_acc 0.5
threshold_spk_z_acc 0.2
alpha_spk_z_gyro 0.4
beta_spk_z_gyro 0.4
threshold_spk_z_gyro 0.15
hidden_size 240
alpha_hidden 0.3
beta_hidden 0.4
threshold_hidden 0.7
alpha_output 0.65
beta_output 0.75
threshold_output 0.75

Table D.22: Hyperparameters for En-
coded L-RNN (Synaptic)

110

D.2 – Hyperparameters’ Value

D.2.9 Multi-Encoded L-RNN

Leaky

Hyperparameter Value
lr 0.0007
batch_size 128
pop_size 30
encoding_size 120
output_transformer_size 26
beta_spk_x_acc 0.65
threshold_spk_x_acc 3.75
beta_spk_x_gyro 0.45
threshold_spk_x_gyro 2.55
beta_spk_y_acc 0.4
threshold_spk_y_acc 1.2
beta_spk_y_gyro 0.4
threshold_spk_y_gyro 0.15
beta_spk_z_acc 0.4
threshold_spk_z_acc 0.45
beta_spk_z_gyro 0.7
threshold_spk_z_gyro 0.25
beta_spk_encoder 0.2
threshold_spk_encoder 0.45
beta_spk_decoder 0.4
threshold_spk_decoder 0.55
hidden_size 190
beta_hidden 0.3
threshold_hidden 0.7
beta_output 0.7
threshold_output 0.9

Table D.23: Hyperparameters for
Multi-Encoded L-RNN (Leaky)

Synaptic

Hyperparameter Value
lr 0.00055
batch_size 64
pop_size 30
encoding_size 180
output_transformer_size 30
alpha_spk_x_acc 0.65
beta_spk_x_acc 0.4
threshold_spk_x_acc 4.05
alpha_spk_x_gyro 0.3
beta_spk_x_gyro 0.5
threshold_spk_x_gyro 4.8
alpha_spk_y_acc 0.35
beta_spk_y_acc 0.15
threshold_spk_y_acc 1.25
alpha_spk_y_gyro 0.25
beta_spk_y_gyro 0.6
threshold_spk_y_gyro 0.2
alpha_spk_z_acc 0.3
beta_spk_z_acc 0.25
threshold_spk_z_acc 0.3
alpha_spk_z_gyro 0.3
beta_spk_z_gyro 0.5
threshold_spk_z_gyro 0.3
alpha_spk_encoder 0.4
beta_spk_encoder 0.1
threshold_spk_encoder 0.55
alpha_spk_decoder 0.55
beta_spk_decoder 0.25
threshold_spk_decoder 0.75
hidden_size 60
alpha_hidden 0.6
beta_hidden 0.3
threshold_hidden 0.25
alpha_output 0.2
beta_output 0.35
threshold_output 0.8

Table D.24: Hyperparameters for
Multi-Encode L-RNN (Synaptic)

111

112

Acknowledgements

We acknowledge a contribution from the Italian National Recovery and Resilience
Plan (NRRP), M4C2, funded by the European Union – NextGenerationEU (Project
IR0000011, CUP B51E22000150006, “EBRAINS-Italy”).

113

114

Bibliography

[1] Sina Dami and Mahtab Yahaghizadeh. «Predicting cardiovascular events with
deep learning approach in the context of the internet of things». In: Neural
Computing and Applications 33 (2021). doi: 10.1007/s00521-020-05542-x.

[2] Nicole A Capela, Edward D Lemaire, and Natalie Baddour. «Feature Se-
lection for Wearable Smartphone-Based Human Activity Recognition with
Able bodied, Elderly, and Stroke Patients». In: PLOS ONE 10 (2015). doi:
10.1371/journal.pone.0124414.

[3] Hoda Allahbakhshi et al. «Using accelerometer and GPS data for real-life
physical activity type detection». In: Sensors (Switzerland) 20 (2020). doi:
10.3390/s20030588.

