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Introduction

We can define Machine learning as a discipline whose purpose is to develop
methods and algorithms that can 'learn from experience", or more precisely,
improve their performance concerning some tasks using suitable datas.

It has been an ever-expanding field over the past fifty years, and has found
application in countless domains, improving every-day life. The economic one
is no exception.

One of the most common ways to apply machine learning in finance is to
investigate credit scores of loan applicants.

Credit scores were created to predict the relative risk of default among bor-
rowers [Coffman and Chandler, |, and is a measure of credit-worthiness of in-
dividuals. A correct estimate of them it is crucial, as evidenced by the 2008
sub-prime crisis, which can be reconducted to a failing in the credit risk estima-
tion [Shi et al., 2022], among many other causes. Given these conditions, it is
obvious that further development of machine learning techniques is fundamen-
tal.

In this work, two different dataset are taken in consideration: the first
one is the well known German Credit Dataset, already used in several paper
([Wang et al., 2011}, [Tsai and Wu, 2008, [Khashman, 2010] just to cite some).
The second one is LoanP2P dataset, a collection of P2P loans made through
the Lending Club platform (an American peer-to-peer lending company), from
2007 to 2020 . Both are made available by Kaggle.com, an online community of
data scientists and machine learning practitioners.

Concretely the work is structured as follows below.

The first chapter has a theoretical cut, since it presents formally the statis-
tical learning framework, and five of the most common machine learning algo-
rithms: Logistic Regression, Naive Bayes, K-NN | SVM and Boosted-Bagged
trees. Then, in the second chapter, they are applied to the previously outlined
data-sets, and their performance compared, along with some considerations.

The chapter 3 covers a central role in this thesis, and may be considered the
focal point, since ensemble classifiers are introduced.

Ensemble classifiers (EC) is an adaption of the well-known universal concept
of wisdom of crowds, summarized as: "the Many Are Smarter Than the Few"
[Suroweci, 2005].

EC is an emerging branch in artificial intelligence field, as it consists in com-
bining different and heterogeneous predictions, generated by several methods,



into a single one.
The way outputs can be mixed has a crucial importance in the third chapter.
In the last one a concrete application of these procedures will be made, and
the consequent results analyzed.
Finally, some general comments on the work done are made.






Chapter 1

Statistical learning

1.1 Theoretical introduction

E] Speaking informally, the scope of statistical learning is to predict a quantita-
tive or a categorical outcome measurement, starting from the value of different
features. To do so, a model is constructed using a set of data, called training set,
for which are known both the value of that quality and the value of the features
used. In particular, using the training set, it’s possible to infer the dependence
of the input (the features used) on the output (the quality to predict), and then
applying this model to new data, it’s hopefully possible to make an accurate
prediction on them.

More formally, in the statistical learning framework, we consider an input
space X and an output space ), and the pairs (X,Y) that belongs to X X
Y , where Y is a given response variable, and X = (X3, X5, ...,X,) a set of
predictors.

Moreover we assume that (X,Y) € X x ) are random variable whose distri-
bution is unknown, linked by a relationship that can be very generally expressed
as:

Y=fX)+e

where € is a random error term with zero mean. Now it’s clear that the
purpose of statistical learning is to construct f: X — )

fx) =Y

which predicts Y from X. Obviously a criterion for choosing f is needed, and
seems natural to use a loss function L(Y, f(X)) that penalizes errors in predic-
tion. Among the others, the most common one is the squared error loss:

LY, f(X)) = (Y - f(X))?

1Section 1.1 and 1.2 written with reference to [Hastie et al., 2009]




This choice, since we are dealing with random variables, leads to define the
expected squared prediction error:

EPE(f) = E(Y ~ (X)) = [ly f(a)]*Pr(das,dy)
Conditioning on X, allows us to write EPFE as:
EPE(f) = ExEyx([Y = f(X)]’|X)
So that is sufficient to minimize it point-wise:
f(x) = argmin.Eyx ([Y — c]2|X = 1)
the solution, as we should expect, is the conditional expectation:

J(2) = B(Y|X = o)

known as the regression function. Obviously we don’t know the distribution
of (X,Y), e so how to minimize analytically this expected condition.

Moreover, we can only access a small subset of the input space. Thus,
the best prediction of Y given X = x is the conditional mean, when best is
approximated by average squared error, measured on training set.

10



1.1.1 Bias-Variance trade-off

Assume that f(z) is the approximation of f(X) = E(Y|X = z) obtained on
some training data TR, then for a generic (xg,yo) it holds:

MSE(zo) = E(yo — f(x0))* = Var(f(z0)) + E(yo — f(20))* + Var(e)

First, It can be notice that exist a lower bound for the MSE, since Var(e)
is an irreducible quantity.
Then, let’s put in evidence that M SFE is the quantity that we would get aver-
aging the test M SFE, obtained repeatedly estimating f using a large number of
training sets, and tested at each xg.

In this scenario the

Bias(f(zo)] = E(f(x0) — f(z0))

refers to the error we make estimating a very complex , "real-life" problem
with a simpler model. On the other hand Var( f (20)) represent a measure of
how much our estimate f(x) changes depending on the training set we use.
Ideally we want both a low bias and a low variance, but in reality as one of
the two decrease, the other increase. With a low variance-high bias method we
risk to miss some important relations between training data and the response
variable, while with high variance-low bias the risk is to model also the noise
in the data. Concluding, the goal is to choose a model that captures important
relations between X and Y, but generalizes well to new data.

1.1.2 The Classification Setting

In several applications, the response variable Y has a qualitative nature, that

can be represented over a discrete set of classes. In this case the purpose of the

model is to construct a classifier C'(X) that assign a class to unlabeled data X.
Suppose classes are 1,2,...K, and define:

pp(z)=PY =klX =2),k=1,2,..,K

the conditional class probabilities.
In this setting it’s natural to define as loss function the error rate:

1 n
= Iy #9)
n -
i=1
The test error associated with a set of  observation
{(‘Tlv y1)7 (I27 y?)a ceey (Inv yn)} is given by

ErTTest = AveiGTestI[yi 7é C‘((EJ]

11



In order to minimize this quantity it seems natural to assign each sample
to the most likely class, given the relative features. Moreover we define the
optimal Bayes classifier :

C(x) = argmax p;(x)
J
Which precisely minimizes the test error. Apart from these differences, the
concepts tackled in the previous sections still holds in a classification settings.
From now on, we will analyze this special case of statistical learning.

12



1.2 Model validation

As already outlined, it’s obviously necessary to have a way to test the perfor-
mance of the model generated, both for having an idea of the quality of the
model and for choosing some suitable hyper-parameters.

Since the model ideally is capable of capturing trends and regularities in the
training set, but also to generalize to new samples, it seems reasonable to avoid
testing that model on the same dataset used to train it, since it would result
probably in over-fitting the data.

A correct approach consists in testing on a dataset that the model has never
seen before, the testing set.

In statistical learning selecting the hyper-parameters in such a way to min-
imize a certain measure or error is fundamental, and as we will see different
options are possible.

1.2.1 Hold out set

If the purpose is just testing the performance of the model, a suitable approach is
the following one. The dataset is split between train-set, the subset used as input
for the model, and the test-set, where the algorithm is used to predict the class
of each element, that consequently is confronted with the correct classification,
so that it’s possible to obtain a measure of the precision of the model.

In particular the dataset is divided randomly assigning samples to the train-
set with probability equal to the percentage that we would like to split the
dataset with. It’s very fundamental to take stratified test and train-set, i.e. a
subdivision that maintains the proportion between the two classes.

Commonly, several algorithms need to tune out one or more hyper-
parameters, to achieve the best possible performance.

Using the the test-set to choose the parameters would result in an over-
fitting, so a different option is needed.

One possible way to do that is to split the dataset into 3 subsets, instead
of 2: the train-set, the test-set and the validation-set, using the latter to check
how different parameters affect classification.

13



| [
Single Dataset

|
Single Dataset

Figure 1.1: Hold-out and Validation set

1.2.2 Cross validation

A different way, that lowers variance (the variability in performance between
different datasets) at the cost of greater computation time, is to use a K-fold
validation.

It basically consists in splitting the train-set in K subsets, and use K; subset
for validation while the remaining parts for training. Then we iterate the process
for : = 1,2,3...,k and take a mean value for the different performance values
obtained.

‘ All Data |

‘ Training data ‘ | Test data ‘

| Foud1 || Fold2 || Fold3 || Folda || Folds |

spit1 [ Fold1 || Foid2 || Fold3 || Foid4 || Folds |

spitz | Foid1 || Fold2 || Fold3 || Fold4 || Foids |

Finding Parameters

spit3 | Foid1 || Fola2 |[ Fold3 || Fold4 || Fois |

spit4 | Foid1 || Fold2 || Fold3 || Fold4 || Foids |

Spits | Fold1 || Fold2 || Fold3 || Fold4 || Folds |

Final evaluation { Test data

Figure 1.2: Cross validation

In a classification framework, we have that the K-fold cross-validation esti-
mate of the error is:

k
1
CViy = 32 > Erri
n=1

where Err; = I(y; # §i)

14



This approach may be preferable if the dimension of the dataset aren’t too
large.

15



1.2.3 Performance measurement

In order to measure the quality of a model, a way to measure the classification
performance is needed. In the classic case, where only 2 classes are present, a
way to completely describe the performance of an algorithm, is the so called
confusion matrix, that is a table representing the number of predicted class
0 and 1 elements, against their real class.

PREDICTION (?TATUS T
0 True Negative (TN) | False Negative (FN)
1 False Positive (FP) | True Positive (TP)

Table 1.1: Confusion matrix example

Moreover,there exists several measures that can summarize the information
contained in that table. Probably the most intuitive one is the accuracy, that
is the percentage of correctly classified samples.

