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Abstract

In the face of rapidly expanding unstructured data, organizations, especially small and
medium-sized enterprises (SMEs), require automated solutions that not only offer accu-
rate information extraction but also preserve data privacy. This thesis addresses such
needs by introducing a lightweight, open-source Large Language Model (LLM) pipeline
designed to extract structured "Rule Cards" from Italian grant and funding documents.
By running locally with models like Llama 3.1, the system mitigates potential privacy
risks associated with sharing data on external servers.

The proposed pipeline employs a modular approach encompassing PDF parsing,
Optical Character Recognition (OCR), chunk-based text segmentation, and domain-
specific prompt engineering. Compared to frontier models (e.g., GPT-4, Gemini Pro),
these smaller open-source models demonstrated competitive performance, as measured
by BERTScore, while retaining the advantages of reduced computational overhead and
on-premise deployment. On the other hand, some limitations exist: occasionally, missing
or incomplete information arose from overly long or imprecise instructions, and hallu-
cination occurred when the model attempted to generate details that were absent from
the source document. Despite these issues, the focused prompts and verification steps
minimized the impact of errors, underscoring the pipeline’s adaptability and potential in
real-world settings.

By highlighting the viability of lightweight LLMs for specialized tasks, this thesis
opens avenues for future research, such as fine-tuning multimodal models to enhance
OCR for Italian texts and expanding the pipeline to handle additional data types. Ul-
timately, the findings demonstrate that domain-tuned, open-source LLMs can effectively
extract structured information while maintaining privacy, offering a practical and scalable
solution for SMEs and other organizations.

Keywords: Large Language Models (LLMs), Information Extraction, Open-Source
Models, Italian Grant Documents, Domain-Specific Prompt Engineering
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Glossary

API Application Programming Interface is a software interface that enables communi-
cation and interaction between different programs.

Context window The model’s capacity to process text at once is usually determined
by the number of tokens it can handle.

Hallucination Hallucination occurs when Large Language Models (LLMs) generate re-
sponses that are misleading, factually incorrect, or entirely fabricated.

Inference Inference refers to the process of generating text using a generative LLM.

JSON JavaScript Object Notation is an open-standard format used for file and data
exchange. It employs human-readable text to represent data objects, which consist
of attribute-value pairs and arrays.

LLaMa Large Language Model Meta AI refers to a series of large language models
developed and released by Meta AI.

Temperature Temperature determines the level of randomness in the response.

Tokenization Tokenization is the process of breaking text into smaller units, such as
words, subwords, or characters, that the model can understand and process.
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Chapter 1

Introduction

This thesis explores how Artificial Intelligence (AI) and Large Language Models (LLMs)
can be used to extract information from unstructured data, with a focus on small and
medium enterprise (SMEs) documents. This is a critical challenge due to the rapid
increase in data across various formats, such as PDF files, Microsoft PowerPoint files, etc.
The research is conducted in collaboration with and supported by the CIM4.0 Competence
Center.

The aim of this chapter is to provide an overview of the subject, problem statement,
and the overall purpose of this study.

1.1 Motivation

ML and Neural Networks have roots in the 1950s. Over time, machine learning, partic-
ularly DL, has made significant advancements, often surpassing human performance in
fields like NLP, computer vision, medicine, robotics, and more [10].

In today’s fast-changing digital world, the demand for advanced AI systems is growing
rapidly. AI is not just about handling routine tasks but also about improving efficiency
and speeding up processes. As businesses and industries adopt AI to stay competitive,
there is a rising need for tools that can analyze and extract useful insights from large
amounts of unstructured data. These tools are transforming how companies work, make
decisions, interact with customers, and automate tasks across different industries [35].

1.2 Problem Statement

The digital age is marked by an explosion of data, much of which exists as unstructured
text from diverse sources. Extracting meaningful insights from this massive volume of
data is a crucial task [11].

On the one hand, organizations rely heavily on data from diverse sources such as
invoices, surveys, and legal documents to support their operations. Extracting relevant
information from this data, a process known as Information Extraction (IE), is crucial
for making informed decisions [5].
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Introduction

On the other hand, LLMs can be vulnerable to passive privacy leaks. Users may unin-
tentionally share sensitive information when inputting data into interfaces like ChatGPT.
For instance, Samsung Electronics faced incidents where confidential company data was
inadvertently exposed through ChatGPT on three separate occasions [48]. Such risks
have led many enterprises to avoid using proprietary LLMs and adopt a more cautious
approach, hesitating to share their data with these vendors.

This thesis proposes to explore the customization of LLMs for enterprises to develop
a specialized AI-application tailored to information extraction of particular unstructured
documents in a structured format.

1.3 Importance of the research

The customization of LLMs for AI applications holds significant implications for various
industries and domains. By tailoring the application to specific tasks or domains, organi-
zations can provide more efficient and personalized user interactions, leading to enhanced
customer satisfaction and productivity gains. This research contributes to expands the
possibilities of leveraging LLMs for real-world applications.

1.4 Research objectives

The objectives of this thesis are:

• To investigate the existing tools and techniques available for customizing LLMs for
specific tasks.

• To explore methods for processing domain-specific document formats, with a focus
on PDF documents.

• To develop a framework for integrating customized LLMs into a user-interface ap-
plication.

• To evaluate the performance and usability of the customized application.

1.5 Thesis structure

This chapter provided an overview of the research context and highlighted the importance
of incorporating LLMs for automating information extraction. The following chapters
will thoroughly examine the development, implementation, and effectiveness of LLM
applications within specific domains.

The second chapter lays the theoretical foundation by exploring essential concepts
in artificial intelligence and machine learning, with a specific focus on their applications
in natural language processing (NLP). This discussion is crucial for understanding how
Large Language Models (LLMs) are applied to extract information effectively. It also
reviews related works, highlighting advancements in the use of LLMs for information
extraction applications.

10



1.5 – Thesis structure

The third chapter details the scientific methodologies and outlines various implemen-
tation approaches discussed in the literature, with a specific emphasis on the method
utilized for developing the application presented in this thesis. This chapter details the
process followed for implementing the application. It specifically explains the develop-
ment approach, and provides a comprehensive description of the pipeline.

Chapter four introduces the benchmarking approach designed to assess the perfor-
mance of the LLM application in accurately and reliably extracting structured informa-
tion. This chapter also provides a detailed explanation of the evaluation methodology
used. Also, the error analysis has been used to highlight the areas that should be focused
on.

The fifth chapter summarizes the conclusions drawn from the implementation de-
scribed, challenges encountered during this research, and explores potential future imple-
mentations in this field.
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Chapter 2

Background and related works

This chapter establishes a foundational understanding of essential theoretical concepts
and examines recent advancements in key areas, including Artificial Intelligence (AI),
Natural Language Processing (NLP), Large Language Models (LLMs), also customiz-
ing LLM techniques including fine-tuning, Retrieval-Augmented Generation (RAG), and
prompt engineering.

2.1 Introduction to Artificial Intelligence

2.1.1 Artificial Intelligence (AI)

The world is currently experiencing unprecedented technological advancements, partic-
ularly in Artificial Intelligence (AI). AI is the science of replicating human abilities by
creating and using algorithms in dynamic computing environments. Its goal is to de-
velop machines capable of tasks that usually require human intelligence, such as decision-
making, problem-solving, language understanding, and pattern recognition [15].

In recent years, significant progress in AI has led to the development of tools like
ChatGPT, which generates text, and creates images and videos. These innovations have
made AI more accessible to the public and integrated it into daily life. Without such
tools, performing routine tasks can feel inefficient and outdated, emphasizing AI’s growing
importance in simplifying and modernizing everyday activities [8].

Also, European Commission’s Communication on AI, has defined it as systems that
can act smartly by understanding their surroundings and making decisions on their own to
reach certain goals. AI systems might be software-only, working in the digital world (like
voice assistants, tools for analyzing images, search engines, or systems for recognizing
speech and faces). AI can also be built into hardware, such as advanced robots, self-
driving cars, drones, or Internet of Things (IoT) devices [3].

13
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2.1.2 Machine Learning (ML)

Machine Learning (ML), a branch of Artificial Intelligence, uses algorithms to learn from
data, recognize patterns, and make decisions with minimal human input. Unlike tradi-
tional programming, which relies on predefined instructions, ML adapts based on the out-
comes of its actions, continuously improving its predictions with accumulated data [15].

Machine learning mainly involves creating and using computer algorithms in this
area. It focuses on identifying complex patterns in data and making accurate and useful
predictions based on those patterns [14].

ML is divided into four main types: supervised learning, unsupervised learning, semi-
supervised learning, and reinforcement learning. Supervised learning uses labeled data to
make predictions, while unsupervised learning identifies patterns in unlabeled data. Semi-
supervised learning combines both labeled and unlabeled data to guide classifications,
and reinforcement learning learns by trial and error to develop optimal strategies or
recommendations [8].

Common ML algorithms include neural networks, linear and logistic regression, clus-
tering, decision trees, and random forests. Its applications are vast, ranging from speech
recognition and customer service chatbots to computer vision, recommendation systems,
automated stock trading, and fraud detection [15].

2.1.3 Deep Learning (DL)

Artificial Neural Networks (ANNs) form the basis of Deep Learning (DL), a specialized
subset of machine learning. Modeled after the human brain, these networks consist of
interconnected nodes, or neurons, organized in layers. The goal is to mimic how biological
nervous systems process information through complex neural connections. Deep learning
has revolutionized machine learning by effectively handling diverse data types with mini-
mal human input while achieving high accuracy compared to traditional techniques [15].

The term "deep" in deep learning refers to the number of layers in an artificial neural
network (ANN). There are three types of layers: the input layer, which takes in the data;
the output layer, which gives the result; and hidden layers, which find patterns in the
data. A deep ANN has many hidden layers, unlike a simple ANN with just one hidden
layer, and can handle more complex tasks [26].

Key variants of deep learning include Convolutional Neural Networks (CNNs) and
Recurrent Neural Networks (RNNs). CNNs are designed for perceptual tasks like image
processing, analyzing pixel patterns to identify features and classify images. RNNs, on
the other hand, are built with looped connections that enable data to flow both forward
and backward, making them ideal for processing sequences like text, speech, or images.
They excel in tasks such as sentiment analysis, sequence prediction, and fraud detection,
where understanding the context of prior data is critical [8].

As data moves through the hidden layers, simple features combine to form more
complex ones. Deep learning works very well with unstructured data and is more accurate
than machine learning. However, it needs a lot of training data and costly hardware and
software to function effectively [26].
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2.1 – Introduction to Artificial Intelligence

2.1.4 Natural Language Processing (NLP)

Natural Language Processing (NLP), a branch of AI, centers on enabling computers to
interact with human language effectively. It involves creating algorithms and computa-
tional models that allow machines to understand, interpret, and generate language in
a meaningful and context-aware manner. NLP covers tasks such as language compre-
hension, sentiment analysis, translation, and speech recognition, aiming to bridge the
communication gap between humans and machines [10].

Information Extraction (IE) is an essential area of Natural Language Processing
(NLP) that transforms unstructured text into structured data, such as identifying en-
tities, relationships, and events. [47].

2.1.5 Generative AI

Generative AI, a subfield of artificial intelligence, focuses on developing models capable of
creating new and coherent data based on input [41]. It includes systems that can generate
various forms of content, such as text, sound, and visual media, trained on either real
or synthetic datasets. A prominent example of generative AI is Generative Adversarial
Networks (GANs), which excel in producing images, videos, and even literary content,
showcasing its versatility across multiple domains [22].

Figure 2.1. Relationship between AI, ML, DL, NLP, and LLM.
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2.2 Introduction to LLMs

Language Modeling (LM) is a core task in NLP focused on predicting the next word
or character in a sequence. It involves creating algorithms and models capable of un-
derstanding and generating coherent human language. The main goal is to learn the
probability distribution of words in a language, enabling the model to generate new text,
complete sentences, and estimate the likelihood of various word sequences [20].

Large Language Models (LLMs) are advanced language models powered by neural
networks with billions of parameters. They are trained on massive amounts of unlabeled
text data through a self-supervised learning approach, enabling them to understand and
generate complex and contextually accurate text [36]. The development of Large Lan-
guage Models (LLMs) advanced significantly with the introduction of the Transformer
architecture in 2017, presented in the groundbreaking paper "Attention is All You Need"
by Vaswani et al [43]. This architecture, based on the self-attention mechanism, improved
the handling of long-range dependencies in language while enabling efficient parallel train-
ing across multiple GPUs. This innovation made it feasible to train much larger models
and marked a turning point in NLP [20].

2.2.1 Architecture of transformer model

The Transformer architecture serves as the foundation of LLMs, designed to efficiently
process sequential data without relying on iterative methods. Instead, it uses an attention-
based mechanism to identify global input-output relationships. This allows the model to
handle inputs of varying lengths and adjust its focus accordingly. The architecture is
composed of seven key components, each contributing to its functionality [36].

The attention mechanism is a critical component of LLMs, enabling the model to
focus on the most relevant parts of the input data. Not all tokens equally contribute to
understanding the context or meaning of a sentence. The attention mechanism assigns
varying weights to token embeddings based on their importance within the context. For
example, in the sentence, ’The captain, against the suggestions of his crew, chose to
save the pirate because he was touched by his tale,’ key tokens like ’captain,’ ’save,’ and
’pirate’ are assigned higher weights as they are essential to the overall meaning. This
prioritization of significant components enhances the model’s ability to interpret and
generate contextually accurate outputs.