[4] Enea Ceolini et al. «Hand-Gesture Recognition Based on EMG and Event-
Based Camera Sensor Fusion: A Benchmark in Neuromorphic Computing».
In: Frontiers in Neuroscience 14 (2020). doi: 10.3389/fnins.2020.00637.

[5] Andrea E. Frank, Alyssa Kubota, and Laurel D. Riek. «Wearable activity
recognition for robust human-robot teaming in safety-critical environments
via hybrid neural networks». In: 2019 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). 2019. doi: 10.1109/IROS40897.
2019.8968615.

[6] Farzana Kulsoom et al. «A review of machine learning-based human activity
recognition for diverse applications». In: Neural Computing and Applications
34 (2022).

[7] Oscar D. Lara and Miguel A. Labrador. «A Survey on Human Activity Recog-
nition using Wearable Sensors». In: IEEE Communications Surveys & Tuto-
rials 15 (2013). doi: 10.1109/SURV.2012.110112.00192.

[8] Anna Ferrari et al. «Trends in human activity recognition using smartphones».
In: Journal of Reliable Intelligent Environments 7 (2021). doi: 10.1007/
s40860-021-00147-0.

115

https://doi.org/10.1007/s00521-020-05542-x
https://doi.org/10.1371/journal.pone.0124414
https://doi.org/10.3390/s20030588
https://doi.org/10.3389/fnins.2020.00637
https://doi.org/10.1109/IROS40897.2019.8968615
https://doi.org/10.1109/IROS40897.2019.8968615
https://doi.org/10.1109/SURV.2012.110112.00192
https://doi.org/10.1007/s40860-021-00147-0
https://doi.org/10.1007/s40860-021-00147-0

BIBLIOGRAPHY

[9] Henry Friday Nweke et al. «Deep learning algorithms for human activity
recognition using mobile and wearable sensor networks: State of the art and
research challenges». In: Expert Systems with Applications 105 (2018). doi:
10.1016/j.eswa.2018.03.056.

[10] Salwa O. Slim et al. «Survey on Human Activity Recognition based on Accel-
eration Data». In: International Journal of Advanced Computer Science and
Applications 10 (2019). doi: 10.14569/IJACSA.2019.0100311.

[11] Florenc Demrozi et al. «Human Activity Recognition Using Inertial, Phys-
iological and Environmental Sensors: A Comprehensive Survey». In: IEEE
Access 8 (2020). doi: 10.1109/ACCESS.2020.3037715.

[12] Nida Saddaf Khan and Muhammad Sayeed Ghani. «A Survey of Deep Learn-
ing Based Models for Human Activity Recognition». In: Wireless Personal
Communications (2021). doi: 10.1007/s11277-021-08525-w.

[13] Wolfgang Maass. «Networks of spiking neurons: The third generation of neu-
ral network models». In: Neural Networks 10 (1997). doi: 10.1016/S0893-
6080(97)00011-7.

[14] Mike Davies et al. «Loihi: A Neuromorphic Manycore Processor with On-Chip
Learning». In: IEEE Micro 38 (2018). doi: 10.1109/MM.2018.112130359.

[15] Garrick Orchard et al. «Efficient Neuromorphic Signal Processing with Loihi
2». In: IEEE Workshop on Signal Processing Systems (SiPS). Vol. 2021-
Octob. 2021. doi: 10.1109/SiPS52927.2021.00053.

[16] Simon F. Müller-Cleve et al. «Braille letter reading: A benchmark for spatio-
temporal pattern recognition on neuromorphic hardware». In: Frontiers in
Neuroscience 16 (2022). doi: 10.3389/fnins.2022.951164.

[17] Gary M. Weiss. «WISDM Smartphone and Smartwatch Activity and Biomet-
rics Dataset». In: UCI Machine Learning Repository: WISDM Smartphone
and Smartwatch Activity and Biometrics Dataset Data Set 7 (2019).

[18] Gary M. Weiss, Kenichi Yoneda, and Thaier Hayajneh. «Smartphone and
Smartwatch-Based Biometrics Using Activities of Daily Living». In: IEEE
Access 7 (2019). doi: 10.1109/ACCESS.2019.2940729.