A TN+ TP
cc =
WY = TP Y FP+ FN + TN
but other way to do so are possible:
S itivit e
ens ==
O = TP L FN
. TN
Speci ficity = TN+ FP
Precision. — TP
recision. = TP+ FP
TN
F Pred. = —————
alsePred TN+ FN
2
= T

Precision™ + Sensitivity™
In general it’s not correct to say that a measure is more complete that the
others or vice-versa, since each one has his peculiar features and defects, that
emerges especially when the dataset is unbalanced. For example, let’s consider
a case where out of 10 samples, 9 belong to class 0, and 1 to class 1. In such
case, an algorithm that assign each element to class 0, would have an accuracy
of:

16



9 j—
9+1
In other words, a performance that appears to be very good. Obviously
an algorithm like that, can be considered acceptable, this example shows the
limitations of this measure. Another possible choice is the so called receiver
operating characteristic curve. The ROC curve represents intuitively the
trade-off between true positive rate and false positive rate by plotting one
against the other, as they vary in a particular setting.

In order to make things clearer, let’s consider an algorithm whose output is
the probability that a samples belongs to class 1, and not only the class (an
example is the Logistic regression). In this case, the sample is assigned to class 1
is the probability is greater than a given threshold. That threshold is arbitrary,
and varying it we obtain different true positive rate and false positive rate
values. The ROC curve does exactly this, it plots the values obtained varying
the threshold. Other than the Logistic regression that outputs exactly this
probability, for other cases a way to obtain it are needed.

In addition we can intuitively summarize the information contained in the
ROC curve, by using the AUC, that is the area under the ROC curve

0.9

Accuracy =

Model B (Logistic Regression)

e
A
0.85 - ‘JJA (0.52,0.86)
e
08 —
pr
—
075 - .
o7 I—J_Fr
.I
«
§oes r
2 J
g T
g 08 fng
o
g J
0.55 F Positive class: 1
05 o ALUC =0.78
0.45
04
I ROC curva
[ Ares under cure (ALC)
0.35 |’ ®  Curent classifar
0.1 0.15 02 0.25 03 0.35 0.4 045 0.5 0.55 0.6

Falss positive rate

Figure 1.3: ROC curve example
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1.2.4 Unbalanced data

Like already seen in the previous accuracy example, unbalanced data, can gen-
erate some bias in the model. To solve that, there are mainly to approaches:

e Under-Sampling: choose randomly a subset of the over-represented class,in
such a way to equates the two. In this way some information is lost.

e Over-Sampling: duplicate samples from the class with less instances or
simulate a instances based on the data available, so that the number of
samples in each class are matched. There’s the risk of overfitting the
model.

Depending on the situation, both can be valid. A particular way to over-
sample datas, is the SMOTE method. SMOTE generates new samples in this
way:

e Randomly picks a point z; among the minority class.

e Starting from that point, picks uniformly a K-neighbor (for example a
point among the 5 nearest point), called zs.

¢ Generates a new sample with a convex combination of the two points

Tnew = L1 + A(IQ - ‘Tl)

With:

A~ U(0,1)

18



1.3 Classification

1.3.1 Logistic regression

E| The first classification algorithm used is Logistic Regression which aims to
model the probability that an observation belongs to certain class or not, or if
it has a certain quality or not, in general any response variable with a binary
nature, that in this situation we’ll denote Y.

Long story short, Logistical Regression describes

p(X) =9 =1]X)

To do so, it models linearly (in fact is a generalization of the linear model)
a transformation of p (X), whose inverse in particular "squishes" (—oo, 00) into
(0,1), so that the probabilistic meaning on p(X) can make sense.

Formally Logistic Regression estimates (using maximum likelihood, as a nor-
mal linear model) 3; such that E

logit(p) = log(lp%p) = Bo + f1x1 + ... + BnTn

more explicitly:

ebotBizit...+fnzn

P(class = 1|X) = 11 cPotBieittBaan

Finally, in order to predict the class a data belongs, a threshold py can be
set, then we label samples as follows:

If for a sample X the corresponding P(X) is greater that Pr, we assign it
to class 1, otherwise to class 1.

The natural choice for pr may seems pr = 0.5, but as we will see other
options are possible, depending on the dataset analyzed. The parameters of
the model, i.e the 3, can be estimated using a Maximum Likehood Estimation
(MLE) approach.

Since the logarithm is a strictly increasing function, and we are interested in
maximizing the MLE, we can indifferently consider the log — likehood, obtained
just taking the logarithm of the MLE, since this transformation won’t change
the argmax . For a generic model, depending of some parameters 6, the log-
likehood () is:

N
0o) = Z log p(z:;0)

where p(x;;6) = Pr(y = 1|X = z;;0). In the particular case of logistic
regression, it becomes:

2section written with reference to [Hastie et al., 2009]
3we will indicate the number of factor with n to avoid using p, already used for denoting
p(X)

19



Logistic Regression

@
10 ° ........

a
sigmoid(X)

oe

00 ooOOoooo

-4 -2 [ 2 4 6
X

(Measurement)

Figure 1.4: An example of sigmoid function

N N
1(B) =Y wilogp(xi; B) + (1 — yi) log(1 — plai; B) = Y 8T wi — log(1 + 7" ™)
1=1

i=1

To maximize it, it’s sufficient to set the derivative to zero:

APB) o
W = ;mz(@h _p(x’hﬁ)) =0

That implies, since the first components of x; is 1:

N N
Zy = Zp(xi;ﬁ))

In this case, an analytic solution do not exists, so it’s necessary to use a
numerical method. One possible method is the Newton-Raphson one, which is
quite straight-forward.

After initializing Bo=0, we recursively update them in this way:

s 4 92U(B) \ " al(B)
ﬁt—ﬁu—(aﬁw) i

Writing the score (the first derivative with respect to 8) and the Hessian in
a matrix form, we get:

20



where p is the vector of fitted probabilities p(x;; 8:—1), W is an N x N
diagonal matrix whose i-th element on the diagonal is p(z;; B:—1) (1—p(24; ft—1)),
and y is the vector of y;. In this framework the Newton-Raphson step becomes:

-1
Br=Ba+ (XTWX) XT(y—p)
-1
- (XTWX) X"W (XB—1 + W (y — p))
T R
- (X WX) XTW:2
where z := XB;_1 + W' (y — p). Finally, at each step f; is updated as
follows:

B — argmin(z — X8)TW (= — X0)

1.3.2 Naive Bayes

E| Naive Bayes is a probabilistic classifier based on Bayes theorem, and on the
hypothesis of strong independence of features.

In particular is a conditional probability model, where given a sam-
ple * = (x1,22,...,%,) with p features, it assign for each class F,
P (xz € Classg|z1,22,...,2p), i.e. the probability that the sample belongs to
class k, given z.

To do so, it uses Bayes theorem:

P (z € Classg) P (x1,x2,...,zp|z € Classy)
P(x1,22,...,2p)

P (xz € Classg|z1,z2,...,2p) =

Furthermore the "important" part is the numerator, since the denominator
does not depend on the Class and remains constant for each of them.
Now, using the strong independence hypothesis the model becomes:

k
P (z € Classg|z1, 22, ..., 2n) x P (x € Classy) HP(:L‘Z-\JL‘ € Classy)

i=1

“4section written with reference to [VS, 2022]
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Obviously the sample is assigned to the class that maximizes
P (z € Classg|z1, 22, ..., Tpn):

Classg = argmax P (x € Classg|z1, 2, ..., %n)
k

It’s easy to see also that:

P (z € Classg) Hle P (z;|x € Classy)

P (z € Classg|z1,za,...,T,) = =

with

k
7 = Z <P (z € Classg) HP (wi]x € Classk)>
k

i=1
as normalization constant.

Among several choices, usually Gaussian Kernel are used for continuous
feature. It means that the unknown distribution of attributes is supposed to be
a Gaussian one (we remark also we consider them independent). For each one
of the p features, the estimates (i, and o, for y, and o, are computed with a
MLE approach.

Regarding categorical features, the situation is very similar to the continuous
case. Often, for the sake of simplicity, they are supposed to follow a Multinomial
distribution. Apart from this, the procedure is analogous, with the parameters
estimated through MLE.

1.3.3 Support vector machine

E| SVM is a supervised learning algorithms, whose purpose is to find a suitable
hyper-plane expressed as wx + b, that divides "correctly” the multi-dimensional
vectors of the dataset in the two classes, represented by y € {—1;1}.

Ideally, the plane divides perfectly the two classes. That constraint for a
generic sample can be express by :

yi(w-x; +b) >0

With some manipulations, equivalently (in then sense that the solution de-
scribes the same hyper-plane)

yi(w-x; +b) > 1, withy € {-1;1}

5section written with reference to [Shalev-Shwartz and Ben-David, |
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Usually, it’s not possible to divide perfectly samples, so it’s necessary to
allow some violations. The constrain becomes:

yi(w-x; +0) 21§
trying to minimize the errors .

More precisely, SVM does not only try to find a plane that divides data, but
it also tries to maximize the "margin", i.e the distance of the nearest points from
the hyper-plane , while minimizing the error, i.e the penalty associated to data
on the wrong side of the margin. Moreover, the corresponding penalty increases
with the distance of the wrongly classified points from the plane.

Formally, we can express SVM as:

I
min o [|w]| + C Y&
yi(w-z; +b) >1-¢

&E>0viel

Lo .

1
7

Figure 1.5: 2-D example of SVM
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Non-Linear Kernel

In some cases, hyper-plane cannot divide properly the two classes. A possible
way to overcame that, is to represent data in a higher dimensional space, and
then find a suitable hyper-plane in that space. Here’s an intuitive image that
shows the usefulness of that process.

o o
. ;-El » o n Decision aarface
[ |
[N | i g N
a5 - -I - l-=.. .-""'
e EUE gu kernel e
o ™ @ [ | ]
g B g -|:. o —_— l..l-=..
o " EAN mE
G T oglg B 04
g W Lo v
2" g no®® @ p g% b0 0 fo, :',:E:_-.
“ e @ BGa.p © @0 %EH
o0 o @ g ':'.:.'-'f,_,u-;:.m':ﬁ
o_® Be Lo

Figure 1.6: Kernel trick. credit: medium.com

Observing the dual formulation of the Soft Margin SVM (that is the case
that allows for some violations):

%1,11111111%(5”?”2 Zaj (BT +b)y; — 1]

Or equivalently:

max Z 0~ 3 3 ysouo; (717)

a>0 « =0 .
Z iYi 1,7

it’s clear that the objective function depends on the dataset only by the dot
product of his vectors.