The Transformer architecture processes text data by breaking it into tokens (words
or sub-words), converting these into numerical representations called input embeddings.
These embeddings operate like a dictionary, enabling the model to grasp the meaning
of words by positioning them in a mathematical space where similar phrases are placed
near each other. The model is trained to create these embeddings such that vectors of
the same dimensions represent words with comparable meanings. Positional encoding
adds sequence information, ensuring the model understands word order, which is vital
for grammatical and semantic accuracy.

The encoder processes input text using self-attention layers to create meaningful hid-
den states representing relationships within the input. The decoder, crucial for generating
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Figure 2.2. Architecture of transformer models [36].

output sequences, uses positional encoding and attention mechanisms to process embed-
dings and produce coherent text. In GPT models, the decoder functions independently,
leveraging a masked self-attention mechanism to predict sequences without explicitly us-
ing an encoder.

Input embeddings are transformed into output embeddings, ensuring the model’s pre-
dictions align with the input format. During training, the loss function adjusts model
parameters to reduce errors and improve accuracy. The linear layer and softmax func-
tion transform output embeddings into a probability distribution over vocabulary tokens,
generating final outputs.

Transformers rely on core components such as tokenization, attention mechanisms,
positional encoding, encoders, and decoders, combined with advanced training techniques,
to generate accurate and contextually relevant text [36].

2.2.2 Taxonomy of LLM tasks

Large Language Models (LLMs) are useful for many natural language tasks like writing,
summarizing, translating, and finding information [20]. This section explains how LLMs
are used in different areas.

• Question Answering (QA): QA systems let people ask questions in plain language
and get direct answers. LLMs are important for making these systems strong and
reliable. They are first trained on a large amount of text and then adjusted using
specific question-answer datasets. This helps them understand questions and find
or create answers from text. QA systems powered by LLMs can be used in voice
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assistants, search engines, and other tools to give quick and clear answers through
natural conversations.

• Text Generation: LLMs can automatically create text for many purposes, like writ-
ing articles, blogs, research papers, social media posts, product descriptions, source
code, and emails. These models understand and generate natural language, pro-
ducing accurate and clear content.

• Language Translation: LLMs can translate text between languages with high accu-
racy and fluency.

• Text Classification: LLMs can organize and classify text into categories or top-
ics. This makes them useful for tasks like analyzing sentiment, detecting spam,
moderating content, and processing customer feedback.

• Summarization: LLMs can create summaries of content like news, research papers,
legal documents, and more. This is helpful for quickly understanding key informa-
tion.

• Chatbots and Virtual Assistants: LLMs play a big role in chatbots and virtual
assistants by understanding user questions, giving relevant answers, and holding
natural conversations. These tools help with customer support, recommendations,
answering queries, and automating tasks, improving user experience and efficiency.

• Information Extraction (IE): LLMs can pull out structured information from text
to create knowledge graphs. This helps businesses and organizations manage large
amounts of data more effectively.

• Dialogue Systems: LLMs are transforming how people interact with technology by
creating more engaging and efficient conversational experiences.

• Semantic Search: LLMs improve search systems by understanding the meaning
behind words instead of just matching keywords. This leads to more accurate and
useful search results.

• Speech Recognition: LLMs also help with converting spoken words into text, which
is important for voice assistants and transcription tasks [20].

2.2.3 Domain-specific applications of LLMs

Pre-trained LLMs can be fine-tuned or trained to handle specific tasks across different
fields. Research has shown their effective use in various areas like healthcare, finance,
education, forecasting, and natural language processing. These experiments are changing
how AI is used in these domains. This section explains how LLMs are applied in different
areas.

• Bio-Medical and Healthcare: GPT-3 is very helpful in healthcare. It can be trained
to handle customer service tasks, reducing the need for human staff. For example,
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robots powered by GPT-3 can replace human receptionists, which was especially
important during the COVID-19 pandemic to reduce infection risks.

• Education: According to Kasenci et al., LLMs have made a big difference in educa-
tion by supporting personalized learning, automating grading, and making educa-
tional resources more accessible. They can also create error-free essays, summaries,
and articles in different formats. XLNet is particularly useful for understanding
texts and documents, which benefits academic work.

• Social Media: LLMs improve various aspects of social media, including creating
content, moderating discussions, and analyzing sentiment. They can write posts,
classify text, and even generate full blogs and articles. Additionally, they perform
tasks like named entity recognition (NER) and provide content suggestions. They
also help identify and filter harmful or inappropriate content, creating a safer online
environment.

• Business: In business, LLMs enhance decision-making, production, operations, and
customer service. They assist companies in providing 24/7 support by answering
customer queries, offering advice, and analyzing market trends, customer senti-
ments, risks, and competition. Models like GPT, XLNet, and BERT help create
documents, product descriptions, and manage tasks efficiently, saving time and ef-
fort. Frederico et al. explored how ChatGPT can impact supply chain management.

• Agriculture: LLMs like GPT-3, BERT, and XLNet are highly useful in agriculture.
They analyze large datasets, including soil, crop, and weather data, as well as satel-
lite images. These models give advice on planting schedules, irrigation, fertilization,
and resource optimization. They also help farmers stay updated on market trends,
predict crop prices, anticipate natural disasters, and document agricultural data.

2.3 Foundation model selection criteria

When selecting a model, it is essential to consider factors such as its architecture, size
(number of parameters), and the diversity and scope of its training data. After identifying
a suitable base model, the next step involves determining an appropriate customization
method. Depending on the complexity of the task and the desired level of performance,
approaches such as fine-tuning, Retrieval-Augmented Generation (RAG), or prompt en-
gineering can be employed. [32].

Model size

The size of a model, typically measured by the number of parameters, plays a crucial role
in determining its performance and resource requirements. Larger models are capable
of capturing complex patterns and producing more accurate results but require greater
computational power for both training and inference. Selecting the appropriate model size
involves balancing the desired level of accuracy with available computational resources.
For simpler tasks or when resources are limited, smaller models may suffice, whereas
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more complex tasks often benefit from larger models. The number of parameters, which
represent the weights and biases adjusted during training, also provides an estimate of
the computational cost and inference speed. Generally, a higher number of parameters
increases the performance cost and slows down inference speed, making the choice of
model size dependent on the specific use case [32].

Modality

Modality refers to the type of data a model processes, such as audio, text, images, or
video (which combines audio and sequential images, making it inherently multimodal).
Traditionally, most AI models have been designed to handle a single type of data for a
specific task. In contrast, multimodal models can process and integrate multiple types
of data at the same time, enabling them to deliver more comprehensive and accurate
results [39].

Large Language Models (LLMs) represent the latest advancement in the effort to
make Artificial Intelligence (AI) understand and use human language effectively. Text is
the most common input for LLMs due to its abundance and ease of processing. However,
Multimodal Language Models (MLMs) are emerging as a promising area of AI research,
combining various input types to improve understanding and generate more sophisticated
responses [39].

Computational resources and model capability

A major challenge in customizing LLMs is achieving a balance between the available com-
putational resources and the desired model capabilities. Large models need substantial
computational power for both training and inference, which can be a significant limita-
tion for many organizations. Customization methods, such as fine-tuning and retrieval-
augmented generation, often require even more resources. To make LLM customization
more accessible, advancements in efficient training techniques and model architectures
are crucial [32].

Datasets for model training

Pre-training LLMs involves using diverse datasets to improve their generalization capa-
bilities. Commonly, these datasets include web text, conversational data, and books,
with additional specialized data, such as code or scientific information, to enhance per-
formance in specific domains. Below is a summary of key data sources often used for
LLM training [30]:

• Books: Datasets like BookCorpus and Gutenberg provide a variety of genres, includ-
ing novels, essays, poetry, and philosophy. These datasets help models understand
language across diverse topics and writing styles.

• CommonCrawl: CommonCrawl provides an extensive web archive that contains
over 250 billion web pages accumulated since 2007, with monthly updates that add
3 to 5 billion new pages. Due to the presence of low-quality data, pre-processing
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is essential. The widely used filtered datasets derived from CommonCrawl include
C4, CC-Stories, CC-News, and RealNews.

• Reddit Links: The Reddit system of user-voted posts makes it a valuable resource
to create high-quality data sets, using community moderation to filter content.

• Wikipedia: With comprehensive content on various topics, Wikipedia is extensively
used for training LLMs. Its availability in multiple languages makes it valuable for
multilingual training.

• Code: Publicly available code datasets are limited and primarily sourced from plat-
forms like GitHub and Stack Overflow through web scraping of open-source licensed
code.

These diverse datasets, when carefully curated and preprocessed, serve as founda-
tional resources for training LLMs to achieve broad language understanding and task
performance [30].

Model architecture

The Transformer architecture is ideal for scaling up models, with research showing that
increasing the size of models or training datasets significantly improves performance.
Modern LLMs, built on the Transformer framework, scale to tens of billions or even
trillions of parameters, pushing the limits of Pre-trained Language Model (PLM) perfor-
mance [30].

PLM architectures are categorized into Encoder-decoder and Decoder-only types, as
Encoder-only models are no longer used in recent LLMs. Here is an overview of the two
primary architectures:

• Encoder-decoder Architecture (Sequence-to-Sequence Models): This architecture
consists of an encoder, which encodes the input sequence using multiple layers of
Multi-Head Self-Attention, and a decoder, which generates output by attending
to the encoder’s representations. Encoder-decoder models, like T5, flan-T5, and
BART, are pre-trained by masking certain words in the input text and predicting
them. These models are ideal for tasks like translation, text summarization, and
generative question answering.

• Decoder-only Architecture (Autoregressive Language Models): Decoder-only mod-
els, such as GPT-4, rely solely on the decoder component of the Transformer. They
generate text by predicting the next word based on previous tokens, making them
well-suited for text generation tasks. This architecture includes two variants: the
Causal Decoder, which generates text step by step, and the Prefix Decoder, which
leverages additional context. Since 2021, most new LLMs have adopted the decoder-
only design, with companies like Microsoft still producing encoder-decoder models
while others focus on decoder-only systems [9].
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In summary, encoder-decoder models excel in tasks requiring understanding and gener-
ation, such as translation and summarization, while decoder-only models dominate text
generation tasks due to their autoregressive design.

Model series Type
GPT Decoder-only

LLaMa Decoder-only
Mistral Decoder-only

Bart Encoder-decoder
Falcon Decoder-only

Table 2.1. LLMs architecture types

Licenses

A commercially licensed model can be utilized for business applications, allowing it to be
integrated into a commercial platform for various purposes.

A proprietary license is a non-open source license that grants restricted rights to use
the software under specific terms and conditions. Typically, it requires users to pay a
fee or obtain permission for access and usage. Such licenses often include limitations on
how the software can be used or modified and may prohibit sharing or distributing the
software or its outputs without prior authorization.

Apache 2.0 License requires users to credit the original authors, include a copy of
the license, and disclose any modifications made to the software. Additionally, users are
prohibited from using the software’s trademarks or logos without prior permission.

Meta Llama Community License Agreement allows free usage for organizations with
fewer than 700 million users. However, it restricts the use of LLaMA outputs for training
other LLMs, except for LLaMA itself or its derivatives [49].

The Falcon License 2.0 is a modified version of the Apache 2.0 License, introduced for
the Falcon language model. This license includes additional clauses, notably an Accept-
able Use Policy (AUP) that users must adhere to. The AUP can be updated periodically,
and users are responsible for ensuring their compliance with the most current version [23].

Model Series License Usable for Commercial Purposes?
GPT-4 Closed-source Yes (via API access)
LLaMA Custom LLaMA License Yes (approval needed for large entities)
Mistral Apache 2.0 Yes
Falcon Custom Falcon License 2.0 Yes (Subject to accept use policy)

Table 2.2. Overview of LLMs and Their Licenses
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Cost of initial set-up

The initial setup cost includes expenses related to storing the model and processing
predictions for query requests.

• For API Access Solutions: Popular providers like OpenAI, Cohere, and Vertex AI
offer API access with varying pricing models based on the use case (e.g., sum-
marization, classification, embedding) and the selected model. Billing is typically
determined by the number of input tokens (input cost) and generated output to-
kens (output cost). In some cases, there may also be a charge per request. For
instance, using Cohere models for classification tasks costs 0.20 dollar per 1,000
classifications.

• For On-Premise Solutions: Hosting open-source models on-premise can be chal-
lenging due to the large size of model parameters, which places significant demands
on IT infrastructure. The primary setup cost involves establishing an appropriate
infrastructure capable of hosting the model [27].

Model Categories:

• Light-weight LLMs: With around 7 billion parameters, these can run locally on
personal computers.

• Large-sized LLMs: These require hosting on cloud platforms such as AWS, Google
Cloud Platform, or dedicated GPU servers due to their higher resource requirements
[27].

2.4 Strategies and techniques for customizing LLMs

Customizing Large Language Models (LLMs) for specific tasks or applications is essential
for their effective use across different domains. This process adjusts the model output to
match the required context, greatly improving its usefulness and efficiency. This section
explores key techniques for tailoring LLMs, emphasizing their importance and role in
improving performance for specialized tasks.

2.4.1 Fine-tuning

Transfer learning enables a model to apply the general knowledge it gained during pre-
training to a specific task. Pre-training provides the model with a broad understanding
of patterns and structures in data, which serves as a strong foundation. During transfer
learning, the model fine-tunes this knowledge, requiring minimal adjustments to per-
form well on the new task. This approach is more efficient than training a model from
scratch, as it needs less data and computational power, and it often delivers better re-
sults, especially when task-specific data is limited. This two-step process, pre-training
and fine-tuning is a key factor behind LLMs’ exceptional performance across diverse tasks
and data types.
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Fine-tuning involves taking a pre-trained model, like OpenAI’s GPT series, and train-
ing it further using a smaller dataset specific to a particular domain. This method
leverages the model’s existing knowledge to improve its performance on specialized tasks
while requiring less data and computational resources. By transferring the patterns and
features learned during pre-training, fine-tuning enhances task-specific performance and
minimizes the need for extensive training data. It is widely used in NLP tasks such as
text classification, sentiment analysis, and question-answering [33]. Fine-tuning adapts a
model’s knowledge for specific applications, such as text classification or language gener-
ation, by adjusting its parameters using task-specific data [10].