[19] Saeed Reza Kheradpisheh et al. «STDP-based spiking deep convolutional
neural networks for object recognition». In: Neural Networks 99 (Mar. 2018),
pp. 56–67. issn: 0893-6080. doi: 10.1016/j.neunet.2017.12.005. url:
http://dx.doi.org/10.1016/j.neunet.2017.12.005.

[20] Frederico A C Azevedo et al. «Equal numbers of neuronal and nonneuronal
cells make the human brain an isometrically scaled-up primate brain». en. In:
J. Comp. Neurol. 513.5 (Apr. 2009), pp. 532–541.

116

https://doi.org/10.1016/j.eswa.2018.03.056
https://doi.org/10.14569/IJACSA.2019.0100311
https://doi.org/10.1109/ACCESS.2020.3037715
https://doi.org/10.1007/s11277-021-08525-w
https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1109/SiPS52927.2021.00053
https://doi.org/10.3389/fnins.2022.951164
https://doi.org/10.1109/ACCESS.2019.2940729
https://doi.org/10.1016/j.neunet.2017.12.005
http://dx.doi.org/10.1016/j.neunet.2017.12.005

BIBLIOGRAPHY

[21] Geoffrey E. Hinton et al. Improving neural networks by preventing co-adaptation
of feature detectors. 2012. arXiv: 1207 . 0580 [id=’cs.NE’ fullname =′

NeuralandEvolutionaryComputing′isactive = Truealtname = Noneinarchive =′

cs′isgeneral = Falsedescription =′ Coversneuralnetworks, connectionism, geneticalgorithms, artificiallife, adaptivebehavior.RoughlyincludessomematerialinACMSubjectClassC.1.3, I.2.6, I.5.′].
[22] Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. «A fast learning

algorithm for deep belief nets». en. In: Neural Comput. 18.7 (July 2006),
pp. 1527–1554.

[23] G.E. Hinton and R.R. Salakhutdinov. «Reducing the Dimensionality of Data
with Neural Networks». In: Science (New York, N.Y.) 313 (Aug. 2006), pp. 504–
7. doi: 10.1126/science.1127647.

[24] D. Pham, Michael Packianather, and Eugine Charles. «A Novel Self-Organised
Learning Model with Temporal Coding for Spiking Neural Networks». In:
Intelligent Production Machines and Systems - 2nd I*PROMS Virtual In-
ternational Conference 3-14 July 2006 (Jan. 2007). doi: 10.1016/B978-
008045157-2/50057-2.

[25] Romain Brette et al. «Simulation of networks of spiking neurons: A review of
tools and strategies». In: Journal of computational neuroscience 23.3 (2007),
pp. 349–398.

[26] Wulfram Gerstner and Werner M Kistler. Spiking neuron models: Single neu-
rons, populations, plasticity. Cambridge University Press, 2002.

[27] Alan Lloyd Hodgkin and Andrew Fielding Huxley. «A quantitative descrip-
tion of membrane current and its application to conduction and excitation in
nerve». In: The Journal of physiology 117.4 (1952), pp. 500–544.

[28] Eugene M Izhikevich. «Which model to use for cortical spiking neurons?» In:
IEEE transactions on neural networks 15.5 (2004), pp. 1063–1070.

[29] Eugene M Izhikevich. Dynamical systems in neuroscience. MIT press, 2006.
[30] Nikola Kasabov et al. «Neucube: A spiking neural network architecture for

mapping, learning and understanding of spatio-temporal brain data». In:
Neural Networks 52 (2014), pp. 62–76.

[31] Wolfgang Maass and Anthony M Zador. «Dynamic stochastic synapses as
computational units». In: Neural Computation 11.4 (1999), pp. 903–917.

[32] Evelina Forno et al. «Spike encoding techniques for IoT time-varying signals
benchmarked on a neuromorphic classification task». In: Frontiers in Neuro-
science (2022).