That allows for a great simplification when representing samples in higher
dimensional spaces, that can become computational unfeasible when working
with lots of features.

The point is that it’s not necessary to calculate explicitly the samples in
the new dimensions, since only the dot product between them in the selected
space is needed (the so called Kernel Trick). In other words, it’s not required
to explicitly write the mapping

.U —V
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with Dim(U) < Dim(V'), but it’s only needed the kernel function

with V' an Hilbert space.
Some examples are:

e Polynomial Kernel

« Radial kernel

p
K(‘L y = 6.27]) - Z Tij — yzj
Jj=1

with d, ¢, v as hyper-parameter to be optimized.

Platt scaling

Contrary to logistic regression, the output of the model is not Pr (Y = 1|X),
but it’s just a label (a point lies on one side of the hyper-plane, or on the other).
For lots of applications it’s useful to associate a probability, or more generally
a score, as a result of the classification, instead of a label. It can be done in the
following way, known as Platt scaling:

1
1+ exp (Af(z) + B)

with f (z) being the output of the classification, A and B hyperparameter
to be optimized.

In this case the obvious choice for f () is some sort of distance (that must
also be suitable for categorical data).

The interpretation is quite straightforward: the farther the point is from the
separating hyperplane, the more sure the classification is.

Notice that, it’s meaningless to associate a threshold to this value, since a
point can be on one side side of the hyperplane, or on the other.

Py=1lr) =
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1.3.4 K-nearest neighbors

ﬂ KNN method is a very straight-forward method quite easy to understand.
It basically assign an element to a class if that class represents the majority
part of the K nearest neighbors. Formally:

, 1 .
Pr(Y =j|X =) = ?ZI(%:J)
i€

where 2 is the set of the K-nearest point to zg in the dataset.

New example
to classify Class A

X * Class B

3l K % x
*(*?§A AA
‘\\|(=1 /’ A A
A A A
X-Axis >

Figure 1.7: KNN example. Credit: www.datacamp.com

We recall what we said in the first section about statistical learning:

J(X) = E(Y|X = 2)

With f(X) indicating the hypothesis we want to infer (in that case it was a
regression problem, in this case is a classification one, but conceptually in this
situation they’re interchangeable).

If we think about that, we can notice that what K-NN is trying to do, is to

approximate f(X) = E(Y|X =z) as

f(z) = Avejcq(yilzi)
It’s important to precise that the definition of "neighborhood" depends upon
the chosen formulation of distance.
Among the different possibilities, a way to deal with categorical data, is to
transform them into numerical ones, creating for each categorical attribute and
for each value of the level of the category considered a dummy variable.

6section written with reference to [Hastie et al., 2009
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If we consider a feature with N levels, and a sample whose level for that
category is i, then after that procedure we would obtain N new binary variable,
whose value is one for the i-th dummy variable and zero for all the other.

Grade Grade, Grade, Grade,
7 1 0 0
7 1 0 0
8 0 1 0
9 - 0 0 1
7 1 0 ]
9 0 0 1
8 0 1 0
7 1 0 0

Figure 1.8: Creation of a dummy variable

In the example above is possible to observe how this process acts on a cate-
gorical variable grade (for the sake of simplicity let’s assume that its levels are
7,8,9).
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1.3.5 Classification tree

Tree based method are ML algorithms broadly used for classification and re-
gression.

Briefly, they stratifies the predictor space, creating several simple sub-
regions, defined by certain "range" of the attributes.

In our case, this is what a portion of the tree looks like:

‘ Decision Node ‘

Sub-Tree
' Decision Node ‘ | Decision Node ‘
Leaf Node Decision Node Leaf Node Leaf Node
Leaf Node Leaf Node

Figure 1.9: Decision tree example. Credit:www.datacamp.com

The fundamental element of a tree is the node, i.e. the single bisection; a
decision rule for a node has a formulation like X; < ¢, or in case of categorical
may be a splitting of the various level.

For each leaf, we have a certain number of samples of the two classes,and we
"assign' that terminal node to the most represented one.

Ideally, the best situation is the one where a particular decision rule relative
to a certain feature, splits the samples in such a way that in the following node
only one class is represented, because that means we can probably successfully
use that attribute to predict classes.

It comes naturally to use some measure of "how well" the attributes separates
classes.

The most common choices are:

« GINIINDEX :3°F 1 —p2
« ENTROPY : Y2F  py log, (pi)

pr s the proportion of elements of the class k in the leaf of interest:
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Metric value
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Figure 1.10: GINI index and Entropy

As we can see, nodes whose composition is quite homogeneous (i.e. for values
are close to 0.5) are "penalized".

The algorithm keeps dividing elements choosing attributes (and particular
value of the chosen attribute) in such a way to minimize "greedily" one of the
possible index until some stopping criteria are met.

Some example of stopping criteria are:

e In order to attempt a split, there must be at least a certain number of
observations

e A minimum number of samples is required in each terminal node.

e The number of split must be less than a certain value.

With decision trees, is not so easy to associate a "score' as a result of a
classification instead of a label. What can be done is associating to each terminal
leaf a score equal to the proportion of classes present, for example if a samples
belongs to a leaf that in the training phase was composed by 31 element of class
'0" and 5 of class "1" would have a corresponding probability of belonging to
class "0" of % = (0.86. while this can be useful for calculating ROC and AUC,
it makes little sense if the scope is to choose a suitable threshold, since other
method like misclassification cost, under-sampling or over-sampling are much
more intuitive

1.3.6 Bootstrap aggregation and boosted trees

Classification trees have a great interpretability, but the classification perfor-
mance leaves some room for improvement. In fact, decision tree usually have lots
of variance relatively to their performance. In order to limit this aspect bagging
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method were introduced. The idea behind bootstrap aggregation (i.e.bagging)
methods is to combine the classification results of different "weak" classifiers into
a "strong" one, lowering in this way the variance, since what we are really doing
is averaging different observations. A weak classifier, in binary classification
case, is a classifier whose accuracy is only slightly better than 50%. Usually, it’s
not possible to have access to different training sets, so a solution is to generate
several bootstrapped training sets starting from the original one. This process
is done by sampling with replacement several new datasets (bootstrapped) from
the original dataset.

Concretely, B bootstrapped training set are created, then B over-fitting trees
are build upon it, and then the results are averaged.

The tree is an over-fitting one, so that the relative bias is low; the variance
will be reduced with then averaging step.

. 1 &
fbag(x)zﬁz :(x)
b=1

the most natural choice is to classify a sample following the majority vote.

Initial dataset

PBootstrap 1| Pootstrap 2l Bootstrap3 o 0 o o o Pootstrap B
Data Data Data Data
subset 1 subset 2 subset3 | **** * ¢ | gubsetB
| | | [
Madel 1 Madel 2 Madel 3 Model B
o ’Jﬂ> r'd ) es s 0 )<°\"‘¢_
q< /:{q EI AN N < ¢ p
¢ m b o ¢ o ‘s o o
Prediction 1 Predictian 2 Predictian 3 Prediction B
s e 9 8
F(x) f3x) F3x) f8(x)
Final
prediction
fmn

Figure 1.11: Bagging process. Credit: medium.com

Boosting method works in a similar way. The main difference is that each
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tree is grown sequentially using informations of previous trees.

Random forest adds a step to bagging, by introducing an improvement that
decorrelates trees. The first part is equivalent to the preceding one, the classi-
fication trees are build upon bootstrapped subsets, but in the case of random
forest the features are chosen randomly. More precisely m predictors are picked
among the full set of p elements, typically m ~ &/p.

AdaBoost

[Freund and Schapire, 1999] AdaBoost in a Boosted trees algorithm formulated
by Yoav Freund and Robert Schapire in 1995, and it’s based on the use of weak-
learners, i.e. methods who performs only slightly better that random guessing,
into a single model.

In this case the "weak learner unit" is a stump, a tree with only one split.
They’re built progressively, in fact each stump is build using information ob-
tained in the previous round; moreover samples and stump do not have all the
same weight like in the bagging case, but "good classifiers vote" weights more,
and misclassification cost of misclassified samples is greater, so that hopefully
in the next round they will be classified correctly.

Let’s see the step that AdaBoost is composed by:

1. We take as input a Test Set with m samples :(z1,¥y1), ..., (T, Ym), & num-
ber of rounds T, and a Weak Learner WL

2. We initialize each samples weight W; = (%,...,%), and the learner
weights.

3. We create a decision stump for each variable, and observe the classifica-
tion results obtained. More importance is assigned to "good classifiers',
following this criteria

ay, = = In
2

1 1 —TotalError,,
Total Errory,

Where «,,, is the importance of the stump, and Total Error is just the
sum of misclassifications.

Moreover, weight is assigned to misclassified samples, in that way :

w; = et X w;_y

Where the sign of « depends by the label of the sample (correct or incor-
rect). Then weight are normalized up to 1
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4. Now a new dataset is generated, by "tweaking" the original one in such a
way that the samples with the highest way "appears" more time than the

other.
090g 00g ]
ot CPRP PR B
() @ ® .’ @ ® .. o ® ..
Original Data Weighted data Weighted data
Ensemble
Classifer
V eo0@ || |V 00| . |7 eee®
000 o000 000
X 0000 X 0000 X 0000
00000 0000 00000
00000 (II1 1] 00000

Figure 1.12: Ensamble classifiers. Credit: towardsdatascience.com

Finally the steps are repeated until a stopping criteria is met.

Concluding, in order to classify a sample, we observe the output generated
by each learner, and we assign the sample itself to the majority class, following
a weighted vote criteria.