Supervised Fine-Tuning (SFT)

Supervised Fine-Tuning (SFT) adapts pre-trained foundational models, such as LLMs and
MLLMs, to domain-specific tasks by using labeled training data. While these models
are typically trained on large-scale unsupervised data, SFT adjusts their weights and
parameters to optimize performance on specific tasks within a particular domain [12].

SFT is a more efficient alternative to training a model from scratch, requiring less
training data and computational resources while achieving significant results. It simplifies
the process of aligning models with specialized tasks, making them highly effective in
domain-specific applications [12].

Transfer learning

Transfer learning improves machine learning performance on new tasks by utilizing the
knowledge of a pre-trained model. Instead of training from scratch, the model uses
previously learned representations as a foundation, saving time, data, and resources.
This method enhances accuracy and helps the model adapt more effectively to new tasks
or domains, leveraging prior learning to achieve better results on the target task [8].

Parameter-Efficient Fine-Tuning (PEFT)

Parameter Efficient Fine-Tuning (PEFT) optimizes the fine-tuning process by reducing
computational demands and training time, updating only a small subset of a pre-trained
model’s parameters while maintaining comparable performance to full fine-tuning. Unlike
traditional fine-tuning, which adjusts all model parameters, PEFT freezes most param-
eters and modifies specific parts, enabling efficient fine-tuning on standard consumer
hardware with significantly lower costs. It also mitigates risks like catastrophic forget-
ting [12].

• Low-Rank Adaptation (LoRA): LoRA applies low-rank updates to the model’s pa-
rameters, allowing for efficient fine-tuning on standard hardware. This approach
adjusts smaller matrices (LoRA adapters) to approximate the larger weight matrices
of the model [17].

• Quantized Low-Rank Adaptation (QLoRA): QLoRA extends LoRA by incorporat-
ing quantization, which reduces the precision of numerical values in the model, fur-
ther compressing the model while maintaining performance. It enables fine-tuning
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of large models, such as a 65B parameter model, using significantly less memory
(e.g., on a single 48GB GPU). By combining low-rank updates and quantization,
QLoRA reduces storage and memory requirements, making fine-tuning more effi-
cient [12].

Overall, PEFT approaches enhance the adaptability of Large Language Models for down-
stream tasks while saving computational resources and preserving model performance
[10].

2.4.2 Retrieval-Augmented Generation (RAG)

In mid-2020, Lewis et al. [29] introduced RAG (Retrieval-Augmented Generation), a
notable development in improving generative tasks using LLMs. RAG incorporates an
initial step where the model retrieves relevant information from an external data source
before generating text or answering questions. This approach enhances the accuracy and
relevance of outputs by integrating external data retrieval into the generative process. By
dynamically accessing knowledge bases during inference, RAG enables a more informed
and evidence-based text generation process, reducing the likelihood of hallucinations and
improving overall output quality [6].

A basic RAG pipeline can be divided in three sections including ingestion, retrieval,
and synthesis.

Ingestion

In this step, documents are divided into chunks (each chunk being a group of consecu-
tive sentences) using a text splitter. An embedding function then generates embeddings
for each chunk, creating an n-dimensional vector for every section. These chunks, along
with their corresponding embedding vectors, are stored in a vector database. The vec-
tor database facilitates the retrieval of relevant chunks based on a query, enabling effi-
cient processing of lengthy documents [4]. Alternatively, knowledge graphs (KGs) can
be used instead of vector databases for retrieval and generation processes. For example,
GraphRAG (Graph-based Retrieval-Augmented Generation) is an innovative method that
leverages KGs to improve NLP tasks like question-and-answer (QA) systems. By inte-
grating KGs with RAG techniques, GraphRAG enables more accurate and context-aware
responses using structured information extracted from financial documents. However,
it may underperform in abstractive QA tasks or when the question lacks an explicitly
mentioned entity [38].

Retrieval

In the Retrieval-Augmented Generation (RAG), efficient retrieval of relevant documents
from the data source is essential [16]. To identify information relevant to a user query,
the system generates an embedding for the query (an n-dimensional vector representation
of the query) and computes its similarity with the embeddings of all chunks in the vector
database. Common similarity metrics, such as cosine similarity, are used to rank the
chunks in descending order of relevance [10]. In contrast to traditional RAG, GraphRAG
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retrieves graph elements containing relational knowledge relevant to the query from a
pre-built graph database. These graph elements can include nodes, triples, paths, or
subgraphs, providing a structured approach to accessing and utilizing knowledge for an-
swering queries [34].

Synthesis (response generation)

Finally, after retrieval, the retrieved context is combined with the query to create a
prompt, which is then provided to the LLM. In this step, the model integrates the re-
trieved information with its pre-trained knowledge to produce coherent and contextually
appropriate responses [4].

Multi-modal RAG

The most prominent and widely used LLMs are primarily text-based, although some
include multi-modal capabilities. A specialized category of these models, known as vision
models, is designed to integrate text and image data into a unified embedding space.
Vision models enable seamless applications such as automatic text-to-image generation
and image captioning [12].

Image-grounded multi-modal LLMs (MLLMs), often referred to as Large Vision-
Language Models, typically consist of a vision encoder, a language encoder, and a cross-
modal alignment network. These models provide a more robust approach to multi-modal
generative AI compared to traditional text-based LLMs, some of which incorporate multi-
modal features as an add-on rather than being inherently designed for it [12].

Multimodal Retrieval-Augmented Generation (RAG) expands the capabilities of LLMs
by integrating text, images, audio, and video into the generation process. These systems
retrieve relevant information from external sources and incorporate it into the model’s
prompt, allowing for more accurate and context-aware responses. This approach is espe-
cially valuable for processing and generating content from various data formats.

There are different approaches to building multi-modal RAG pipelines:

• Embed all modalities into the same vector space: It simplifies integrating text and
images in a retrieval pipeline. Models like CLIP can encode both text and images
into the same vector space, allowing the use of text-only RAG infrastructure with
minimal adjustments. The main change involves swapping the embedding model
to support additional modalities. For generation tasks like question answering, the
large language model (LLM) is replaced with a Multimodal LLM (MLLM). While
this approach streamlines the pipeline, it requires a model capable of accurately
embedding diverse data types, including handling complex features like text within
images and detailed tables [42].

• Ground all modalities into one primary modality: It streamlines the retrieval and
processing pipeline by focusing on the dominant data type relevant to the appli-
cation. For instance, in a text-based QA system over PDFs, text is processed
conventionally, while images are preprocessed into text descriptions and metadata,
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with the original images stored for future reference. During inference, retrieval pri-
marily relies on the text descriptions and metadata, with answers generated using
a combination of LLMs and MLLMs, depending on the retrieved image type. This
approach leverages the rich metadata from images to answer objective questions ef-
fectively, avoiding the need to train new embedding models or re-rank results across
modalities. However, it comes with trade-offs, including the cost of preprocessing
and the potential loss of nuanced information from images [42].

• Have separate stores for different modalities: In this case, each modality is stored
independently, and queries retrieve the top-N chunks from each store. A multimodal
re-ranker then identifies the most relevant chunks across all modalities. This method
simplifies the modeling process by avoiding the need to align a single model across
multiple modalities. However, it introduces added complexity by requiring a re-
ranker to organize and prioritize the combined results from multiple modalities,
which can include up to M*N chunks (N chunks per M modalities) [42].

Multi-modal RAG
approaches

Ingestion Retrieving Generation

Embed all modalities
into the same vector
space

Multi-
modal
embedding

Retrieve raw image and text Multi-
modal
generation

Ground all modalities
into one primary modal-
ity

Text em-
bedding

Retrieve image summary and
text

Text gener-
ation

Have separate stores for
different modalities

Text em-
bedding

Retrieve image summary and
text + Raw image from docu-
ment store

Multi-
modal
generation

Table 2.3. Options to create multi-modal RAG

Advanced RAGs

Evaluating the components of a RAG system helps researchers pinpoint areas that need
improvement, enabling more efficient and accurate information retrieval and response
generation in LLMs. Although RAG is a practical addition to LLMs, its effectiveness
depends heavily on the relevance and accuracy of the retrieved documents and generation
[50]. This is where advanced RAG systems are needed.

• CRAG: Corrective Retrieval Augmented Generation (CRAG) is a lightweight re-
trieval evaluation system designed to assess the quality of documents retrieved for
a query. It provides a confidence score, which can trigger different knowledge re-
trieval actions. To address limitations of retrieval from static or restricted corpora,
large-scale web searches are incorporated to enhance retrieval results. Addition-
ally, an algorithm is used to refine retrieved documents, selectively extracting key
information while filtering out irrelevant details [50].
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• Self-RAG: Self-Reflective Retrieval-Augmented Generation (Self-RAG) improves
the quality and factual accuracy of language models by combining retrieval and
self-reflection. This approach trains a single language model to dynamically re-
trieve relevant passages as needed and reflect on both the retrieved content and
its own generated responses using special markers called reflection tokens. These
tokens make the model more controllable during inference, allowing it to adjust its
behavior to meet various task requirements [7].

2.4.3 Prompt engineering

Prompt engineering has become a key method for improving the performance of pre-
trained large language models (LLMs) and vision-language models (VLMs). It involves
creating task-specific instructions, called prompts, to guide the model’s output without
modifying its parameters. This approach enhances the adaptability of LLMs and VLMs,
enabling them to handle a wide variety of tasks and domains effectively [37].

Unlike traditional methods that require retraining or extensive fine-tuning, prompt
engineering adjusts model behavior through carefully crafted instructions, offering a more
efficient and flexible alternative. It allows these models to excel across diverse applications
without significant modifications. Continued research in this area introduces innovative
techniques, highlighting the growing importance of prompt engineering in shaping AI’s
adaptability and utility across sectors [37].

In-Context Learning (ICL)

In-context learning is a method where language models can learn tasks by being provided
with only a few examples as demonstrations [13]. In-context learning, introduced in the
original GPT-3 paper, enables language models to perform tasks by providing only a
few examples. In this approach, a prompt is created containing input-output pairs that
demonstrate the task. A test input is then added at the end of the prompt, and the model
predicts the next tokens based on the provided examples. To make accurate predictions,
the model must understand the input distribution (e.g., financial or general news), output
distribution (e.g., positive/negative sentiment or topics), input-output relationships (e.g.,
sentiment or topic classification), and formatting [46].

• Zero-shot prompting: Zero-shot prompting eliminates the need for extensive train-
ing data, instead relying on well-designed prompts to direct the model towards
performing new tasks. In this approach, the model is provided with a task descrip-
tion within the prompt but does not have labeled data for specific input-output
examples. The model then uses its pre-trained knowledge to make predictions for
the new task based solely on the given prompt.

• Few-shot prompting: Few-shot prompting involves providing a model with a small
number of input-output examples to help it understand a specific task, unlike zero-
shot prompting, which offers no examples. Even a few high-quality examples can
significantly improve model performance on complex tasks. However, including
these examples requires additional tokens, which can become a limitation for longer
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inputs. The selection and arrangement of examples in the prompt are also crucial, as
they can influence the model’s behavior, with potential biases like favoring common
words still affecting the results. While few-shot prompting enhances the capabilities
of large models, careful prompt design is essential to optimize performance and
minimize unintended biases [37].

• Instruction-based prompting: Instruction Prompting focuses on the ability of gener-
ative AI models, particularly large language models (LLMs), to follow instructions
written in natural language. This approach enables models to handle new and
previously unseen tasks by interpreting and executing these instructions without
needing task-specific training data.

Improve reasoning capabilities

Large Language Models (LLMs) often struggle with complex reasoning, which restricts
their potential. However, research has demonstrated that when prompted effectively,
sufficiently large models can develop reasoning abilities to address such challenges [37].

• Chain-of-thought (CoT): it reasoning enables LLMs to perform step-by-step rea-
soning, improving their ability to handle complex tasks through in-context learn-
ing. CoT prompting breaks problems into smaller steps, provides an interpretable
reasoning process, and is widely applicable to tasks like math problems, common-
sense reasoning, and symbolic manipulation. It can be easily implemented in large
pre-trained models by including CoT examples in few-shot prompts, making it a
valuable method for enhancing reasoning capabilities [45].

• Tree of Toughts (ToT): The Tree of Thoughts (ToT) approach builds upon and gen-
eralizes the Chain of Thoughts (CoT) method, enabling language models to explore
coherent units of text, referred to as ’thoughts,’ which act as intermediate steps in
problem-solving. ToT actively maintains a structured tree of these thoughts, where
each thought represents a meaningful language sequence. This structure allows the
model to self-evaluate progress by assessing how each intermediate idea contributes
to solving the problem through a deliberate reasoning process expressed in natural
language [51].

• ReAct: The ReAct approach enables the generation of reasoning traces and task-
specific actions in an interleaved manner, creating a stronger synergy between the
two. Reasoning traces help the model develop, monitor, and adjust action plans
while addressing exceptions. Actions, on the other hand, allow the model to interact
with external sources like knowledge bases or environments to gather additional
information. ReAct has been applied to a wide range of language and decision-
making tasks, demonstrating superior performance compared to state-of-the-art
methods while enhancing human interpretability and trust in the model [52].
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2.5 Tools for creating LLM applications

With the growing popularity of LLMs, numerous tools, techniques, and methods have
emerged for building LLM-based assistants. These tools vary in their level of control,
customization options, and ease of use. Below is a brief overview of some existing ap-
proaches for developing AI solutions using LLMs [10].