[33] Filipp Akopyan et al. «TrueNorth: Design and Tool Flow of a 65 mW 1
Million Neuron Programmable Neurosynaptic Chip». In: IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 34.10 (2015),
pp. 1537–1557. doi: 10.1109/TCAD.2015.2474396.

117

https://arxiv.org/abs/1207.0580
https://arxiv.org/abs/1207.0580
https://arxiv.org/abs/1207.0580
https://doi.org/10.1126/science.1127647
https://doi.org/10.1016/B978-008045157-2/50057-2
https://doi.org/10.1016/B978-008045157-2/50057-2
https://doi.org/10.1109/TCAD.2015.2474396

BIBLIOGRAPHY

[34] Christian Mayr, Sebastian Hoeppner, and Steve Furber. SpiNNaker 2: A 10
Million Core Processor System for Brain Simulation and Machine Learning.
2019. arXiv: 1911.02385 [cs.ET]. url: https://arxiv.org/abs/1911.
02385.

[35] Mike Davies et al. «Loihi: A Neuromorphic Manycore Processor with On-
Chip Learning». In: IEEE Micro 38.1 (2018), pp. 82–99. doi: 10.1109/MM.
2018.112130359.

[36] Fabrizio Ottati et al. To Spike or Not To Spike: A Digital Hardware Perspec-
tive on Deep Learning Acceleration. 2024. arXiv: 2306.15749 [cs.NE].

[37] D. Anguita et al. «A Public Domain Dataset for Human Activity Recogni-
tion using Smartphones». In: The European Symposium on Artificial Neural
Networks. 2013.

[38] Jorge Luis Reyes-Ortiz et al. «Transition-Aware Human Activity Recognition
Using Smartphones». In: Neurocomputing 171 (2016).

[39] Friedrich Niemann et al. «LARa: Creating a Dataset for Human Activity
Recognition in Logistics Using Semantic Attributes». In: Sensors 20 (2020).
doi: 10.3390/s20154083.

[40] Jennifer R. Kwapisz, Gary M. Weiss, and Samuel A. Moore. «Activity recogni-
tion using cell phone accelerometers». In: ACM SIGKDD Explorations Newslet-
ter 12 (2011). doi: 10.1145/1964897.1964918.

[41] Robin M. Schmidt. Recurrent Neural Networks (RNNs): A gentle Introduction
and Overview. 2019. arXiv: 1912.05911 [cs.LG]. url: https://arxiv.org/
abs/1912.05911.

[42] Sepp Hochreiter and Jürgen Schmidhuber. «Long Short-term Memory». In:
Neural computation 9 (Dec. 1997), pp. 1735–80. doi: 10.1162/neco.1997.
9.8.1735.

[43] Sepp Hochreiter and Jürgen Schmidhuber. «Long Short-term Memory». In:
Neural computation 9 (Dec. 1997), pp. 1735–80. doi: 10.1162/neco.1997.
9.8.1735.

[44] Aaron R. Voelker, Ivana Kajic, and Chris Eliasmith. «Legendre memory
units: Continuous-time representation in recurrent neural networks». In: Ad-
vances in Neural Information Processing Systems 32.NeurIPS (2019). issn:
10495258.

[45] Vittorio Fra et al. «Human activity recognition: suitability of a neuromorphic
approach for on-edge AIoT applications». In: Neuromorphic Computing and
Engineering 2 (2022). doi: 10.1088/2634-4386/ac4c38.

118

https://arxiv.org/abs/1911.02385
https://arxiv.org/abs/1911.02385
https://arxiv.org/abs/1911.02385
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1109/MM.2018.112130359
https://arxiv.org/abs/2306.15749
https://doi.org/10.3390/s20154083
https://doi.org/10.1145/1964897.1964918
https://arxiv.org/abs/1912.05911
https://arxiv.org/abs/1912.05911
https://arxiv.org/abs/1912.05911
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1088/2634-4386/ac4c38

BIBLIOGRAPHY

[46] Carmen Amo Alonso, Jerome Sieber, and Melanie N. Zeilinger. State Space
Models as Foundation Models: A Control Theoretic Overview. 2024. arXiv:
2403.16899 [eess.SY]. url: https://arxiv.org/abs/2403.16899.