Iraration-1 Iteration-2 Iteration-3
+ o+ o+ . + + + = + o+ 4| -
=] - :D + - ::) + -
2] - - 4 - - + -
Model-1 Model-2 Model-2
4 & 4 =
4 - Final Maodel
4

Figure 1.13: Ensamble classifier. Credit: towardsdatascience.com
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1.3.7 Hyper-parameters tuning

|Z] In the previous section, we’ve shown some problems linked to the various
performance measurements, nevertheless choosing a way to assess the model
performance is crucial in order to proceed and optimize hyper-parameters.

This process is far from being easy. In fact if we observe the problem from a
more abstract point of view, we can interpret the model as a "function" , whose
inputs are the samples, and the output is a value that measure the classification
performance. The point is that the function we want to optimize, is not differen-
tiable, or convex, and moreover a single evaluation may be very time-expensive.
So special approaches are needed.

Furthermore, the performance metric chosen in both datasets is just the
Misclassification Error.

Grid search

Grid search is a model-free black-box optimization method. It basically consists
in an exhaustive search on set that consists of a Cartesian product of different
sets. Each set is formed by a discretization of the set of a given hyper-parameter
if it is continuous, or the whole itself, if it is discrete.

The most notable problem linked to this approach is the curse of dimen-
sionality, since the number of evaluations needed grows exponentially with the
number of parameters to be optimized.

Hyperparameter 2

B
>

Hyperparameter 1

Figure 1.14: Grid search. Credit : researchgate.net

"Written with reference to [Feurer and Hutter, 2019)
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Random search

The second approach, which is still a model-free black-box optimization method,
is the random search, which replaces an exhaustive enumeration with a random
selection of a certain umber of N-tuple parameters. Despite his simplicity,it
offers some advantage over the grid search.

o given a grid, adding a point will destroy the grid structure (except for
some trivial cases).

e The search is parallelizable very easily.

o It’s possible to include some prior knowledge, since we can choose the
density we sample from.

Hyperparameter 2
IS0

Hyperparameter 1

Figure 1.15: Random search. Credit : researchgate.net

Bayesian optimization

Bayesian optimization is an approach very useful for black-box optimization,
when evaluations are expensive, and we can’t calculate derivatives.

Bayesian optimization includes prior information about the function to be
optimized, in our case a performance measure, and updates posterior informa-
tion, which helps reduce loss and maximize the model’s accuracy.

Moreover Bayesian optimization it’s not an exhaustive search, in fact it tries
to optimized a very complicated function by approximating it with a simpler
one, a surrogated function.

A common choice is to use a Gaussian process.
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To define the next point to query we define an acquisition function, that
models how good a point we believe could be.
Ideally, we want to evaluate a function in a point which:

e we expect it to be a good optima candidate

e we have a lot of uncertainty about

so the acquisition function should be high in the points we expect to be good
and in the points where uncertainty is high, and low in the already explored
points.

A suitable function is the Expected Improvement

EI(\) = E [maz(fmin — y,0)]

is common choice since it can be computed in closed form if the model
prediction y at configuration A follows a normal distribution, i.e a we are using
a Gaussian process:

EI(A) = (fmin = )¢ (W) +o¢ (fmn;“()‘)>

where ¢(-) and ®(-) are the standard normal density and standard normal
distribution function, and f,,:, is the best observed value so far.

observation S
acquisition max

Iteration 3

objective function

acquisition function

Iteration 4

______

posterior mean

posterior uncertainty

Figure 1.16: Bayesian optimization process.Credit:" Automated
ML",Hutter,Kotthoff, Vanschoren.
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The blue shaded area represents the uncertainty linked to the Gaussian pro-
cess, the dotted line is the real mean of the process, and the black one is the
estimated one.

As we can see the query point is the one that maximizes the acquisition
function, which intuitively is high in the promising zones (i.e near the best
point so far) and in the unexplored zones.

A generic algorithm should look like this.

Algorithm 1 Basic pseudo-code for Bayesian optimization
Place a Gaussian process prior on f
Observe f at ny points according to an initial space-filling experimental design. Set n = ny.
while n < N do
Update the posterior probability distribution on f using all available data
Let z,, be a maximizer of the acquisition function over x, where the acquisition function is computed using
the current posterior distribution.
Observe y, = f(zn).
Increment n
end while
Return a solution: either the point evaluated with the largest f(z), or the point with the largest posterior
mean.

In this section some corners were cut along the way, since they’re beyond
the scope of this thesis.
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Chapter 2

Algorithm application

2.1 German Credit Dataset

2.1.1 Dataset Description

The first dataset introduced is a collection of 1000 samples and 20 attributes.
It aims to describe the loans emitted from the bank, and the economic situation
of the borrower.

It is made available by UCI Machine Learning Repository E], and it’s gen-
erated by Hans Hofmann, professor at Institut fur Statistik und "Okonometrie
Universit" (Hamburg).

The response variable is binary, and is GoodBad, 1 for good, 2 for bad.
Before applying any machine learning algorithm it might be useful a first, more
general inspection of the dataset. Ideally, for the purposes of classification, for
each attribute should be possible to see some "in-homogeneity" in the distribu-
tion of values, depending on whether the sample belongs to class 1 or 2. By way
of example, a possible difference in the average age of risky and non-risky cred-
itors would make Age a highly significant attribute for classification. Therefore
a graphic survey can highlight these aspects. To do so, the dataset is split into
two different ones, based on the response variable. In particular the dataset is
composed as follows:

¢ Status of existing checking account:

— All: ... <0DM
— Al2: 0 <= .. <200 DM
— Al13: ... >= 200 DM salary assignments for at least 1 year

— Al4 : no checking account

Lhttps://archive.ics.uci.edu/ml/machine-learning-databases/statlog/german/
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Count of StatusAccount vs. GoodBad

At 139 135 300
s 250
2 a2 164 105
g 200
2 A1 49 14 150
@ 100
e “I *
1 2
GoodBad
A14 (15%) o
- (15%) A1 (20%)
A13 (5%)
A1 (45%
(45%) | A14 (50%)
)
A2 (28%) /
A12 (35%) _—

A3 (7%)

¢ Duration in month: duration in month

¢ Credit history:

— A30 : no credits taken/ all credits paid back duly
— A31 : all credits at this bank paid back duly

— A32 : existing credits paid back duly till now

— A33 : delay in paying off in the past

— A34 : critical account/other credits existing (not at this bank)
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e Purpose:

Countof Creatiistory vs. GooaBad

Crodutisiory

anm0
e
)

3%

purpose of the loan

— A40 : car (new)
— A41 : car (used)
— A42 : furniture/equipment
— A43 : radio/television
— A44 : domestic appliances
— A45 : repairs
— A46 : education
— A47 : (vacation - does not exist?)
— A48 : retraining
— A49 : business
— A410 : others
Count of Purpose vs. GoodBad
E A48 (11%)
200 A40 (30%) SREDe
180 ﬁﬁ@m
160
B PR T ) o
g 62 120 A2 (19%)
5 Au 8 4 ;Zn AT Mg(s-@ﬂm%z%
A45 14 8
A4 28 22 50
A48 8 1 = At 1)
20 A410 (1%) A43 (31%)
Ad9 63 34 R 0
1 2
GoodBad

[ educationAds
vacationA47
[__retrainingA48
[ businessA49
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¢ Credit amount

e Savings account

— A61: ...
— A62 :100 <= ...

< 100 DM
< 500 DM

— A63 :500 <= ... < 1000 DM
— A64 : .. >= 1000 DM

— A65 : unknown/ no savings account

Count of SavingAccount vs. GoodBad

A6t
3 A2 69 34
£ A6 52 11
= A4 42 6
@
ABS 151 32
1 2
GoodBad
ABS5 (11%)

AB1 (729%)

RS LR AB5 (22%)
AB2 (11%)
64 (6%)
AB1 (55%)
AB3 (7%)

AB2 (10%)

_— 0
I betwoen 100 and 500
I between 500 and 1000
[ greater than 1000
unknown

¢ Present employment since

— A71:
— A72: ..

— AT73
— A74
— A75

unemployed

< 1 year

1 <= .. <4 years

14 <= .. < 7years

1. >= T years

40

300

200

100



Count of PresentEl vs. GoodBad

39

PresentEmployment

GoodBad

o Installment Rate: Installment rate in percentage of disposable income

frequenza assoluta
8

frequenza assoluta
8

150

¢ Personal status and sex:

— A91 : male : divorced

— A92 : female : divorced/separated/married
— A93 : male : single

— A94 : male : married/widowed

— A95 : female : single

Count of vs. GoodBad

g

30 20

&

PersonalStatus

g 3

GoodBad
A1 (794 (8%) A91 (488 (10%)
A92 (29%)
A92 (36%)

A3 (49%)

A93 (57%)

o Other debtors / guarantors:
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— A101 : none
— A102 : co-applicant
— A103 : guarantor

« Present residence since:

e Property: Asset with higher value owned

— A121 : real estate

— A122 : if not A121 : building society savings agreement/ life insur-
ance

— A123 : if not A121/A122 : car or other, not in attribute 6
— A124 : unknown / no property

o Age

Age

4444444‘%+ +

. H—\ruugwg |

e Other installment plans : other credits in progress

— A141 : bank
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— A142 : stores
— A143 : none

Housing:

— Al51:
— Al152:

rent

own

— A153 : for free

Good Bad
0s
o
204
c o«
0
0.1 o1
Bank stores none Bank stores none
08 Good or Bad

Relative Freq

A1
Affito

Proprieta

ats2 s

Number of existing credits

Gratuito

g
£
H
H
E

At
Affito

Proprieta

ats2 nis3
Gratuito

Good Bad
o7 07
s 06
05 05
04 04

£ £

03 03
02 02
01 01
0 o

o2 3 a4 2 3 4
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o Job:
— A171 : unemployed/ unskilled - non-resident
— A172 : unskilled - resident
— A173 : skilled employee / official

— A174 : management/ self-employed/ highly qualified employee/ offi-
cer qualificated

Good Bad

o . N
M7T1 A2 AITE AIT4 a7 172 73
disoccupato non qualif qualf altamente qualif  disoccupato non qualif qualf altamente qualif