2.5.1 LLM-app platforms

An LLM App Platform is designed to simplify the creation, deployment, and optimiza-
tion of applications powered by Large Language Models (LLMs). These platforms offer a
comprehensive suite of tools and services that support building, evaluating, and deploy-
ing LLMs for various practical uses. They provide advanced language models and the
necessary infrastructure, including memory and computational resources, to facilitate a
wide range of applications such as chatbots, content generation, search optimization, and
data analysis. By leveraging these platforms, developers and businesses can seamlessly
integrate powerful AI capabilities into their products and services, ensuring efficient and
scalable performance. Additionally, these platforms are crucial for tasks like training,
fine-tuning, and deploying LLMs at scale, making them essential for NLP and machine
learning workflows.

Hugging Face

Hugging Face is a company focused on developing tools for building machine learning
applications. It is best known for its Transformers library, which is widely used for
natural language processing tasks. The platform also allows users to share machine
learning models and datasets, providing a dedicated space to showcase their projects.
Hugging Face additionally offers an implementation of the LoRA technique, which can
be used for fine-tuning models efficiently [10]. The Transformers library offers APIs and
tools to easily access and train state-of-the-art pre-trained models. Utilizing pre-trained
models can significantly lower computational costs, reduce environmental impact, and
save the time and resources needed to train a model from the ground up.

Open-AI platform

The OpenAI Developer Platform enables developers to create and utilize various AI
solutions powered by GPT models. It provides both a web-based graphical interface and
an API, supporting tasks such as fine-tuning GPT models and developing RAG-based
solutions [10].

Groq

Groq is designed to address the growing demand for AI model deployment and inference,
offering instant and efficient intelligence for developers and enterprises. It provides fast AI
inference both in the cloud and on-premises AI compute centers. The core of this technol-
ogy is the Groq Language Processing Unit (LPU), specifically built for AI inference and
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language tasks, unlike GPUs, which were originally created for graphics processing. The
LPU delivers high-speed performance, cost-effectiveness, and energy efficiency at scale.
Groq’s technology is accessible through GroqCloud for general users, while enterprises
and partners can opt for deployment in either cloud-based or on-premises AI compute
centers.

Ollama

One way to use open models is by downloading them from the Hugging Face platform and
running them through Python scripts. Alternatively, software like Ollama now provides
an easier method by enabling users to access these models within a dedicated environment.
With Ollama, users can specify the desired model or models and run them locally on their
computers without the need for complex scripting [19].

Llama.cpp

llama.cpp is an open-source C++ library by Georgi Gerganov that streamlines the deploy-
ment and inference of large language models (LLMs), addressing their high computational
demands. Its main goal is to optimize LLM performance using advanced quantization
techniques, reducing model size and computational requirements for faster and more
efficient inference. Supporting models like Meta AI’s LLaMA family, llama.cpp makes
LLMs accessible across various platforms, including personal computers, laptops, and mo-
bile devices, expanding their usability even in environments with limited computational
resources [31].

Bitnet.cpp

bitnet.cpp is an inference framework designed for 1-bit LLMs, such as BitNet b1.58
models. It enables lossless inference while optimizing speed and energy efficiency. The
initial version of bitnet.cpp supports inference on CPUs [44]. At the moment of writing
this thesis, bitnet.cpp only supports 3 models.

2.5.2 Vector databases

A vector database is a specialized type of database that stores data as high-dimensional
vectors, which are mathematical representations of features or attributes. The number of
dimensions in each vector can vary from tens to thousands, depending on the complexity
and detail of the data being represented [21].

Vector databases offer distinct advantages over traditional databases, particularly for
modern AI and data science applications:

• Efficient Similarity Search: Vector databases excel in finding similar or relevant
data using vector distances, enabling applications like natural language processing,
computer vision, and recommendation systems. Unlike traditional databases, which
rely on exact matches or predefined criteria, vector databases capture semantic and
contextual meanings.

31



Background and related works

• Support for Complex and Unstructured Data: They handle complex, unstruc-
tured data such as text, images, audio, and video by converting these into high-
dimensional vectors that represent their features or attributes. This flexibility over-
comes the limitations of rigid schemas in traditional databases.

• Scalability and High Performance: Vector databases are optimized for large-scale,
real-time data processing.

In summary, vector databases are highly suited for AI-driven tasks, offering efficient,
flexible, and scalable solutions for handling complex and large datasets [21].

2.5.3 LLM orchestration frameworks

LLM orchestration frameworks offer a high-level interface for managing and controlling
large language models (LLMs). These frameworks simplify complex tasks such as prompt
generation, resource management, and performance monitoring, allowing developers to in-
teract with LLMs more easily. By streamlining the development and deployment process,
orchestration frameworks enhance the performance, reliability, and efficiency of LLM-
based applications [28].

LlamaIndex

LlamaIndex is a framework designed to streamline the process of developing LLM-based
applications. These applications often face challenges in managing data from diverse
sources, which can vary widely in format, ranging from highly structured to unstructured.
LlamaIndex focuses on efficiency and simplicity, particularly in search and retrieval tasks,
offering a conversational interface for seamless interaction. More than just a tool, it
serves as an intuitive platform that enables developers to manage, search, and summarize
documents effectively by leveraging LLMs and innovative indexing techniques [18].

LangChain

LangChain is an open-source Python framework that provides a high-level API for de-
signing workflows with large language models (LLMs). It simplifies complex interactions
such as prompting, chaining, and conditional branching, making it easier to build and
deploy LLM-powered applications. By offering pre-built chains and essential building
blocks, LangChain streamlines the development process, enabling developers to create
LLM-based solutions efficiently and effectively [40].

LangGraph

LangGraph is a library designed for building stateful, multi-actor applications with LLMs,
supporting the creation of agent and multi-agent workflows. It stands out from other LLM
frameworks by offering key features: cycles, controllability, and persistence. Unlike DAG-
based solutions, LangGraph enables the definition of flows with cycles, which are essential
for agent-based architectures. As a low-level framework, it provides precise control over
both the workflow and application state, making it ideal for developing reliable agents.
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Additionally, LangGraph includes built-in persistence, supporting advanced features like
human-in-the-loop workflows and memory management. Built on top of LangChain,
LangGraph adds cyclic computational capabilities, allowing for more dynamic, agent-like
behaviors where LLMs can operate in loops and determine the next action iteratively.

2.6 Related work

The advent of Large Language Models (LLMs) marks a remarkable advancement in nat-
ural language processing, enabling sophisticated analysis and comprehension of complex
text data. Recent studies highlight their growing role in tasks like information extrac-
tion, where LLMs demonstrate the ability to identify, categorize, and summarize relevant
content with high accuracy. This section examines the advancements in LLM technol-
ogy, emphasizing their applications in automating processes such as document analysis,
data extraction, and knowledge representation, particularly in domains requiring nuanced
understanding, like legal and administrative documents.

2.6.1 Large Language Models for Generative Information Extraction:
A Survey

Xu, et all (2024) in their research showed that information extraction (IE) focuses on de-
riving structured knowledge from unstructured natural language texts. Recent advance-
ments in generative Large Language Models (LLMs) have showcased their exceptional
abilities in text comprehension and generation, inspiring the adoption of a generative
approach for IE tasks. Several studies have explored the integration of LLMs in this do-
main, offering insights into their application across various IE subtasks and techniques. A
comprehensive review of these developments highlights emerging trends, evaluates state-
of-the-art methods, and identifies potential research directions. These studies provide
valuable insights into techniques and opportunities for further exploration in the field [47].

2.6.2 Exploring Open Information Extraction for Portuguese Using
Large Language Models

The study conducted by Cabral, et all (2024), has revealed notable potential despite the
field’s primary focus on English. While OpenIE methods have been extensively optimized
for English, few studies investigate their cross-lingual and multilingual applications, with
Portuguese OpenIE remaining an underexplored area. Recent work has addressed this
gap by assessing the use of both open and commercial LLMs with few-shot prompt engi-
neering for Portuguese OpenIE tasks. The findings indicate that LLMs can achieve per-
formance metrics comparable to state-of-the-art systems. Moreover, advancements like
the development and fine-tuning of an open LLM model, PortOIE-Llama, demonstrate
that tailored models can outperform commercial alternatives, highlighting the promise of
LLMs in Portuguese OpenIE and the potential benefits of further refinement and training
of larger models in this context [11].
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2.6.3 Exploring the Potential of Lightweight LLMs for Medication and
Timeline Extraction

Fornasiere (2023), in his work, explores the significant growth in clinical text data due to
the widespread adoption of electronic health records, presenting both challenges and op-
portunities in healthcare. This unstructured data, crucial for enhancing clinical decisions,
research, and patient care, is cumbersome and time-consuming to process manually. His
dissertation investigates the use of simplified language models (LLMs) to automate the ex-
traction of medication and timeline information from clinical texts. He evaluated various
prompting techniques such as zero-shot, few-shot, and sequential prompting, alongside
different output formats. His findings indicate that LLMs are effective in extracting
medication details and adept at handling diverse date formats through strong contex-
tual understanding. He also introduced a line-number referencing system to improve the
transparency and reliability of the process. Fornasiere’s research demonstrates that fo-
cusing on prompt tuning rather than extensive model training can greatly enhance the
efficiency and accuracy of clinical data processing with LLMs [15].
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Chapter 3

Methodology

The methodology section explains the systematic approach used in this research, describ-
ing the main steps and components of the pipeline designed to extract medication and
timeline information from clinical texts. Additionally, a demo application is introduced
to demonstrate the pipeline’s features through an interface.

3.1 Case study
Manual data collection from unstructured sources is often time-consuming and labor-
intensive, particularly for Italian SMEs, which must dedicate significant effort to iden-
tifying suitable grants and funds by manually reviewing various documents. To address
this challenge, this case study explores the use of an LLM-enabled application to enhance
the efficiency and accuracy of data extraction. The proposed application processes PDF
files related to grants from Italian regions and extracts key information into a structured
JSON format, referred to as "Rule Card". This approach demonstrates the potential
of LLM-based systems in automating and streamlining the grant discovery process for
SMEs.

This thesis aims to develop an LLM-based application to extract a structured JSON
file for "Rule Card" with the following fields:

• titolo (title): A standardized title derived from the document, adhering to naming
conventions (e.g., provider, fund type, specific intervention). It includes:
Grant provider/type of funds/regional program/ministry (e.g., CSR, PR FESR, PR
FSE, CCIAA, Regional Law no./year, Foundation x, municipality of, etc.)
If present, the name of the grant (e.g., Digitalization Voucher Grant 2024)
Specific intervention/action (e.g., CSR 2023-2027. Interventions SRD01 and SRD02
or PR FESR Action 1.3.1.)
Type of contribution, choosing from the following: Non-repayable grant, low-interest
loan, zero-interest loan, guarantee, tax credit, tax bonus
Subject of the grant (e.g., non-repayable grant to support investments for SMEs
and professionals).
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If specified: year and/or edition of the grant

• SEO: A brief, plain-text summary combining the title and description for SEO
purposes.

• bandi-descrizione (grant description): Details about the general objectives, purpose,
and any specific project goals.

• candidati-idonei (eligible applicants): Information about eligible sectors, applicant
types, and special requirements.

• interventi-ammissibili (eligible interventions): A list of allowed projects or interven-
tions under the grant, including expense limitations.

• risorse-finanziarie (financial resources): Details about available funding options,
such as grants or loans, and their minimum/maximum limits.

• scadenza (deadline): Key dates, including the start and end dates for applications.

3.2 Choice of LLM
The goal is to select an open-source model while preserving privacy by avoiding data
sharing with third parties and maintaining full control over the data. Additionally, we
aim to minimize resource usage; therefore, models with light-weights are considered. The
selection prioritized models under 10 billion parameters, as this size aligned with the
objectives of this study.

LlaMa-3.1-8B

The Meta Llama 3.1 collection consists of multilingual large language models (LLMs)
available in 8B, 70B, and 405B parameter sizes, designed for both pretrained and instruction-
tuned generative tasks (text input/output). The instruction-tuned models are optimized
for multilingual dialogue applications and outperform many open-source and proprietary
chat models on key industry benchmarks.

Llama 3.1 is an auto-regressive language model built on an optimized transformer
architecture. Its tuned versions leverage supervised fine-tuning (SFT) and reinforcement
learning with human feedback (RLHF) to align with human preferences for helpfulness
and safety.

Model Details

• Developer: Meta

• Model Type: auto-regressive language model

• Language Support: English, German, French, Italian, Portuguese, Hindi, Spanish,
and Thai.

• Context window: 128K
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• License: A custom commercial license, the Llama 3.1 Community License.

• Release Date: July 2024

Mixtral-7B

Mixtral 7B is licensed under Apache 2.0. It outperforms Llama 2 70B on most benchmarks
while offering 6x faster inference. As one of the strongest open-weight models with a
permissive license, Mixtral provides excellent cost/performance trade-offs and matches
or exceeds GPT-3.5 on many standard benchmarks.

Model Details

• Developer: Mistral AI

• Model Type: Decoder only

• Language Support: multilingual

• Context length: 32K

• License: Apache 2.0

• Release Date: September 2023

Falcon3-7B-Instruct

This model achieves state-of-the-art performance (as of its release) in tasks involving
reasoning, language understanding, instruction following, coding, and mathematics. The
Falcon3-7B-Instruct variant supports four languages English, French, Spanish, and Por-
tuguese and offers a context length of up to 32K tokens.

