ITEN
WebThesis Logo Politecnico di Torino

Fabrizio Santoriello

Machine learning applications to credit risk analysis.

Rel. Patrizia Semeraro. Politecnico di Torino, Corso di laurea magistrale in Ingegneria Matematica, 2022

[thumbnail of Tesi_di_laurea]
Preview
PDF (Tesi_di_laurea) - Tesi
Licenza: Creative Commons Attribution Non-commercial No Derivatives.

Download (7MB) | Preview
Abstract:

The thesis deals with the theme of machine learning applied to credit risk. Starting from a theoretical introduction of the tools that will be used in the course of the work, we get to observe the performance of 5 different algorithms for binary classification : Logistic regression, Naive Bayes, K-Nearest neighbors, Support Vector Machines and Ensemble trees. In particular, two different datasets are used: a synthetic one, and a real one. Then Ensemble Classifiers, which can be intuitively interpreted as a way to combine predictions generated by different algorithms, are introduced. Several ways of mixing prediction are observed, starting from hard- voting, which is simply a majority voting system, and coming up to more sophisticated methods like stacking and blending. Furthermore, an appreciable improvement in several measures of the classification performance is obtained.

Relatori: Patrizia Semeraro
Anno accademico: 2022/23
Tipo di pubblicazione: Elettronica
Numero di pagine: 101
Soggetti:
Corso di laurea: Corso di laurea magistrale in Ingegneria Matematica
Classe di laurea: Nuovo ordinamento > Laurea magistrale > LM-44 - MODELLISTICA MATEMATICO-FISICA PER L'INGEGNERIA
Aziende collaboratrici: NON SPECIFICATO
URI: https://webthesis.biblio.polito.it/id/eprint/24056
Modifica (riservato agli operatori) Modifica (riservato agli operatori)