¢ Number of people being liable : Number of people entitled to main-
tenance

— 1: from 0 to 2

— 2: 3 or more

Count of ForeignWorker vs. GoodBad

ForeignWorker

02 a 4

GoodBad

e Telephone: binary attribute

44



Count of Telephone vs. GoodBad

Aot
ez 201 13
1 2

GoodBad

Telephone

o Foreign Worker: binary attribute

Count of ForeignWorker vs. GoodBad

20t
02 a 4
1 2

GoodBad

ForeignWorker
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2.1.2 Algorithm application

In this paragraph we will apply the algorithms introduced in the previous sec-
tions. A part of the dataset (30%) is reserved to the final evaluations, in the
last chapter Moreover performance is estimated using a 5-fold validation. Then,
when possible, hyper-parameters are optimized using some of the methods out-
lined before, namely Grid-search or Bayesian optimization, while trying to min-
imize Minimum Classification Error

Logistic regression

The first algorithm applied is the logistic regression. Here we can the ( in
decreasing order, with the corresponding p — value:

Estimate pValue
1 | StatusAccount_A14 1.7119 0
2 |Purpose_A41 1.6665 0
3 | InstallmentRate -0.3301 0.0002
4 | Purpose_A43 0.8916 0.0003
5 | SavingAccount_A65 0.9467 0.0003
6 | CreditHistory_A34 1.4358 0.0011
7 |Purpose_A42 0.7916 0.0024
8 | Duration -0.0279 0.0027
9 | CreditAmount -0.0001 0.0039

Table 2.1: Logistic regression results

The most significant indicators of a risky creditor seems to be the purchase
of a used car and the absence of a checking account. The results of the classifi-
cations are:

ROC Logistic Regression Confusion Matrix

1 ol
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1 58.6% 11.0%
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f
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)
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i 2 16.1% 14.3%
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o1
0
0 0.2 0.4 0.6 08 1 1 2

Predicted Class

Figure 2.1: Results of Logistic regression
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Plotting each samples against the corresponding probabilities, we can get a
glimpse of classification performance:
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Figure 2.2: Depiction of each sample against the corresponding predicted prob-
ability to belong to class 1

Naive bayes

Naive Bayes gives the following results:

Confusion Matrix

ROC Naive Bayes

1
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/
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01t
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Predicted Class

Figure 2.3: Results of Naive Bayes

It has to be remarked that Naive bayes achieves good results in just 1,01s.
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SVM

Firstly a linear kernel SVM is applied. It gives the following results:

[ f_i
0.8 e
06} rJH
> AUC
b 0.750907
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0 0.2 0.4 0.6 0.8 1
Confusion Matrix
10.7%
0
[}
K
o
[V
2
'_
2 12.3% 11.3%
1 2

Predicted Class

Figure 2.4: Results of Logistic regression

Here’s an example on how SVM splits datas, in a CreditAmount against
Duration plan:
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Figure 2.5: Linear kernel SVM

The next step consists in optimizing the parameters with a Bayesian opti-
mization. Heuristically, the optimal parameters appears to be :

e Kernel : medium Gaussian
o KerneScale: 4.5 (How much data should be scaled).
o Standardize: true (If it’s better to standardize datas or not).

o BoxCostraint: 1 (How much classifications should be penalized).
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Here we can see a snippet of the Bayesian optimization process:

Objective function model

®  Observed points

[ Model mean
@® Next point
#  Model minimum feasible

0.55

0.5 -

0.45

0.4 -

0.35

Estimated objective function value
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Figure 2.6: Surrogated function of Bayesian optimization.

Optimizing parameters, increases the quality of results. For example using
non-linear kernel as a Gaussian one, namely:
=X

K(x,x') = exp 552
o
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Figure 2.7: Results of SVM

Here we can observe the non linearity introduced by the Gaussian kernel:

x10* Gaussian Kernel
T T

o
T

CreditAmpount
T

o
oo
T

o
(=2}
T

o
s
T

0.2

80

Figure 2.8: Gaussian Kernel SVM
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Knn

In knn there are mainly two parameters to be optimized: the number of neigh-
bors and the distance used. After standardizing datas, using a grid search, we
can optimize both of them. In the plot we can see the estimated classification
error for each iteration:

model 9 (Optimizable KNN)

L Estimated min classification error
0.295 ~—®— Observed min classification error
B  Bestpoint hyperparameters
©  Minimum error
0.29¢—8 o909
0.285 | \
2 \
@
s 0.28 |
T BeBr {
=
g -
= 'Y
17}
< \
]
Eoars - ‘
£
£ \
= “\
¢
0.27 - L]
\ Bestpoint hyperparameters
\ Number of neighbors: 9
\ Distance metric: City block
\ Standardize data: true
0.265 [~ \
L—Q—Q—o—o—o—o—c—o Observed min classification error: 0.26298
= e
0.26 -
1 1 1 1 1 1
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lteration

Figure 2.9: Minimization of classification error process

The best results are obtained using k£ = 9, and a C'ity block distance, defined
as follows:

n
di(p.a) =lp—al, =Y Ipi -l
=1

Below, we can see an image that intuitively explains the concept.
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Figure 2.10: The green one is a representation of the euclidean distance, the
others of Manhattan distance

The results obtained are the following:

ROC KNN Gonfusio_n Matrix

AUC
0.777607

True Class

0 0.2 0.4 0.6 0.8 1 1 2
Predicted Class

Figure 2.11: Results of KNN
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Optimized and bagged tree

The great advantage of trees over the boosted or bagged counterpart, is that
they are very easy to interpret as we can see from a snippet of the model built:

StatusAccount in {A11 A12} /-, StatusAccount in {A13 A14}

N

1
Class probabilities:
1=0.869
2=0.131

CreditHistory in {A30 A31} /< CreditHistory in {A32 A33 A34}

Figure 2.12: Decision tree of German dataset

Using Bagging, i.e building trees on bagged subset taken from the dataset
or Boosting, interpretability is lost, but the performance improves usually by a
lot. The best results are obtained with AdaBoost:

ROC BoostedTree Confusion Matrix
" i T ~
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- 1
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Figure 2.13: Results of Boosted trees
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Summary of results

The AUC of the methods used are:

Logistic Reg | Naive Bayes | KNN SVM Boosted Trees
AUC | 0.7585 0.7726 0.7776 | 0.7823 | 0.7578

Table 2.2: AUC results

Here we can see all the ROC curves:

1 T T T 1 T T T
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Figure 2.14: ROC curve confrontation

We remark that a classifier whose ROC curve lies above another classifiers
ROC curve, has a better performance. Other than AUC there exists other
performance measures:
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Accuracy | Sensitivity | Specificity | Precision | FPR Flscore
Logistic Reg 0.7300 0.6064 0.7754 0.8429 0.4978 | 0.7053
Naive Bayes 0.7114 0.5467 0.8273 0.7219 0.6900 | 0.6222
KNN 0.6929 0.5230 0.8232 0.6921 0.6943 | 0.5958
SVM 0.6457 0.4779 0.9114 0.5244 0.8952 | 0.5001
Ensemble Trees | 0.6971 0.5275 0.8312 0.6900 0.7118 | 0.5979

Table 2.3: German dataset classification performance

Basing our choice on AUC, which we remark to be a good performance
measure, the best method seems to be the SVM. But as it can be seen, other
measure would lead to different options. In particular, also Logistic regres-

sion’s performance looks quite valid.
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2.2 Loan P2P

The dataset in question is a collection of P2P loans made through the Lending
Club platform, from 2007 to 2020. LendingClub is an American peer-to-peer
lending company, the first P2P lender to register its offerings as securities with
the Securities and Exchange Commission, and to offer loan trading on a sec-
ondary market. The dataset is made available by Kaggleﬂ, an online community
of data scientists and machine learning practitioners. There are 887380 samples
and 74 attributes, some of which must be discarded as textual attributes, so it
is difficult to obtain valid and reliable information.

Other than that, the dataset needs some pre-processing, so in the following
section it will undergo a step-by-step data-cleaning procedure

2.2.1 Dataset pre-processing
Text Attributes

The first step, is to remove text attributes, since it’s difficult and outside the
scope of this thesis to extract information from these, so:

e Desc Loan description provided by the borrower.
¢ URL Which is a web address.

« Emp_ title Job described by the borrower when applying for the loan.

Leaking future datas

The first step, consists in removing those attributes whose value was not avail-
able at the moment of lend concession. In fact, since we are interested in clas-
sifying reliable and unreliable borrower, we cannot use data that we will obtain
only in the future. So we will remove:

¢ Funded_ amount The total amount committed to that loan at that point
in time.

e Funded _ amount_ inv The total amount committed by investors for
that loan at that point in time.

e Last_ pymnt__d Last month payment was received
e Last_ pymnt__amnt Last total payment amount received
o Total pymnt Payments received to date for total amount funded

e Total pymnt__inv Payments received to date for portion of total
amount funded by investors

o Total_rec_ prncp Principal received to date

2https://www.kaggle.com/datasets/ethon0426 /lending-club-20072020q1
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« Total rec_ late_fee Late fees received to date
¢ Out__prncp Remaining outstanding principal for total amount funded

e Out_ prncp_ inv Remaining outstanding principal for portion of total
amount funded by investors

Since them contains informations obtained past the loan emission.

e Issued__d The month which the loan was funded

Since it means that the platform granted a loan.

¢ Recoveries post charge off gross recovery

¢ Collection__recovery_ fee post charge off collection fee

Since the presence of these means that loan defaulted. Moreover since we’re
interested in testing our ML algorithm, it seems reasonable to drop off all FICO
scores related attribute. FICO score is a value that banks uses to measure the
creditworthiness of the issuer.

e fico_range_high The upper boundary range the borrower’s FICO at
the moment the loan had been granted

e fico_range_ low The lower boundary range the borrower’s FICO at the
moment the loan had been granted.

e last_ fico_range_ high The FICO upper boundary range at the present
moment.

e last_ fico_range_low The FICO lower boundary range at the present
moment.