Model Details

• Developer: Technology Innovation Institute (TII)

• Model Type: Causal decoder-only

• Language Support: English (EN), French (FR), Spanish (ES), Portuguese (PT)

• Context length: 32K

• License: TII Falcon-LLM License 2.0

• Release Date: December 2024

In summary, Falcon 7B do not support the Italian language, making it less suitable
for this project. On the other hand, Llama 3.1, is one of the newest models, offers the
longest context window, a crucial feature for this use case. The ability to process long
text from PDF files is essential for extracting information accurately, as it allows the
model to better understand the context and nuances of the text.
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3.3 Model customization
Techniques for customizing LLMs defined in previous chapter, in this section, they will be
compared to select the best technique for the case study, focusing on the advantages and
disadvantages of each technique. This comparison is essential for understanding when
and how to apply these methods effectively. Let’s dive into the comparison to uncover
what makes each approach unique [1].

Fine-tuning a language model is resource-intensive and costly but worthy for achieving
high accuracy in specific domains. It enables customization, improves relevance through
specialized datasets, and adapts to niche topics or recent information. However, it de-
mands significant computational power, advanced technical skills, and a well-curated
dataset.

• Pros: Customizable for specific domains or styles. Improves accuracy and relevance
with specialized datasets. Adapts to niche or updated information.

• Cons: High cost due to resource demands. Requires technical expertise in machine
learning. Needs a substantial and curated dataset.

Retrieval-Augmented Generation (RAG) is ideal for providing up-to-date and detailed
information by combining external data with the model’s capabilities. It balances ease
of use and customization but requires additional tools and computational resources. The
choice of vector database, significantly impacts cost and performance.

• Pros: Provides dynamic, relevant information and balances simplicity with cus-
tomization.

• Cons: Complex to implement, resource-intensive, and dependent on data quality.

Prompt Engineering is a simple and user-friendly approach that does not require
technical expertise, making it accessible to most users. While effective for general topics
and quick answers, it relies heavily on the model’s initial training and may not provide
the most specific or up-to-date information.

• Pros: Easy to use with minimal technical skills. Cost-effective with low computa-
tional requirements. Flexible, allowing quick adjustments to prompts.

• Cons: Inconsistent response quality depending on prompt phrasing. Limited cus-
tomization compared to fine-tuning. Outputs depend on the model’s existing knowl-
edge, reducing effectiveness for specialized or current topics.

To sum up, the selection of a customization technique for LLMs in this thesis prior-
itizes cost-effectiveness and practicality. Among the available approaches, prompt engi-
neering is the most suitable choice due to its minimal computational costs and ease of
use. Since the information extraction task in this research does not require the model
to learn highly specific or domain-focused tasks, the flexibility and efficiency of prompt
engineering make it an ideal solution. This approach allows the application to achieve
its objectives without the need for resource-intensive methods like fine-tuning or complex
integrations such as Retrieval-Augmented Generation.
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3.4 Pipeline definition

The Figure 3.1 illustrates the process designed for extracting information ("Rule Card")
from PDF files.

• lettore-documenti (document reader): This component verifies the document format
and proceeds with the workflow if the document is a PDF file. It is designed to
accommodate future development, allowing support for other document types with
customized workflows if required.

• pdf-parser: This component handles loading the document, parsing the PDF con-
tent, and dividing it into multiple chunks, if the provided PDF file is searchable.

• estrattore-immagini-llm (image extractor): For scanned PDF files, this component
extracts the pages as images using Pillow and PyMuPDF, which relies on Poppler-
utils for PDF manipulation. It checks the orientation of the images to optimize
text extraction. Tesseract OCR, along with PyTesseract configured for the Italian
language, is then used to extract text from the images. Finally, an LLM is utilized
to correct any OCR errors, ensuring the output is clean text.

• documenti-corretto (correct document): This component evaluates each text chunk
to determine whether it contains relevant information about grants and funds for
"Rule Card". If the entire document is unrelated, it prevents unnecessary LLM calls
and token usage, reducing costs. Additionally, chunks without relevant information
are filtered out to streamline further processing.

• estrattore (extractor): This component leverages the function-calling capabilities of
modern LLMs to extract structured information from text chunks.

• verificatore-formato (format verificator): This component performs a final check
on the extracted information, consolidates the outputs from different chunks, and
generates the final JSON-formatted result.

• estrai-json (JSON extractor): This component saves the final JSON file generated
from the input PDF.
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Figure 3.1. The pipeline
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Figure 3.2. The user interface of the application

The application provides a user-friendly interface that allows users to interact with the
model seamlessly. Through this interface, users can upload PDF files related to Italian
grants and funds and receive the extracted "Rule Card" in a structured format. Acting
as a wrapper around the pipeline, it offers a simple and intuitive way to interact with the
model and obtain the desired results. The interface is developed using Streamlit. The
Figure 3.2 shows a snapshot of the user interface.
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Chapter 4

Results

This chapter presents analysis of the experimental results aimed at evaluating the model’s
performance in extracting structured information from grant documents. It includes as-
sessments of precision, recall, and F1 score, providing insights into the model’s effective-
ness in identifying and organizing key grant-related data.

4.1 Benchmark

To evaluate the performance and accuracy of the proposed LLM-based application, a
custom benchmark was designed, tailored to the specific domain of Italian regional grants
and funds documents. The benchmark dataset is mined from official regional websites.
However, not all files were relevant to the scope of the application, as some contained
unrelated content or generic administrative information.

Dataset Preparation The preparation of the benchmark dataset involved a two-step
process:

• Document Filtering: Each document was preprocessed to extract text and subse-
quently analyzed to determine its relevance to grants and funds. This was achieved
using a relevance-checking module integrated into the pipeline. Only documents
deemed relevant based on their textual content were retained for further process-
ing.

• Ground Truth Creation: A subset of the filtered documents was manually annotated
to create a ground truth dataset. This involved identifying and extracting key
information such as title, deadline, financial resources, and other essential sections.
The ground truth data served as a baseline for comparison against the system’s
output.

4.2 Case study outcome

In this section, an example is provided to illustrate the input and output of the devel-
oped pipeline. While the dataset primarily consists of multi-page PDF documents, for
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Figure 4.1. The PDF file example

simplicity and clarity, a single-page PDF file is used as an input example, as shown in
Figure 4.1. This file is processed through the pipeline, demonstrating its capability to
extract structured information.

The corresponding output, a "Rule Card," is presented in Figure 4.2. This output
showcases the effectiveness of the pipeline in transforming unstructured data from the in-
put document into a structured JSON format, highlighting its functionality and practical
application.

4.3 Prompts
This section categorizes and identifies the prompts used throughout various stages of the
pipeline, aligning them with different prompt engineering techniques.

4.3.1 Zero-shot learning

Based on the "Rule card" format, the zero-shot learning prompt would be something like
Figure 4.3.

It is obvious that zero-shot learning in this case cannot be satisfying because the
keywords are very abstract and it would be hard for the model to extract desired output
without any further information.
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Figure 4.2. The extracted "Rule Card"

Prompt

Estrarre le seguenti informazioni dal testo:
- titolo
- SEO
- bandi-descrizione
- candidati-idonei
- interventi-ammissibili
- risorse-finanziarie
- scadenza
Fornire l’output in formato JSON.

Figure 4.3. Zero-shot prompt for JSON extraction
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4.3.2 Few-shot learning

OCR improvement

For the "estrattore-immagini-llm," which is responsible for extracting text from scanned
documents and improving OCR errors, this technique has been used, as shown in Fig-
ure 4.4.

Prompt

Correggi il seguente testo, eliminando tutti gli errori e artefatti OCR, assicurandoti
che scorra in modo coerente. Linee guida:
1. **Rimuovi caratteri strani o non necessari:** - Rimuovi combinazioni casuali di
caratteri speciali (es.: AA-, .:", etc.). - Elimina interruzioni di riga non necessarie
e spazi vuoti ridondanti. - Correggi errori comuni come "rn" letto erroneamente
come "m".
2. **Mantieni solo il testo utile:** - Mantieni titoli, sottotitoli e paragrafi originali.
- Non aggiungere contenuto o modificare il significato del testo.
3. **Correggi e verifica i valori numerici e monetari:** - Controlla i valori con
punti e virgole per rappresentare importi (es.: 5.000,00). - Assicurati che: - Le
cifre decimali siano dopo la virgola (es.: ’5.000,00’ per cinquemila/00 euro). -
Le cifre delle migliaia abbiano un punto (es.: ’5.000’ per cinquemila). - Non vi
siano errori come ’500.000’ al posto di ’5.000,00’. - Mantieni l’originale significato
dell’importo e segnalalo in caso di ambiguita’.
4. **Riformatta il testo:** - Mantieni la struttura coerente del contenuto originale.
- Assicurati che le frasi siano complete e leggibili.
5. **Evidenzia le correzioni ambigue:** - Se un errore OCR non puo essere corretto
con certezza (es.: importo numerico ambiguo), mantieni il valore piu probabile e
segnalalo.

Figure 4.4. Few-shot prompt for OCR improvement

Filtering documents

For the "documenti-corretto," which is used to filter out documents or chunks of text that
are not related to grants and funds, a few-shot learning prompt has been used, as shown
in Figure 4.5.

4.3.3 Instruction-based learning

Because of the characteristics of input and output of this application, using few-shot
prompting is not possible for the extraction part, so instead, an instruction of what
should have been done will be passed to the LLM.

It provides detailed instructions on how to approach the task, including specific fields
to extract and how to handle missing information. Unlike few-shot prompting, it does
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Prompt

Sei un assistente per il filtraggio di documenti. Verifica se nel testo sono presenti
informazioni chiave riguardanti le "Regole per la creazione delle schede di sintesi
dei bandi". Se le informazioni sono presenti, rispondi ’si’; altrimenti, rispondi ’no’.
Le informazioni chiave includono:
**Regole per la scrittura del titolo:** Il titolo deve seguire un formato standard-
izzato, includendo elementi come l’ente erogatore, il nome del bando, l’azione o
intervento specifico, il tipo di agevolazione e l’oggetto del bando.
**Esempi di titoli standardizzati:**
- "Fondo Regionale per la Crescita Campania. PR FESR Azione 1.3.1. Finanzi-
amento a fondo perduto e finanziamento agevolato a sostegno di investimenti per
PMI e professionisti FRC II Edizione."
- "CCIAA di Bergamo. Finanziamento a fondo perduto in sostegno a investimenti
delle imprese del settore apistico. Anno 2024."
**Descrizione del bando:** Obiettivi generali e specifici, inclusa la localizzazione
geografica dell’intervento.
**Soggetti beneficiari:** Chi puo partecipare e ricevere il sostegno, specificando le
caratteristiche dei beneficiari ed eventuali requisiti specifici.
**Tipologie di interventi ammissibili:** Interventi e spese ammissibili, obblighi dei
beneficiari, limiti di spesa e scadenze per la rendicontazione.
**Entita e forma dell’agevolazione:** Risorse finanziarie disponibili, tipo di
agevolazione (es. contributo a fondo perduto, finanziamento a tasso agevolato),
ripartizione delle risorse e limiti massimi e minimi.
**Scadenza:** Termine di apertura e chiusura per la presentazione delle domande.

Figure 4.5. Few-shot prompt for filtering texts

not include concrete examples of input-output pairs. Instead, it sets clear guidelines for
how to process and format the extracted information. It emphasizes schema adherence
(organizing data into a specific JSON format) and includes nuanced instructions, such as
handling empty fields and performing mathematical calculations. This style of prompt-
ing is common for defining precise behavior in LLM tasks, especially when the goal is
structured data extraction without relying on example demonstrations. It is sometimes
used in workflows involving orchestration frameworks to fine-tune task specifications.

Information extraction

Figure 4.6 shows the instruction-based prompt used to extract the desired information
from chunks of text.

Instruction-based learning can be useful in this case. Although it is a long prompt,
and it is going to fill a significant part of the model’s context window, it would be helpful
to guide the model to extract desired output.
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Prompt

Sei un assistente intelligente incaricato di analizzare il testo di un documento rel-
ativo alle bande di finanziamento e di estrarre le seguenti informazioni secondo lo
schema specificato. Il tuo compito e’ identificare e compilare ciascuno dei campi
richiesti basandoti sul contenuto fornito.
**Schema per il contenuto estratto (FormatoFinale):**
- **"titolo"**: stringa contenente il Fornitore di sovvenzioni, il nome della sovven-
zione, Intervento/azione specifica, Tipologia di contributo (Contributo a fondo
perduto, Finanziamento a tasso agevolato, Finanziamento a tasso zero, Garanzia,
Credito d’imposta, Bonus fiscale).
- **"SEO"**: stringa contenente il titolo del bando concatenato con la descrizione
in testo semplice (senza formattazione).
- **"bandi-descrizione"**: stringa contenente la descrizione del bando, inclusi obi-
ettivi generali e specifici, e eventuali parametri geografici.
- **"candidati-idonei"**: stringa contenente le informazioni su chi puo presentare
domanda, incluse caratteristiche dei richiedenti, requisiti specifici, e vincoli fi-
nanziari.
- **"interventi-ammissibili"**: stringa contenente le informazioni sugli interventi
ammissibili, obblighi per i beneficiari, spese ammissibili e finanziate, limiti di spesa,
e scadenze per la rendicontazione.
- **"risorse-finanziarie"**: stringa contenente le informazioni sulle risorse fi-
nanziarie disponibili, tipo di assistenza, allocazione delle risorse tra i beneficiari,
e limiti di allocazione. *(Sei un esperto di matematica per calcolare le operazioni
matematiche).*
- **"scadenza"**: stringa contenente le scadenze per la presentazione delle do-
mande.
**Istruzioni:**
1. Analizza attentamente il testo fornito.
2. Estrai le informazioni corrispondenti a ciascuno dei campi sopra elencati.
3. Organizza tutte le informazioni estratte in un oggetto JSON.