[47] Yu Du, Xu Liu, and Yansong Chua. Spiking Structured State Space Model
for Monaural Speech Enhancement. 2024. arXiv: 2309.03641 [cs.SD]. url:
https://arxiv.org/abs/2309.03641.

[48] Albert Gu, Karan Goel, and Christopher Ré. Efficiently Modeling Long Se-
quences with Structured State Spaces. 2022. arXiv: 2111.00396 [cs.LG]. url:
https://arxiv.org/abs/2111.00396.

[49] Jason K. Eshraghian et al. «Training Spiking Neural Networks Using Lessons
From Deep Learning». In: (2021).

[50] Jason Yik et al. NeuroBench: A Framework for Benchmarking Neuromorphic
Computing Algorithms and Systems. 2024. arXiv: 2304.04640 [cs.AI].

[51] Domenico Stefani, Simone Peroni, and Luca Turchet. «A comparison of deep
learning inference engines for embedded real-time audio classification». In:
Proceedings of the International Conference on Digital Audio Effects, DAFx.
Vol. 3. 2022.

119

https://arxiv.org/abs/2403.16899
https://arxiv.org/abs/2403.16899
https://arxiv.org/abs/2309.03641
https://arxiv.org/abs/2309.03641
https://arxiv.org/abs/2111.00396
https://arxiv.org/abs/2111.00396
https://arxiv.org/abs/2304.04640

	List of Figures
	List of Tables
	Introduction
	Background
	Spiking Neural Network
	Biologic Foundation of SNNs
	Spike Generation
	Spikes Transmission
	Spikes Encoding
	Neuromorphic Hardware and SNNs
	Neurons Dynamic as Synaptic Operations

	Human activity recognition
	Network Architectures
	RNN
	LSTM
	Legendre Memory Unit
	Focus on LMU

	snnTorch
	NeuroBench
	Metrics

	Edge Devices
	Edge Devices Characteristics
	Potential benefits of SNNs on Edge Devices

	Model compression
	Pruning
	Quantization

	Materials and methods
	Encoding module
	Single Encoder
	Stacked Encoder

	LIF-based LMU (L2MU)
	Activities selection and segmentation
	Hyperparameter optimization
	Selection of specific hyperparameters
	Model Statistics
	Model Compression
	Granular magnitude pruning
	Quantization

	Deployment on hardware

	Results and discussion
	Baseline
	LMU insights

	L2MU
	Leaky
	Synaptic
	Leaky vs. Synaptic Model
	L2MU vs LMU

	Encoded L2MU
	Leaky
	Synaptic
	Leaky vs Synaptic
	Encoded L2MU vs L2MU

	Multi-Encoded L2MU
	Leaky
	Synaptic
	Leaky vs. Synaptic
	Multi-Encode L2MU vs. Encoded L2MU

	Deployment of Multi-Encoded L2MU on Edge Devices

	Conclusion
	Conversion of RNN to LIF-based RNN
	Conversion Process of an RNN
	Results and Discussions
	L-RNN
	Encoded L-RNN
	Multi-Encoded L-RNN

	Learning Curves
	LSTM
	LMU
	RNN
	L2MU
	Encoded L2MU
	Multi-Encoded L2MU
	L-RNN
	Encoded L-RNN
	Multi-Encoded L-RNN

	Confusion Matrices
	LSTM
	LMU
	RNN
	L2MU
	Encoded L2MU
	Multi-Encoded L2MU
	L-RNN
	Encoded L-RNN
	Multi-Encoded L-RNN

	Hyperparameters
	Hyperparameters' Description
	Common Hyperparameters
	Output Hyperparameters for SNNs
	Encoder Hyperparameters
	RNN
	LSTM
	LMU
	L-RNN
	L2MU

	Hyperparameters' Value
	LSTM
	LMU
	RNN
	L2MU
	Encoded L2MU
	Multi-Encoded L2MU
	L-RNN
	Encoded L-RNN
	Multi-Encoded L-RNN

	Bibliography