Non-informative attributes

The next step, is to drop off those attribute that do not influence the classifica-
tion:

e id — randomly generate identifier.
e member__id — randomly generated identifier
e addr_state since contains the same information of zip_ code

e Grade, in fact the same informations are contained Subgrade
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2.2.2 Missing data, unique values

Here we can have a look at the attributes that presents missing datas:

Attribute Missing data | Attribute Missing data
"total _acc" 29 "open_acc_ 6m" 866007
"next_ pymnt_d" 252971 "open_il_6m" 866007
"last__credit_ pull_d" 53 "open_il_ 12m" 866007
"collections_ 12 mths" 145 "open__il_ 24m" 866007
"acc_now__deling" 29 "open_rv_12m" 866007
"emp_ length" 44825 "mths_since last_delinq" 454312
"annual inc" 4 "mths_since last record" 750326
"delinq_ 2yrs" 29 "open_ acc" 29
"earliest _cr line" 29 "pub_ rec" 29
"ing_ last_ 6mths" 29 "revol util" 502
"open_rv_24m'" 866007 "inq_last_ 12m" 866007

Table 2.4: Missing values of Loan dataset

we can remove these attributes as they miss too much values:
e open_rv_ 24m

e inq last_ 12m

e open__acc_ 6m

e open_il_6m

e open_il_12m

e open_il_24m

e open_rv__12m

e mths_ since_ last_ delinq

e mths since_ last_record

For other attributes, we need some care, because those ones could introduce
some bias in our models. But since only the 5% of entries has one or more miss-
ing attributes, we can remove them safely without loosing too much information.
Also, we can remove Policy__code, pymnt__plan, application__type as ev-
ery samples has the same value, once the dataset is pre-processed.
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Response variable

The response variable is status, that has 10 different levels with several samples
belonging to each one:

Charged off: considered as probable loss
Current: in progress
Default: default

Does not meet the credit policy-Charged off: the loan is considered
as probable loss, the loan application would no longer meet the credit
policy and would not have been approved in the market.

Does not meet the credit policy-Fully paid: the loan was repaid,
but the loan application would no longer meet the credit policy and would
not be approved in the market.

Fully paid: paid

In grace period: in grace period of 15 days
Issued: loan granted

Late (16-30 days): delayed for 16-30 days
Late (31-120 days): delayed for 31-120 days

Some categories need to be deleted or modified:

charged off: has no elements present

Issued: these are newly granted loans for which no information is available

Finally, it is possible to remove attributes for loans still in progress:

In grace period
Late (16-30 days)
Late (31-120 days)

Does not meet the credit policy-Charged off

The 3 levels remaining are:

Level: N of samples:
Default 1219

Fully paid 207723
Charged off 45248
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We can organize those levels in 2 different ones: risky (defaulted and charged
off) and not risky (Fully paid).

x10*

15

1 2
not risky risky

Hold out-set

Since the dimension of the dataset are large, it’s possible to partition it into a
training set, test set, and hold-out set. To do so each samples is assigned
with probability 0.7 to the first one, and probability 0.15 to each of the other
one. In this way the dataset obtained are stratifies, i.e. they maintain the same
proportion of risky and non risky elements.

«10*

[ Test set
[ Training set

N of samples

05 0 05 1 15
class
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Principal component analysis

In order to further reduce dimensionality, we can apply PCA to the remaining
numerical attributes of the dataset. The dataset is centered, so that each feature
has the same weight. Plotting the cumulative variance explained (which can be
interpreted as a measure of information retained) , in relation to the number
of components, we can see that the 99% of variance is retained with the first 4
principal component:

PCA
100 T T

Percentage of variance
©
&

. . . . I I . .
0 2 4 6 8 10 12 14 16 18
number of components

Figure 2.15: Variance explained and PCA

Unbalanced datas

As we already seen we have a quite unbalanced situation:

— 108%)
e

N

0(82%)

Since the samples after the pre-processing are 243974, which is a great
number, in order to deal with the outbalancing we can apply an undersampling,
by constructing a new training set in this way

1. Selecting all the elements of class risky
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2. Selecting an equal number of elements of not risky class, randomly

By doing so we obtain a perfectly balanced training set.

2.2.3 Algorithm application

Now the dataset presents 61209 and 6 attributes, plus the class label:
1. Subgrade LC assigned loan subgrade

subgrade divided by class

’i¥232532380085858338G0BEEIREEEG0858
oo

2. Home__ownership The home ownership status provided by the borrower
during registration

-home ownership divided by class
16000

14000

12000

10000

count

8000

6000

ANY MORTGAGE  NONE OTHER oWN RENT
home ownership

3. Purpose A category provided by the borrower for the loan request.

«10* purpose divided by class

I risky
18 Einot isky

o @ & Y 3 ° 9
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purpose
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4. Verification__status

risky not risky

Not Verified (28%)
Not Verified (37%)
|

/

/
\\ / Verified (63%)
Verified (72%)
= 7//

5. addr__state The state provided by the borrower in the loan application

6. Initial list_ status The initial listing status of the loan (binary).

not risky

risky
N(zm) W (28%)
|
(73%) (72%)

7. and the first 4 principal component

b A b o N o»

o jmmn
=

i »lmd—ﬂ—h
st
|

A{

A first graphical inspection confirms that there is some dishomogeneity in the
data distribution, especially in Sub__grade, Home__ownership and Pur-
pose
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Logistic regression

The results of logistic regression confirms what the visual inspection suggested:

Estimate SE tStat pValue
1 sub_grade_E4 2.7159 0.1989 13.6530 0
2 |sub_grade_E5 2.7463 0.2035 13.4939 0
3 [PC1 -4.9723e-06 |  3.6930e-07 -13.4642 0
4 | sub_grade_E3 2.6260 0.1952 13.4520 0
5 |sub_grade_E2 2.5679 0.1919 13.3816 0
6 |sub_grade_E1 2.5571 0.1929 13.2592 0
7 |sub_grade_D5 2.4778 0.1871 13.2429 0
8 |sub_grade_D3 2.4018 0.1850 12.9842 0
9 |sub_grade_D4 2.3894 0.1844 12.9565 0

Table 2.5: Logistic regression results

The table depicts the most influential attributes, along with the correspond-
ing 8. Also p — value, standard — error, and t — statistic

Subgrade is the most indicative attribute. Moreover is interesting to notice
that PC1, even is very significative, the corresponding S is very close to 0. The
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classification performance is the following:

Logistic Regression

AUC
0.686731
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Figure 2.16: Logistic regression results
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Plotting each samples against the corresponding probabilities, we can see
intuitively the classification performance:

09 -

06 -

1
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

Figure 2.17: Depiction of each sample against the corresponding predicted prob-
ability

Regarding Logistic regression, recalling what we said in section 1.2.3 we may
assume intuitively that we should assign a sample to class 0 if p < 0.5, and to
class 1 in p > 0.5, but in case of highly unbalanced case, this may not be the
optimal choice, in fact several one are possible.

Let’s consider two trivial case: the first one, with that given threshold T
equal to one, would led to classify each sample to class 0, so obviously it holds:

Precisionpr—1 =1

Sensitivityr—1 =0
And, in a symmetrical way, for T = 0:

Precisionp—g =0

Sensitivityr—g = 1

For values of T' between 0 and 1 we will get several different performance
measure’s values. The increase in one, will eventually make the others decrease,
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so it’s not obvious which the optimal choice is (we recall that this one is exactly
the meaning of the ROC curve, as explained in section 1.2.3 ).

In order to grasp better the concept, we can resort to a graphic interpreta-
tion. What we should do, is to choice a threshold (which is just an horizontal
line) that splits well the blue points from the red one. Varying this threshold
gives different confusion matrix.

Therefore the best threshold depends on different factors, anyway the ROC
curve can overcame this aspects by summarizing effectively the effect that every
choice of T would have.

SVM
the best SVM hyperparameters seems to be:
o KernelFunction’: ’polynomial’
¢ ’'PolynomialOrder’: 3
o ’'KernelScale 1
o 'BoxConstraint’: 0.001018900420527312

¢ ’Standardize’: true

1 SVM C ion Matrix
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Figure 2.18
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Naive Bayes

Naive Bayes, is by far the quickest algorithm. Kernel Naive Bayes gives this
performance:

ROC
Naive Bayes Confusion Matrix
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AUC
0.667987
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01

Predicted Class
Figure 2.19: Naive Bayes results

Bagged trees
Optimization gives these results:
e 'Method’: AdaBoost
e 'NumLearningCycles’: 330
o ’LearnRate’ 0.1355696826739945

ROC
4 BoostedTree Confusion Matrix
0.9
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Knn

Before applying K-NN, since there are several categorical attributes, it’s nec-
essary to transform them into numerical ones. Since Sub-grade has ordinal
features, it’s possible to map them into integers

7A1’
7A2’
7A3’
7A4’
7A57
'‘Bl" | —
7B27
7B37
7B4’
7B57

=[O 00| | O U x| W N+~

0

Table 2.6: Subgrade: from categorical to numerical

Other attributes, do not present this characteristic, so it’s necessary to trans-
form them into dummy attributes. The hyper-parameters optimization gives as
optimal:

o ’'Distance’ : Spearman
e 'NumNeighbors’ : 321

o ’'Standardize’ : true

Given two sample (X7, Xs,..,X,) and (Y1,Ys,...,Y,) we can calculate the
Spearman distance by converting each entries of the samples in the corre-
sponding rank R(X;) and R(X32), then the distance is just:

cov(R(X), R(Y))
T's = PR(X),R(Y) — )

OR(X)OR(Y)
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The results obtained are:

ROC
KNN Confusion Matrix
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Figure 2.20: KNN results
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Summary of results

The best performance seems to be achieved by logistic regression, but the small
difference with Boosted trees suggest their performance is more or less equiva-
lent, and may depend by the particular instances we are analyzing.