Figure 4.6. Instruction-based prompt for JSON extraction

Format verification

This prompt works as a verification step and finalizes the extracted information, ensuring
consistency and accuracy, as shown in Figure 4.7.
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Prompt

Sei un esperto nella convalida dell’estrazione di informazioni. I testi forniti per ogni
parola chiave sono aggregati da diversi blocchi di un documento, il che significa che
alcune sezioni potrebbero non contenere dettagli rilevanti o potrebbero includere
informazioni irrilevanti. Il tuo compito e’ quello di esaminare attentamente ogni
sezione per assicurarti che contenga le informazioni corrette e necessarie in base al
titolo, rimuovere qualsiasi contenuto estraneo che non si adatta e riassumere quelli
rilevanti.
**Per ogni sezione, assicurati che:**
- Contenga informazioni chiave pertinenti alla sua categoria.
- Non contenga informazioni non correlate o ridondanti.
- Sia coerente con il contesto generale del documento.
**Ecco le sezioni da esaminare:**
- **Titolo**: dovrebbe contenere il fornitore della sovvenzione, il nome della
sovvenzione, l’intervento specifico e il tipo di sovvenzione (ad esempio, "sovven-
zione", "credito d’imposta").
- **SEO**: dovrebbe essere costituito dal titolo e dalla descrizione della sovven-
zione, formattati come testo normale senza punti elenco o caratteri speciali.
- **Bandi-descrizione**: dovrebbe descrivere gli obiettivi generali e specifici della
sovvenzione, inclusi eventuali criteri di ammissibilita’ geografica.
- **Candidati-idonei**: dovrebbe specificare i candidati ammissibili, incluse le
caratteristiche e i criteri di ammissibilita’.
- **Interventi-ammissibili**: dovrebbe descrivere gli interventi ammissibili, gli ob-
blighi del beneficiario, le tempistiche, le spese minime e massime.
- **Risorse-finanziarie**: dovrebbe specificare le risorse finanziarie disponibili, il
tipo di intervento, la distribuzione tra i beneficiari e i limiti. *(Per questa parte
sei un esperto di matematica.)*
- **Scadenza**: dovrebbe indicare le scadenze per l’apertura e la chiusura delle
domande. Se non sei sicuro, scrivi "Le informazioni non sono state trovate".
**Rivedi ogni sezione e restituisci il contenuto essenziale e pertinente in dettaglio:**
- **Titolo**:
- **SEO**:
- **Bandi-descrizione**:
- **Candidati-idonei**:
- **Interventi-ammissibili**:
- **Risorse-finanziarie**:
- **Scadenza**: scadenza

Figure 4.7. Instruction-based prompt for verification of the extracted information

49



Results

4.4 Evaluation approach

This section describes the evaluation methodology used to assess the performance of the
LLM-based application for information extraction tasks. Evaluating the quality of the
model’s output proved to be one of the most challenging aspects of the research due to
the generative nature of LLMs [15].

Evaluation approaches:

• Automated Evaluation: This method uses predefined metrics and algorithms to
assess the performance of LLM applications without human intervention. It relies
on computational techniques to compare the LLM’s output with a reference or
specific criteria.

• Human Evaluation: This approach involves human judgment to assess the output
generated by LLMs, considering aspects that automated metrics cannot effectively
capture.

• LLM-Based Evaluation: A newer method where one LLM evaluates the output of
another. This approach utilizes the language understanding and generation capa-
bilities of LLMs, offering a more automated and potentially scalable alternative to
human evaluation.

The study by Bhashithe Abeysinghe and Ruhan Circi (2024) emphasizes that each
evaluation approach has its strengths and limitations. Automated evaluation is consistent
and repeatable but less reliable, human evaluation is highly accurate but costly and
subjective, while LLM-based evaluation shows promise but requires further research to
validate its reliability [2].

4.4.1 Performance metrics

There are various established methods for calculating metric scores, some rely on neu-
ral networks, including embedding models and LLMs, while others are purely statistical.
These metric scorers are illustrated in the Figure 4.8. Statistical methods often perform
poorly in scenarios requiring reasoning, making them too inaccurate for many LLM eval-
uation criteria. Scorers based solely on NLP models tend to be more accurate but can
be less reliable due to their probabilistic nature [24].

A combination of statistical and model-based scorers leads to metrics that utilize
embedding models or LLMs to evaluate the performance of LLM outputs.

In this thesis, the BERTScore metric is used to evaluate precision, recall, and F1
scores. BERTScore relies on pre-trained language models like BERT and calculates cosine
similarity between the contextual embeddings of words in the reference and generated
texts. These similarities are aggregated to produce a final evaluation score.

With BERTScore, precision, recall, and F1-score values were computed by embedding
candidate and reference texts and measuring their cosine similarity. As this approach
leverages contextual understanding, it is considered more appropriate for judging the
semantic fidelity of extracted fields.
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Figure 4.8. Types of metric scorers [25]

Precision, Recall, F1score

Precision measures how much of the extracted content is relevant and correct. High
Precision means most of the extracted tokens are correct, with few irrelevant or extra
tokens.

Precision = True Positives (TP)
True Positives (TP) + False Positives (FP)

• True Positives (TP): The number of correctly extracted tokens (or words) that
match the ground truth.

• False Positives (FP): The number of incorrectly extracted tokens that are not part
of the ground truth but are included in the extraction.

Recall measures how much of the relevant content from the ground truth was correctly
extracted. High Recall means the system captures most of the relevant tokens, even if it
includes some extra content.

Recall = True Positives (TP)
True Positives (TP) + False Negatives (FN)

• True Positives (TP): The number of correctly extracted tokens (or words) that
match the ground truth.
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• False Negatives (FN): The number of relevant tokens in the ground truth that were
not extracted.

Finally, F1score is used to normalize precision and recall.

F1 = 2 · Precision · Recall
Precision + Recall

4.4.2 Evaluation

In order to evaluate the performance of the proposed LLM-based extraction pipeline, 10
documents of the dataset related to grants and funding announcements was compiled.
These documents were chosen to represent a range of complexities, including variations
in length, organizational structure, searchability of PDFs, and level of detail. It was
because of the time-consuming and dificulties of creating ground truth manually. The
ground-truth structured data were annotated manually ensuring that a reliable reference
could be established for comparing automated extractions.

To benchmark the proposed approach, a direct prompt-based extraction using Chat-
GPT (GPT-4) and NotebookLM (Gemini pro) was employed. The baseline system was
provided with instructions similar to those given to the proposed pipeline, although it did
not incorporate the tailored chunking or filtering modules. In this manner, the impact of
these design choices on extraction quality was evaluated by comparing results produced
by the pipeline against those generated by those platforms.

In Table 4.1, the average BERTScore results for the proposed pipeline are presented.
Although the absolute metric values appear moderate rather than high, it should be
noted that extracting structured data from complex, domain-specific documents remains
a challenging task. Perfect alignment between automatically extracted and annotated
information is difficult to achieve. Nonetheless, the proposed pipeline consistently out-
performed Gemini Pro in nearly all documents and demonstrated strong compatibility
with GPT-4 outputs.
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Table 4.1. Performance of LLMs on Documents using BERTScore

Documents LLM-applications Precision Recall F1score

Document 1
Pipeline 0.75 0.72 0.73
GPT-4 0.78 0.76 0.77

Gemini pro 0.68 0.66 0.66

Document 2
Pipeline 0.70 0.68 0.68
GPT-4 0.66 0.66 0.66

Gemini pro 0.41 0.48 0.44

Document 3
Pipeline 0.78 0.75 0.76
GPT-4 0.77 0.69 0.73

Gemini pro 0.76 0.73 0.74

Document 4
Pipeline 0.66 0.72 0.68
GPT-4 0.70 0.75 0.72

Gemini pro 0.65 0.74 0.69

Document 5
Pipeline 0.75 0.61 0.67
GPT-4 0.78 0.77 0.77

Gemini pro 0.41 0.41 0.41

Document 6
Pipeline 0.76 0.71 0.73
GPT-4 0.75 0.75 0.75

Gemini pro 0.47 0.49 0.47

Document 7
Pipeline 0.64 0.64 0.64
GPT-4 0.70 0.71 0.71

Gemini pro 0.43 0.45 0.44

Document 8
Pipeline 0.75 0.63 0.68
GPT-4 0.82 0.78 0.80

Gemini pro 0.48 0.50 0.49

Document 9
Pipeline 0.76 0.75 0.75
GPT-4 0.70 0.71 0.71

Gemini pro 0.47 0.53 0.50

Document 10
Pipeline 0.73 0.67 0.70
GPT-4 0.81 0.81 0.81

Gemini pro 0.48 0.50 0.49
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4.5 Error analysis

This section highlights examples where the model did not successfully extract the correct
information. While the model generally performs well in extracting accurate data, under-
standing the reasons behind occasional failures remains challenging. Below are additional
instances where the model encountered difficulties in extracting the correct information.
To further investigate these issues, Table 4.2 presents the performance metrics for each
keyword of the "Rule Card" across different documents, providing insights into where the
pipeline struggled to extract specific information accurately. This analysis helps identify
recurring patterns of errors and potential areas for improvement in the extraction process.

Table 4.2. Performance metrics for various attributes of the documents

Documents Metrics Title SEO Grant de-
scription

Eligible
appli-
cants

Eligible
interven-
tions

Financial
resource

Deadline

Document 1
Precision 0.85 0.68 0.67 0.71 0.69 0.76 0.90
Recall 0.60 0.68 0.73 0.76 0.72 0.73 0.84
F1score 0.70 0.68 0.70 0.73 0.70 0.75 0.87

Document 2
Precision 0.80 0.71 0.78 0.63 0.61 0.65 0.73
Recall 0.63 0.68 0.76 0.79 0.64 0.61 0.64
F1score 0.71 0.69 0.77 0.70 0.62 0.63 0.68

Document 3
Precision 0.89 0.88 0.77 0.75 0.72 0.71 0.75
Recall 0.86 0.74 0.69 0.66 0.70 0.69 0.88
F1score 0.88 0.81 0.73 0.70 0.71 0.70 0.81

Document 4
Precision 0.67 0.65 0.73 0.71 0.70 0.66 0.51
Recall 0.69 0.65 0.73 0.73 0.68 0.70 0.87
F1score 0.68 0.65 0.73 0.72 0.69 0.68 0.65

Document 5
Precision 0.84 0.84 0.74 0.73 0.79 0.60 0.67
Recall 0.57 0.51 0.69 0.64 0.66 0.61 0.60
F1score 0.68 0.63 0.71 0.68 0.72 0.61 0.64

Document 6
Precision 0.87 0.87 0.76 0.67 0.75 0.64 0.74
Recall 0.77 0.70 0.73 0.65 0.72 0.68 0.70
F1score 0.82 0.78 0.74 0.66 0.74 0.66 0.72

Document 7
Precision 0.43 0.65 0.66 0.61 0.64 0.77 0.70
Recall 0.49 0.61 0.66 0.62 0.64 0.69 0.73
F1score 0.46 0.63 0.66 0.62 0.64 0.73 0.72

Document 8
Precision 0.78 0.79 0.68 0.82 0.76 0.58 0.85
Recall 0.64 0.68 0.79 0.69 0.68 0.50 0.47
F1score 0.70 0.73 0.73 0.75 0.72 0.54 0.61

Document 9
Precision 0.89 0.84 0.77 0.63 0.74 0.66 0.77
Recall 0.72 0.75 0.76 0.68 0.75 0.73 0.89
F1score 0.80 0.79 0.76 0.65 0.75 0.70 0.83

Document 10
Precision 0.72 0.65 0.73 0.78 0.66 0.80 0.79
Recall 0.55 0.57 0.69 0.63 0.66 0.71 0.87
F1score 0.62 0.61 0.71 0.70 0.66 0.76 0.83
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4.5.1 Metrics visualization

In this section, the performance metrics for each document are visualized and analyzed
in detail. The metrics specifically evaluate the output of the designed pipeline and are
subsequently compared to the ground truth to highlight critical points. This comparison
provides insights into the strengths and limitations of the pipeline, offering a deeper
understanding of its performance in real-world scenarios.

Document 1

The Figure 4.9 shows the metrics for the first document.

Figure 4.9. Document 1 metrics.

For the most of the attributes, the Precision, Recall, and F1 Scores are more balanced,
indicating that the pipeline is performing consistently in extracting these parts. For
"scadenza", all three metrics are higher, suggesting that the pipeline is very effective at
extracting this information.

For "titolo" Precision is very high which indicates that the extracted "titolo" informa-
tion is mostly accurate and matches the reference closely. However, recall is much lower,
it suggests that the extracted content might be missing some relevant parts of the "titolo"
present in the reference. This gap indicates that while the system outputs very precise
content for the "titolo," it is not exhaustive, potentially due to strict matching criteria or
incomplete extraction.

The texts of title in ground truth and extracted title are shown respectively on the
Figure 4.10 and the Figure 4.11.
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Prompt

**"titolo" ground truth of document 1:**
"G.A.L. Serre Calabresi, Avviso Pubblico Progetti di Cooperazione Territoriale 2
bando, Intervento A.1.1 ’Le colture della storia’. Tipologia di contributo: Contrib-
uto a fondo perduto."

Figure 4.10. Document-1 "titolo" ground truth

Prompt

**Extracted "titolo" of document 1:**
"G.A.L. Serre Calabresi, Avviso Pubblico Progetti di Cooperazione Territoriale 2
bando"

Figure 4.11. Document-1 "titolo" extracted data

Document 2

The metrics for Document 2 has shown on the Figure 4.12.

Figure 4.12. Document 2 metrics.
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It is shown that for "interventi-ammissibili" (eligible interventions) there is the least
precision. It can be seen in the comparison of extracted information and the ground
truth information that the text is different but both point to a school-work projects but
the information about the form of project presentation which is by video is missing in
the extracted information by the pipeline. The texts of eligible interventions in ground
truth and extracted eligible interventions are shown respectively on the Figure 4.13 and
the Figure 4.14.

Prompt

**"interventi-ammissibili" ground truth of document 2:**
"Realizzazione di progetti di alternanza scuola-lavoro presentati sotto forma di
video accompagnati da una descrizione sintetica. Sono ammesse anche collabo-
razioni con aziende ed enti esterni per arricchire l’esperienza formativa."

Figure 4.13. "Interventi-ammissibili" ground truth of document 2

Prompt

**Extracted "interventi-ammissibili" of document 2:**
"Il Premio e’ suddiviso in due categorie distinte per tipologia di Istituto scolastico
partecipante: Licei e Istituti tecnici e professionali."

Figure 4.14. "Interventi-ammissibili" extracted data of document 2

Document 3

The Figure 4.15 shows the metrics for the third document.
For document 3 the least metrics belong to the "risorse-finanziarie" (finantial resource),

so this part of the extracted information will be analyzed. The comparison shows that
both ground truth and extracted information show the same amount of finance (74,156.80
euro) but the period for additional resources is not defined in the extracted information.
The texts of finantial resource in ground truth and extracted finantial resource are shown
respectively on the Figure 4.16 and the Figure 4.17.
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Figure 4.15. Document 3 metrics.

Prompt

**"Risorse-finanziarie" ground truth of document 3:**
"Le risorse totali disponibili ammontano a 74.156,80, suddivise tra i beneficiari
con prioritÃ in base al decremento demografico. Il contributo concesso varia per
progetto, in base alle risorse richieste e ammissibili. Sono incluse risorse aggiuntive
per il periodo 2021-2022."

Figure 4.16. "Risorse-finanziarie" ground truth of document 3

Prompt

**Extracted "risorse-finanziarie" of document 3:**
"Le risorse finanziarie disponibili sono di 74.156,80, destinati a sostenere la
creazione di un centro di documentazione intergenerazionale e interculturale. La
tipologia di intervento Ã¨ un contributo a fondo perduto."

Figure 4.17. "Risorse-finanziarie" extracted data of document 3
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Document 4

The Figure 4.18 shows the metrics for the forth document.

Figure 4.18. Document 4 metrics.

The metrics shows that "scadenza" (deadline) has the least precision, but by analyzing
this part of the extracted information, it can be conclude that the date and time of the
deadline is correct, and the only difference relies on the redundant text.

Prompt

**"Scadenza" ground truth of document 4:** "18/11/2019 - ore 12.00"

Figure 4.19. "Scadenza" ground truth of document 4

Prompt

**Extracted "scadenza" of document 4:** "La data scadenza per la presentazione
delle candidature e’ il 18/11/2019 - ore 12.00."

Figure 4.20. "Scadenza" extracted data of document 4
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Document 5

The Figure 4.21 shows the metrics for the fifth document.

Figure 4.21. Document 5 metrics.

It can be observed that the least metrics belong to "risorse-finanziarie" that will be
analyzed. In this case, the amount of finance does not exist on the document and that
is why the pipeline hallucinated and extracted [amount] euro. The texts of finantial
resource in ground truth and extracted finantial resource are shown respectively on the
Figure 4.22 and the Figure 4.23.

Prompt

**"Risorse-finanziarie" ground truth of document 5:**
"Risorse disponibili a valere sul PSR Calabria 2014-2022, con contributi a fondo
perduto. Il contributo pubblico e’ vincolato ai criteri di selezione e priorita definiti."

Figure 4.22. "Risorse-finanziarie" ground truth of document 5
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Prompt

**Extracted "risorse-finanziarie" of document 5:**
"Il finanziamento e’ di [importo] euro e sara’ erogato a carico dei Fondi PSR."

Figure 4.23. "Risorse-finanziarie" extracted data of document 5

Document 6

The Figure 4.24 shows the metrics for the sixth document.

Figure 4.24. Document 6 metrics.

For "candidati-idonei" (eligible candidates) the problem is that the extracted informa-
tion is not detailed. In other words, both extracted and ground truth information for this
part, refers to agricultural companies operating in the irrigation and withdrawal water
resources, but in the ground truth it is pointed that they should be able to implement
specific system. The texts of eligible candidates in ground truth and extracted eligible
candidates are shown respectively on the Figure 4.27 and the Figure 4.28.
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Prompt

**"Candidati-idonei" ground truth of document 6:**
"Consorzi di bonifica con autorizzazione valida per il prelievo di risorse idriche,
che abbiano rispettato le normative regionali e nazionali e che siano in grado di
implementare il sistema SIGRIAN."

Figure 4.25. "Candidati-idonei" ground truth of document 6

Prompt

**Extracted "candidati-idonei" of document 6:**
"Le imprese agricole e le aziende che operano nel settore dell’irrigazione possono
presentare domanda di sostegno."

Figure 4.26. "Candidati-idonei" extracted data of document 6

Also, for "risorse-finanziarie" (financial resource), the desired information does not
exist on the document and the pipeline hallucinated and the extracted information is not
correct. The texts of financial resource in ground truth and extracted financial resource
are shown respectively on the Figure 4.25 and the Figure 4.26.

Prompt

**"Risorse-finanziarie" ground truth of document 6:**
"Contributo a fondo perduto fino al 100% delle spese ammissibili, incluse opere di
costruzione e acquisizione di beni strumentali. Le risorse sono allocate in base ai
criteri di selezione del bando."

Figure 4.27. "Risorse-finanziarie" ground truth of document 6

Prompt

**Extracted "risorse-finanziarie" of document 6:**
"Le risorse finanziarie disponibili sono di 100.000,00 euro, con una ripartizione del
70% per l’acquisto di misuratori e del 30% per l’implementazione di tecnologie."

Figure 4.28. "Risorse-finanziarie" extracted data of document 6
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Document 7

The Figure 4.29 shows the metrics for the seventh document.

Figure 4.29. Document 7 metrics.

For this document as "titolo" (title) has the least metrics, this part of the information
is going to be analyzed. It can be seen that the problem here is rooted in the previous
steps of parsing text from pdf documents which leads to an unsuitable format of letters
however there is no significant semantic differences. Also, the type of contribution is
missed. The texts of title in ground truth and extracted title are shown respectively on
the Figure 4.30 and the Figure 4.31.

Prompt

**Titolo" ground truth of document 7:**
"PSR Calabria 2014-2022, Piano degli Interventi, Misura 4.3.2 ’Gestione Risorse
Irrigue’, Tipologia di contributo: Contributo a fondo perduto."

Figure 4.30. "Titolo" ground truth of document 7
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Prompt

**Extracted "Titolo" of document 7:**
"P R OG R A MM A D I S V I L U P P O R U R A L E D E L L A R E GI ON E
C A L A B R IA 2 0 1 4 - 2 0 2 2 Sostegno agli investimenti per lo sviluppo rurale
in Calabria."

Figure 4.31. "Titolo" extracted data of document 7

Document 8

The Figure 4.32 shows the metrics for the eighth document.

Figure 4.32. Document 8 metrics.

For "scadenza" (deadline) a huge gap can be found between metrics but the error
analysis shows that the pipeline has extracted this information correctly and this gap
is only because of differences between texts. The texts of deadline in ground truth and
extracted deadline are shown respectively on the Figure 4.33 and the Figure 4.34.
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Prompt

**"Scadenza" ground truth of document 8:**
"Il progetto si e’ svolto dal 08/11/2021 al 10/12/2021, con termine dell’attivitÃ for-
mativa entro tale periodo."

Figure 4.33. "Scadenza" ground truth of document 8

Prompt

**Extracted "Scadenza" of document 8:**
"Dal 08/11/2021 al 10/12/2021."

Figure 4.34. "Scadenza" extracted data of document 8

Document 9

The Figure 4.35 shows the metrics for the ninth document.

Figure 4.35. Document 9 metrics.
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For title "titolo" it is shown that however the name of the grant is extracted correctly,
but the contribution type is missed. The texts of title in ground truth and extracted title
are shown respectively on the Figure 4.36 and the Figure 4.37.

Prompt

**"Titolo" ground truth of document 9:**
"Piano di Azione Locale (PAL SPES), Intervento C.2.1 ’Acqua e pietra’, Recupero
delle infrastrutture storiche e caratterizzazione del paesaggio rurale, Tipologia di
contributo: Contributo a fondo perduto."

Figure 4.36. "Titolo" ground truth of document 9

Prompt

**Extracted "Titolo" of document 9:**
"Intervento C.2.1 ’Acqua e pietra’. Recupero delle infrastrutture storiche caratter-
izzanti il paesaggio rurale."

Figure 4.37. "Titolo" extracted data of document 9
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Document 10

The Figure 4.38 shows the metrics for the last document.

Figure 4.38. Document 10 metrics.

For title ("titolo") it can be seen that again the type of contribution is missed, but
the title itself is semantically supported in the extracted information. The texts of title
in ground truth and extracted title are shown respectively on the Figure 4.39 and the
Figure 4.40.

Prompt

**"Titolo" ground truth:**
"GAL Serre Calabresi, Misura 4.1.1 ’Investimenti nelle aziende agricole’, Intervento
A.1.1/d ’Le colture della storia. Sostegno alle produzioni agricole e zootecniche del
territorio’, Tipologia di contributo: Contributo a fondo perduto."

Figure 4.39. "Titolo" ground truth of document 10
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Prompt

**Extracted "Titolo":**
"Sostegno agli investimenti per le aziende agricole dell’area del Gal Serre Calabresi."

Figure 4.40. "Titolo" extracted data of document 10

Also, for eligible candidates ("candidati-idonei") it can be seen that although sen-
tences are different but semantically both refers to the right groups of candidates in-
cluding farmers and associations of farmers. The texts of eligible candidates in ground
truth and extracted eligible candidates are shown respectively on the Figure 4.41 and the
Figure 4.42.

Prompt

**"Candidati-idonei" ground truth:**
"Agricoltori e associazioni di agricoltori (imprese agricole), regolarmente costituite
e iscritte alla Camera di Commercio, in possesso della qualifica di imprenditore
agricolo professionale (IAP) o coltivatore diretto (CD)."

Figure 4.41. "Candidati-idonei" ground truth of document 10

Prompt

**Extracted "Candidati-idonei":**
"Agricoltori, associazioni di agricoltori secondo le forme previste e stabilite dalla
legge."

Figure 4.42. "Candidati-idonei" extracted data of document 10
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Chapter 5

Discussion

This chapter presents discussions and analyses, beginning with an evaluation of the re-
sults, followed by a review of the methodologies used. Then, the challenges faced during
the research and the lessons learned will be discussed. Next, it suggests ideas for future
work, showing how the study could be improved or expanded. Finally, it reviews how the
research objectives were met, linking the results to the main goals and setting the stage
for future studies.

5.1 Analysis of results

Building on the findings described in the Results chapter, this section examines the
strengths and weaknesses of the proposed LLM-based extraction pipeline. The discussion
reflects how the pipeline’s design, implementation, and evaluation outcomes align with the
research objectives, while highlighting both its notable achievements and areas needing
improvement.

Strengths

• Modular Pipeline Design. The systematic approach-consisting of text extrac-
tion, OCR correction, chunk filtering, extraction via instruction-based prompting,
and final verification, allows each stage to be independently refined or replaced. This
modularity enables targeted improvements without changing the entire system.

• Domain-Specific Customization By tailoring prompts and filters specifically
for Italian grants and funds, the pipeline effectively narrows its focus to relevant
content, thereby reducing noise and improving the quality of extracted information.
This emphasis on domain-specific chunking and filtering likely contributed to the
more accurate extractions compared to generic approaches.

• Efficiency and Cost-Effectiveness The decision to use light-weight LLMs and
prompt engineering over resource-intensive and more expensive techniques like full
fine-tuning or Retrieval-Augmented Generation reflects a practical balance between
customization and computational overhead. This choice keeps customization and
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infrastructure costs lower, an important consideration for small and medium-sized
enterprises (SMEs).

• Flexibility for Various Document Types. The architecture accommodates
both searchable and scanned PDFs. The OCR-based module-supported by Tesser-
act, PyPDF, and other tools-demonstrates the pipeline’s adaptability to real-world
scenarios where document formats and quality can vary widely.

• Improved Performance through Filtering. The addition of a filtering step
for irrelevant document chunks reduced the likelihood of extra LLM calls. This
not only saves computational resources but also improves the precision of extracted
data by focusing on text segments most likely to contain relevant grant information
which was shown by evaluating the results.

Weaknesses

• Dependence on OCR Quality. While the integration of Tesseract and PyPDF
addresses scanned documents, the accuracy of the overall pipeline in such cases di-
rectly depends on the clarity of the source files. Substandard scans or image artifacts
can degrade OCR performance, leading to incomplete or erroneous extractions.

• Vulnerability to Model Hallucination. Despite the pipeline’s structured prompts
and modular approach, the LLM can still generate fabricated or "hallucinated" de-
tails, especially for fields where the document lacks explicit information. Such errors
were evident in "risorse-finanziarie" field in one of the documents.

• Prompt Specificity and Coverage. When prompts attempt to capture multiple
types of information at one keyword, the model may miss details that are insuffi-
ciently aligned with the target keywords. In such cases, certain key elements can
be overlooked, leading to incomplete extractions.

• Context Window Constraints. Although Llama 3.1 supports a lengthy context
window, lengthy prompts and large documents can still approach or exceed these
limits, risking truncation or reduced performance. This necessitates careful prompt
design and chunking strategies, which can introduce complexity in maintaining
context coherence.