Logistic Reg | Naive Bayes | KNN SVM Boosted Trees
AUC | 0.6909 0.6679 0.6574 | 0.6745 | 0.6903
Table 2.7: AUC results
‘;:
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Figure 2.21: ROC curves confrontation
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For the sake of completeness we can also report other performance measures:

Accuracy | Sensitivity | Specificity | Precision | NPV | Flscore
Logistic Reg 0.6327 0.6284 0.6374 0.6119 0.6534 | 0.6200
Naive Bayes 0.6156 0.6037 0.6308 0.5531 0.6777 | 0.5773
KNN 0.6154 0.6164 0.6144 0.6152 0.6156 | 0.6158
SVM 0.6304 0.6208 0.6419 0.5865 0.6742 | 0.6032
Ensemble Trees | 0.6358 0.6284 0.6441 0.6033 0.6681 | 0.6156

Table 2.8: Loan dataset classification performance

As always, different measures lead to different definition of "the best
method". But overall we can say that logistic regression gives good results,
moreover it offers generally a greater interpretability than the others alterna-
tives so it may be the preferred alternative.
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Chapter 3

Ensemble classifiers

3.0.1 Model complexity

Now we will return to a topic already treated previously, the bias-variance trade-
off, but from a slightly different point of view. We recall that in a statical
learning framework, for a generic (xg, yo) it holds:

MSE(w0) = E(yo — f(20)?) = Var(f(z0)) + E(f(z0) — f(x0)) + Var(e)

so the error is composed by different parts: one that is irreducible, i.e Vaar(e),
and other two, the "bias" an the "variance" of the model:

Va?"(f(ﬂﬂo))

Bias[f(zo)] = E(f(20)) — f (o)

We will try to grasp in an intuitive way, what these terms means, and more
generally their trade-off.

Conceptually, the error due to bias is the difference between the expected
prediction and the correct label. We talk about "expected prediction" because
the model builded depends on the sample we have, as well as other factor. So,
repeating the model building process ex novo, would lead to different results.
After repeating this process several times, we can start talking about an average
prediction.

On the other side, in this framework, the error due to variance is taken as
the variability linked to the prediction relative to a given point. In simple words,
the variance is how much the prediction changes depending on the realizations
of the model.

Graphically we can represent those error as follows:
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Figure 3.1: Bias-variance trade-off. Credit: medium.com

In this bulls-eye diagram, the center of the target represents the perfect
model, and the variance is obviously symbolized as the dispersion of the points.

Over-fitting

In this scenario, we are intuitively led to think that we should reduce the bias
as much as possible, no matter what, but it is not correct, in fact this would
lead to an over-fitting of data.

We can define intuitively over-fitting as a model that too closely fits a given
dataset, and it ends up not fitting other dataset as well. It essentially starts to
fit not only the data structure, but also the noise of the samples.

Training Data = @
\alidation Data =0
Model = ===y
Error measurement = |

Dataset Over-fitting o Good-fitting
L ]
.0 ° o
L J+]
* 0.. ! ‘ y y  J
L]
(4] [+]
X X X X

Figure 3.2: Overfitting. Credit :Deep learning approaches in food recognition

Furthermore, over-fitting can be seen under another point of view, plotting
the test-error and the training error of the model against the model complexity,
which can be interpreted intuitively as a property of the model that leads to an
under-fit or an over-fit of the same.
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As can be seen, increasing the model complexity leads almost surely to a
decrease of the testing error. To convince us of this, we can take as an example
a simple decision tree. It’s easy to keep splitting leaves until we have a complete
homogeneity of classes in each terminal node.

Error
A

Best Testing Error
Complexity

Training Error

» Model Complexity

Figure 3.3: Bias-Variance and Errors. Credit: Medium.com

On the other side, an increase in complexity, past a certain point, would not
increase testing performance which is the quantity that we are really interested
in.

So, as we have already said, there exist an optimal complexity level, that
allows us to achieve the best possible performance.

3.0.2 Lowering variance

As shown in the previous sections, the algorithm used possess some constraint
that allows to lower variance. The logistic regression models linearly the log-
odds ratio, and the SVM (even with the use of kernels) use a separating hyper-
plane that maximizes margin, so the over-fitting is avoided by the structure
itself of the model. K-nn with k greater than 1, "averages" the neighbors, and
the decision trees use some pruning technique to lower complexity.

A special mention is needed for bagging and boosting, already introduced
in section 3.6. Recapping briefly, bagging, i.e. bootstrap aggregating, builds
several datasets by sampling with replacement from the original one, then, for
each bootstrapped dataset a model is created, and finally the different predic-
tions are aggregated. Boosting is similar, but it uses "weak learners", in other
words, models that are only slightly better than random guessing. This allows
to decorrelate trees and so lower further the variance.

Summing it all up, bias and variance have to be balanced, as an increase in
one generally leads to an increase in the other. Each model must have a way
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to control variance, and a very common way is to aggregate prediction made by
different models.

Till now we combined prediction that are in a certain way "homogeneous',
since they are generated always by the same algorithm. Intuitively, continuing
this reasoning, we can also aggregate predictions generated by different algo-
rithm.

This approach is a very fertile trend in the field of machine learning, and it’s
known as ensemble classifiers

3.0.3 Origins of ensemble learning

Ensemble learning is a general term for machine learning methods that unify
multiple predictions to make a decision, typically in a supervised framework.
It’s not easy to find an exact origin of ensemble learning, since it can be seen as
an evolution of the wisdom of the crowd. This phenomenon can be summed
up as:

the average value of multiple estimates tends to be more accurate than any
one single estimate; [Joshua L. Fiechter, 2021].

The famous Condorcet’s jury theorem has many links to ensemble learn-
ing. The theorem considers a scenario where a group tries to reach a binary
decision by majority vote (one of the two outcomes is obviously correct), and
each voter has a probability p of voting for the correct decision which is inde-
pendent of all the others.

The theorem states that if p is greater than 1/2, then adding more voters
increases the probability that the majority decision is correct, and in the limit,
it’s sure that the majority votes correctly.

Francis Galton in 1907 gave a concrete example of wisdom of crowds.

During a show in Plymouth, in a weight-estimation game wherein 787 people
were trying to estimate the weight of an ox, Galton collected responses of the
participants.

The average estimate was 1197 1b; like the weight of the ox, so the crowd had
perfectly assessed the weight, while for what concerns the individual estimates:

that the individual estimates are abnormally distributed in such a way that
it is an equal chance whether one of them, selected at random, falls within or
without the limits of -3 - 7 per cent. and +2 -4 per cent. of their middlemost
value.
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In other terms, it’s clear that in this case the crowd is much more precise
than a single estimate.

Obviously, a single experiment, cannot guarantee that a crowd will always
outperform a single expert. Anyway, according to [Suroweci, 2005] the wisdom
of the crowd is likely to be better than a single "expert" when the following
criteria are met :

¢ Independence of opinions.

o Aggregation: there exists a way to unify private judgments into a collective
one.

o Diversity of opinions: Everyone should have private informations, even
unorthodox interpretations of facts.

o Decentralization: Everyone can specialize and make predictions based on
local information.

Number of published ensemble related papers per year
9,000
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5,000

Number of papers.
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[
1985 1990 1995 2000 2005 2010 2015

Figure 3.4: Number of papers regarding ensemble learning over the years.picture
taken from: [Dong:2020tx]

3.0.4 Why ensemble learning works

Has been shown empirically many times that ensemble learning improves pre-
diction performance. The causes are different, and mainly four can be identified
[Polikar, 2006] [Sagi and Rokach, 2018]:

e« The statistical problem: the problem that arises when the algorithm
cannot span all the hypothesis space, because it’s too large, and the
amount of datas is not sufficient. In that case an algorithm could find
several different hypothesis which yields to the same classification perfor-
mance. A voting system will reduce the effects of that problem.

e The representation problem: The representation problem happens
when the hypothesis space do not contain a good approximation of the real
function f that we are trying to approximate. Hopefully a combination
of classifiers could "span" a larger hypothesis space, providing a better
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estimate of f. We can show this concept by taking in consideration a case
where we have a classifiers that separates linearly datas, for example SVM,
or single-split decision tree. In that situation, combining different "voters"
can generate some non-linearity in our model. This phenomenon can be
presented graphically as follows:

Figure 3.5: Picture taken from: [Sagi and Rokach, 2018§]

This notion can be generalized to more articulated cases, where the de-
cision boundaries are just too complex for one classifier, but not for the
ensemble ones:

Training Data Examples

o (o] for Class 1
o] 00" 0 g0
w o
Cﬂf? 000
o2 ® %o
c 00
0000 ._p o
2 o0 b
g % °
g Ty aining Dat
(o) raining Data
§ Complax Dacision 000 o Examples
O [Boundary to Be Learnad for Class 2

Observation/Measurement/Featurs 1

Figure 1. Complex decision boundary that cannot be learned
by linear er circular classifiers.

Observation/Measurement/Feature 2

Observation/Measurement/Feature 1

Figure 2. Ensemble of classifiers spanning the decision
space.

Figure 3.6: Picture taken from: [Polikar, 2006]

As it can be seen, combining prediction we allow for much more flexible
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boundaries.

e The computational problem: sometimes the task of finding the best
hypothesis is computationally intractable, so some heuristic methods are
needed.

The problem that arises in these situations is that the method risks to
get stuck in local optima, while combining outputs reduces the risk of
choosing the wrong local minima.

Statistical Computational

S e

Representational
H

of

Figure 3.7: The three most relevant causes that make ensemble learning work.

The black curve represents the hypothesis space H, and the blue curve the
set of hypotheses that yields to a good classification performance, meanwhile
the point "f" is the true hypothesis, and the blue points the single classifiers.

Another important cause is the problem of data fusion: when combining
different datasets, a single classification method may fail to learn the informa-
tions contained in them , if their nature is heterogeneous [Polikar, 2006]. For
example, in a medical environment, it’s difficult to use a single algorithm for a
MRI scan, an ECG recording, a blood test..., while we can use a different meth-
ods for each on them, and then combine their outputs in a single prediction.
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3.0.5 Combining voters

At this point, the already very simple scheme of an ensemble classifiers should
be clear.

Starting from different output generated by the single committee, we com-
bine them in a single output.