• Manual Annotation. The reliance on manual annotation for ground truth cre-
ation constrained the size and diversity of test documents. With only 10 bench-
mark documents, capturing the full range of potential document structures remains
a challenge. A larger annotated dataset would likely reveal further insights into the
pipeline’s strengths and failure modes.
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5.2 Challenges encountered

During this research, several challenges emerged that influenced both the design and per-
formance of the proposed LLM-based information extraction pipeline. These challenges
can be broadly categorized into issues related to text extraction from diverse PDFs,
maintaining semantic consistency across multiple chunks, combining extracted text from
disparate sections, and handling unpredictable model behaviors. Additionally, the evalu-
ation process itself posed significant difficulties due to the complexity of the text and the
limitations of traditional NLP metrics.

Text Extraction Difficulties

• Complicated or Unusual Document Layouts: Announcements for grants and
funds often have irregular formats, such as tables, sidebars, or multiple columns.
Extracting text from these layouts, especially in scanned PDFs, can cause broken or
mixed-up information. This makes the text incomplete or hard to process further.

• OCR Limitations: Despite using Tesseract and preprocessing steps (e.g., orien-
tation checks, noise removal), low-resolution scans or highly stylized documents can
reduce Optical Character Recognition (OCR) accuracy, thereby introducing errors
early in the pipeline. These errors propagate through subsequent stages, ultimately
affecting the integrity of the extracted data.

Maintaining Semantic Consistency Across Chunks

• Chunking Trade-offs: Splitting large documents into manageable pieces enables
the model to handle more text than its context window allows. However, determin-
ing the optimal chunk size remains difficult. Too-large chunks risk exceeding token
limits or reducing focus on local context; too-small chunks can fragment semanti-
cally related content, leading to information loss or confusion.

• Context Overlap: In order to preserve meaning, some overlap between chunks
is necessary. Yet excessive overlap can introduce redundancy and inflate computa-
tional costs. Balancing these two factors is challenging and often domain-specific.

Combining Extracted Data from Multiple Chunks

• Fragmentation of Information: Information relevant to a single section of the
final "Rule Card" (e.g., "candidati-idonei") can be scattered throughout multiple
PDF pages or chunks. Reconciling partial insights from different segments into a
single, coherent field requires careful aggregation and validation.

• Potential for Conflicting Details: If multiple chunks contain overlapping or
partially contradictory information, the system must adjust these conflicts. Such
inconsistencies sometimes cause the model to generate incorrect summaries or omit
critical elements in favor of the most relevant chunk.
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Unpredictable Model Behavior

• Hallucination and Fabrication: Even with carefully designed prompts, the
model may "invent" details-particularly in fields that lack explicit information. This
behavior, known as hallucination, influences the reliability of extracted data and
demands a robust post-processing or verification step.

• Prompt Sensitivity: Small modifications in wording or structure of prompts
can yield significantly different outputs. Fine-tuning prompts to consistently yield
accurate, structured results requires iterative testing, which is both time-consuming
and prone to guesswork.

• Token Limits and Cost: Large or highly detailed prompts and extensive text
inputs increase the likelihood of hitting token limits, risking truncated outputs or
higher computational expenses. These constraints can limit the depth of contextual
information passed to the model.

Evaluation Complexities

• Unreliability of Traditional Metrics: Classical NLP metrics (e.g., BLEU,
ROUGE) are less effective for generative LLM outputs, where the focus is on cap-
turing specific semantic elements rather than matching exact word sequences. Even
more advanced methods, such as BERTScore, can struggle with nuanced, domain-
specific content.

• Complexity of Texts: Grant documents vary in length, style, and complexity,
making direct comparisons with ground-truth difficult. Automated metrics can fail
to capture these complexities, leading to misleading scores.

• Manual Ground Truth Creation: Constructing a reliable gold standard requires
detailed domain expertise and is time-consuming. The limited size of manually
annotated datasets restricts the variety of scenarios tested, making it challenging
to draw robust conclusions about the pipeline’s performance or generalizability.

5.3 Implications for future work
The promising results and insights gained from this research point to several opportu-
nities for enhancement and extension of the current LLM-based information extraction
pipeline. Future work may focus on refining OCR capabilities, incorporating new data
modalities, and expanding the pipeline’s scope to additional document formats, domains
and languages. Some important areas to explore include:

Fine-Tuning Open-source MLLMs for Italian OCR

• OPen-source Multimodal LLMs Advancements: It made them capable of handling
OCR tasks in English, there is potential to extend its image-processing capabilities
to support Italian text.
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• Training Data and Domain Specificity: Fine-tuning models would require assem-
bling a comprehensive dataset of Italian scans, typed and handwritten text, and
diverse document formats to ensure robust performance. This step could signifi-
cantly reduce reliance on separate OCR tools and improve accuracy for scanned
PDF files.

Extending the Pipeline to Other Data Types

• Integration with Audio and Video: As many data are published in multiple for-
mats, incorporating speech-to-text and video analysis flows into the LangGraph
framework could broaden the pipeline’s scope.

• Adaptive Graph Structures: LangGraph’s modular design allows for new nodes and
flows dedicated to different media types, enabling more comprehensive information
extraction. This could open the door to capturing details from multimedia sources
that are currently outside the system’s scope.

Adapting to Other Domains and Languages

• Generalizing Beyond Grants: While this research focuses on Italian regional grants
and funds, the underlying principles of domain-specific filtering, chunk processing,
and instruction-based extraction can be applied to other specialized domains (e.g.,
legal documents, insurance claims, scientific literature).

• Language Expansion: Customizing the pipeline for additional languages would ne-
cessitate domain-specific prompt translations and potentially new OCR modules.

Advanced Evaluation Strategies

• LLM-Based Self-Evaluation: Testing and validating LLM-based evaluators under
controlled conditions might yield improved evaluation reliability.

5.4 Meet the Research Objectives
Recalling the research objectives outlined at the beginning of this thesis, this section
summarizes how each goal was addressed through the methodology, implementation, and
evaluation processes:

Investigate the existing tools and techniques available for customizing LLMs
for specific tasks

• Comparative Overview of Customization Techniques: Customization techniques
and tools have been reviewed in the second chapter. In the methodology chap-
ter, different customization strategies, fine-tuning, Retrieval-Augmented Genera-
tion (RAG), and prompt engineering were examined for their advantages and lim-
itations. Emphasis was placed on cost-effectiveness, resource requirements, and
technical complexity.
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• Selection Justification: Prompt engineering was chosen for its balance between
simplicity and applicability. The detailed comparison showed how more resource-
intensive options like fine-tuning might yield higher accuracy but at significantly
higher cost and complexity, especially for smaller enterprises.

To explore methods for processing domain-specific document formats, with a
focus on PDF documents

• Focus on PDF Processing: The methodology and results primarily addressed PDFs
relevant to grant and funding announcements, demonstrating how to parse both
searchable and scanned PDF documents. OCR was integrated for Italian texts,
recognizing the challenges involved in extracting domain-specific content.

• Potential Extensions: While the scope of this thesis did not extend to video or audio,
the Discussions chapter highlights clear pathways for incorporating other modal-
ities, such as speech-to-text or video analysis flows into the existing LangGraph
framework.

Develop a framework for integrating customized LLMs into a user-interface
application

• Modular Pipeline and Interface: A step-by-step pipeline was created to parse, filter,
and extract structured data, while Streamlit was used to build a user-friendly web
application. This setup allows non-technical users to upload documents and re-
trieve "Rule Card" in JSON format without needing to interact with the underlying
technical components.

• Scalable Architecture: The pipeline’s modularity (including a dedicated document
reader, chunking strategy, and verification steps) enables future adaptation to new
data types, new LLMs or different user requirements, fulfilling the goal of creating
a flexible, integrable framework.

Evaluate the performance and usability of the customized application

• Performance Evaluation: A custom benchmark dataset was assembled, and BERTScore
was employed to measure precision, recall, and F1 score for key fields. These evalu-
ations provided quantitative evidence of the pipeline’s relative strengths and weak-
nesses.

• Usability Considerations: Through a user-interface designed in Streamlit, the ap-
plication proved straightforward to operate, allowing quick uploads and automated
extraction. While manual ground-truth creation remained a bottleneck.

By systematically addressing each of these objectives, this thesis demonstrated that
prompt-engineered, domain-focused pipelines can effectively leverage light-weight Large
Language Models for structured information extraction, albeit with recognized limitations
and clear avenues for further exploration in OCR, multimodality, and broader applica-
bility.
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Chapter 6

Conclusion

This thesis set out to explore how Large Language Models (LLMs) can be effectively lever-
aged for automating information extraction from PDF documents, with a specific focus
on Italian regional grants and funds documents. Addressing a clear need in many orga-
nizations, particularly SMEs where manual review of documents is both time-consuming
and error-prone, the research demonstrated the feasibility and value of an LLM-based
pipeline to automate the process.

A key achievement lies in the design of a modular workflow that tackles each stage
of the extraction process: from PDF parsing and optical character recognition (OCR)
for scanned files to prompt engineering for structured data extraction. By selectively
integrating an open-source model (Llama 3.1) and focusing on prompt engineering rather
than fine-tuning or Retrieval-Augmented Generation (RAG), the solution balanced both
performance and practicality. This approach allowed the pipeline to remain flexible, cost-
effective, and broadly applicable, making it an attractive option for smaller enterprises
with limited computational resources.

Moreover, adopting open-source and lightweight LLMs gives SMEs the advantage
of running the pipeline locally on-premise. This alleviates concerns regarding sharing
proprietary or sensitive information with external providers, thereby preserving enterprise
data privacy. Such an approach supports the organizational need for privacy compliance
and offers an alternative to commercial, closed-box solutions.

The results showed the pipeline’s ability to capture vital grant information such as
project deadlines, financial resources, and eligible applicants at a high level of semantic
accuracy. Incorporating a tailored chunking strategy, domain-specific filtering, and ro-
bust prompt engineering enabled the system to surpass generic extraction methods and
reduce issues related to token limits. Meanwhile, careful post-processing (including vali-
dation prompts) mitigated some common pitfalls in LLM outputs, such as hallucination
or incomplete extractions. While challenges remain particularly in handling suboptimal
OCR results, ensuring semantic consistency across multiple text chunks, and evaluating
outputs with limited ground-truth datasets the methodology validated the potential of
domain-focused LLM applications.

Looking forward, the thesis suggests exciting opportunities for future improvements.
These include fine-tuning open-source multimodal LLMs for tasks involving Italian OCR,
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adding support for other data types such as audio and video, and extending the solution to
handle other important documents besides grants and funds. Using advanced evaluation
methods, could make the system more reliable and allow for better ways to measure model
performance. Exploring these ideas can help make LLM-based pipelines more reliable,
scalable, and useful in different real-world applications.

In summary, this thesis underscores how domain-aware prompt engineering and strate-
gic pipeline design can significantly improve the automatic extraction of structured infor-
mation from unstructured documents. The research not only demonstrates practical ben-
efits for organizations seeking to streamline their document-processing workflows but also
highlights the evolving capabilities of LLMs in specialized contexts. Crucially, by leverag-
ing light-weight and open-source models, SMEs can automate document-processing tasks
on-premise, safeguarding privacy while gaining efficiency and accuracy in their operations.
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Appendix A

Project Repository

GitHub Repository: https://github.com/Hesamedin2010/Information-Extractor

Project Structure

The information_extractor project is organized into several directories, each respon-
sible for a specific part of the information extraction pipeline. Below is an overview of
the project structure:

information_extractor
|- Chains (LangChain’s chains for LLM tasks)
| |- __init__.py
| |- document_checker.py: Checks document relevance.
| |- format_controler.py: Verifies and consolidates extracted information.
| |- information_extractor.py: Extracts structured information using LLMs.
| |_ ocr_improver.py: Corrects OCR errors in scanned documents.
|
|- Nodes (LangGraph nodes for pipeline stages)
| |- __init__.py
| |- document_reader.py: Detects document format.
| |- extract_json.py: Saves structured JSON output.
| |- extractor.py: Calls the information extraction chain.
| |- filter_documents.py: Filters irrelevant documents.
| |- format_verification.py: Finalizes extracted information.
| |- image_to_text.py: Performs OCR and preprocessing.
| |_ pdf_parser.py: Parses text from searchable PDFs.
|
|- Root Directory
| |- .env.template: Template for environment variables.
| |- consts.py: Constants for LangGraph node functions.
| |- Evaluation_BERTScore.py: Output evaluation using BERTScore.
| |- graph.py: Constructs the LangGraph pipeline.
| |- pipfile & pipfile.lock: Dependency management.
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| |- run.py: Executes the pipeline.
| |- state.py: Defines LangGraph state formats.
| |- ui.py: Streamlit-based user interface.
| |- variables.py: Configurable settings for different cases.
| |- visualize_graph.py: Graph structure visualization.
| |_ .gitignore: Specifies files to ignore in version control.

Environment Setup

To set up the project environment, follow these steps:

1. Install Pipenv: Ensure that Pipenv is installed on your system.

2. Install Dependencies: Run the following command to install all required depen-
dencies:

pipenv install

3. Activate the Environment: Enter the virtual environment with:

pipenv shell

4. Set Up Environment Variables:

• Copy .env.template to .env.
• Fill in the required API keys and other configurations.

Running the Application

Once the environment is set up, you can run the application:

• Run the Pipeline: Process PDF documents by executing:

python run.py --pdf_dir <directory_of_pdfs>

• Launch the UI: Start the Streamlit-based user interface with:

streamlit run ui.py

For further details, please refer to the README file in the repository.
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