Base classifiers

.I Classifier 2

Training datasets Combiner

Majority vpting/ _» Final
meta-classifier prediction

Classifier N

Figure 3.8: Picture taken from: |Dietterich, 2000]

The two open questions are:

¢ What kind of output should the voters produce?

« How can we combine these votes?

Considering a binary classification case, the first answer is quite straightfor-
ward, since the possible outputs are mainly two:

1. The class label.

2. The class scores (remembering that given one class score we can deduct
the other class one).

As far as it is concerned the second question, the situation is much more
complex, since there exist virtually unlimited ways for combining outputs into
a single one. It’s important to remark that some methods outputs probabilities,
some other instead produce a score, but both are simply a measure of the
confidence the model has in the prediction made.

We can anyway enumerate some of them:

¢ Voting ensembles:

— Hard voting: each method outputs a label, then the sample is
assigned to the majority class
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— Soft voting: the class that received the largest sum of probability or
scores is chosen. The main point is that each classifier is considered
equally good or important

— Weighted voting: the vote classifiers whose performance is better
has a greater value

e Advanced ensembling technique:

— Blending
— Stacking

The last two methods deserve a deeper explanation compared to the more
naive voting system.

Stacking is a 2-level learning method. It consists in mainly two phases:
briefly, during the first one , several machine learning algorithm (base-models)
are implemented for generating prediction using a cross-validation , in a score-
like form. These prediction are collected in a new training set, and finally this
one is used for building another model whose features are precisely those scores
(this model is known as meta-model).

Getting into details, the stacking method is composed by these steps:

1. The dataset is split into training-set with n samples, and test-set

2. using a k-fold validation, each of the chosen M algorithm is implemented.

All the k-1 fold are used to generate a prediction on remaining fold (as
usual this process is repeated k times, changing always the selected folds).
Now we have a dataset with M features and n samples.

3. At this point, we need a test-set that obviously has the same features of
the training set, which we remember to be the outputs of the base-models.
To do so we have to train each base-model and make prediction on the
test-set

Predict Predict
" Predict i Prediet
Testing > Predict Predice Predict Predict - Testing .
Predict e Predict
Predict Predict
Layer 2

Layer 1

Figure 3.9: Step 3 and 4. picture taken from: CodeProject.com
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4. Summing up, now we have a training set composed by n samples and M
feature, that are outputs of K-fold validated base-models , and a test-
set whose features are prediction generated by each model trained on the
entire training-set, and applied to the test. Now we just have to use
another algorithm, for example a logistic regression to generate the final
prediction.

The blending method is very similar, except for the fact that the base
models do not use a k-fold validation, but a hold-out set approach.
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Figure 3.10: Blending method. Credit: towardsdatascience.com

The main difference is that same samples are in a certain way lost, respect
the stacking method.
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Chapter 4

Ensemble learning
application

4.0.1 german credit dataset
Stacking

In this section, we will retrace the steps that compose the stacking method,
already outlined before.

We start splitting the german credit dataset into training-set ( 70%) and
test-set (30% ).

Then, the first step is the base-models building.

Five learners are chosen, and optimized (the same use in the previous chap-
ters):

1. Logistic regression
2. Naive Bayes
3. KNN
4. SVM
5. Boosted Trees

Each algorithm outputs a score (obtained through a 5-fold validation) that
is a measure of the confidence of the prediction: the higher the score, the more
the algorithm is sure of the prediction. For logistic regression and Naive Bayes,
the score is simply the probability, for the other is a value that can be both
positive and negative. In the SVM case for example, the score absolute value is
the distance from the hyper-plane, and the sign represents the side of the plane
where the point lies.

We could transform all these scores in a probabilistic fashion, but this process

is useless since for the meta-model would make no difference if input are scores
or probabilities.
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Base model

scores

Figure 4.1: A snippet of the process

Here we can see the results produced on the first step, which is the yellow
dataset in the picture above:

LogReg NB KNN SVM Boost Class
0.0494098 | 0.0177445 0.155506 | -0.80010524 | -0.425097463680275 | 1
0.5710981 | 0.852916322 | 0.354706 | 0.482189 0.8224137384 2
0.01594290 | 0.01968295 0.1982274 | -0.6402284 | -1.117215059 1
0.2738027 | 0.93256559 0.367902 | 0.52913145 | 0.3513957344 1
0.831816 0.7245028045 | 0.391607 | 0.85569 0.5702024 2
0.193445 0.918067 0.2511766 | -0.072189 -0.40364441 1

Table 4.1: Scores of the first 6 samples

Now basically we have to use this dataset to train a model, that will make
prediction on the test set.
The point is that the test is not in the same format of this training-set, since
it is composed by the original features, and not by scores.
Long story short, we have to use the models we builded to transform that
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set into scores, i.e we have to predict them starting from the original attributes.
At this point, after choosing now a new algorithm (in our case SVM is picked)
we have all we need to build the meta-mode:

o A training set: whose dimension is Niraining.amples X Nmodels Plus the
class labels, so 700 x 6

o A test-set : which iSN¢est ampies X Nmodets Plus the labels, i.e 300 x 6

Training set
700x 5

model Luilding

o

SVM Jﬁ( Predictions ]

Figure 4.2: Meta-model building

Now we can see the result obtained, confronting them with the learner which
performed the best previously.

1 ROC confrontation
T T T T ™ =

H—'—,_r'*‘ S= Stacking

T BestModel

09 ! i

g, Z

AUC stacking : 0.8200 -
AUC Best Model : 0.8019

0.1 —‘ b

0 I I I I I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Best model

27

True Class
True Class

1 2
Predicted Class Predicted Class

Figure 4.3: Stacking ROC curve confrontation

The improvement in performance is evident, and it remains significant even

after repeating the process several times.
Another thing to pinpoint is the sensitivity:

42

Sensitivitysiacking = 217 = 0.60
7 0.47

g VY Bestitod = —— =
ensttivityBest Mod TR

Sensitivity is a very important value in our setting. It can be reformulated
as: given that an individual is classified as a bad creditor, how probable is that

he is a bad creditor for real?
in the last case the probability is 0.47 in the first 0.6 : a great improvement.
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Hard-voting

Hard-voting is quite straight-forward: each one of the 5 committee (algorithm)
outputs for each sample a predicted class, then that sample is assigned to the
class that obtained the most votes.

]
ek
L0 0

Figure 4.4: Hard voting process

the results obtained are:
Since, in a hard-voting setting it’s nonsensical to produce scores (the only

possible values would be : 0,0.2,0.4,0.6,0.8 and 1) the confrontation is made
only by confusion matrices:

Hard Voting Best model

True Class
True Class

1 2 1 2
Predicted Class Predicted Class

Figure 4.5: Hard voting results

Also remarking that sensitivity increases from 0.47 to 0.52. A significant
improvement, even if not as good as the stacking model.
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4.0.2 Loan dataset
Blending

In this section we will repeated the same steps taken in the section above,
the only difference is that hold-out set approach is used, instead of a cross-
validation one. The choice of using blending instead of stacking is justified by the
dimensions of the loan dataset in fact it has 243974 samples, while the German
one has "only" 1000 samples. In the Loan dataset case, the cross-validation
is not necessary, since we have a sufficient number of samples to accurately
estimate the model performance with a validation set approach, moreover the
latter allows to save a lot of computational time.

First, we take from the test-set a certain number of samples, in our case 30%
(same hold-out procedure outlined in the first chapters).

Then we build a model for each of the 5 learners, starting from the test-set.
Successively we use those model to predict the score for each element belonging
to the validation set.

Finally we build the meta-model, that has as "input" the scores previously
obtained (and obviously the label), and outputs a prediction for the test set.

In particular, here Logistic regression is chosen, since it seems to achieve
good performance in a short time. The figure below depicts the steps taken:

Validation
set5

Validation

Validation Validation Validation
Set1 Set2 set3 Set4

PREDICTION

Figure 4.6: Blending process
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The results obtained are the following:

0.9t e 4

0.8 -

0.7

ROC blending | |
— ROC best model

0.6 [

0.5 -

0.4 -

Figure 4.7: Blending ROC curve confrontation

With an increase in AUC from 0.683 to 0.692.

Normalizing the confusion matrix along the column, we can highlight the
improvement of the performance, recalling that in this setup, the value at the
bottom right is the Sensitivity of the model:

Blending Best model

True Class
True Class

1 2 1 2
Predicted Class Predicted Class

Figure 4.8: Blending results
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Sensitivity also gets significantly better:
Sensitivityprending0.654
Sensitivitygestvod = 0.539

Hard voting

The hard voting case is completely analogous the the German dataset case.

Best model

HardVoting

True Class
True Class

2 3¢ 61.9% 2 10.9% 27.0%

1 2 1 2
Predicted Class Predicted Class

Figure 4.9: Results of Hard voting

Sensitivitygaravoting = 0.619

Sensitivitygestvoq = 0.27

As can be seen the performance gets a lot better. Another thing to remark
is that hard-voting is far quicker than blending, and do not need to split the
original in three parts: it is sufficient to build the learners on the training-set,
make prediction on the test-set, and finally average them into a single one.

As said before, in the German dataset case, it’s not useful to produce scores
as outputs of the model, since in the hard-voting case it’s the only possible
values would be : 0,0.2,0.4,0.6,0.8 and 1.
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Concluding, we can observe that in both datasets that ensemble learning

improves performance:

Accuracy | Sensitivity | Specificity | Precision | Fl-score | AUC
Stacking German Dataset 0.7733 0.6462 0.8085 0.8920 0.7494 0.82
Best Model German Dataset | 0.7033 0.4917 0.8444 0.7136 0.5822 0.79
Blending Loan Dataset 0.8205 0.6543 0.8206 0.9998 0.7910 0.70
Best Model Loan Dataset 0.8205 0.5393 0.8208 0.9994 0.7005 0.68

Table 4.2: Ensemble learning classification performance.
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Conclusions

The conclusion of this work leads to some final considerations. First of all,
the comparison between the various classification methods cannot always be
exhausted in a mere numerical comparison, in fact, "performance" is strongly
dependent on what are trying to optimize.

In an economical setting, we can ideally generate a misclassification cost
matrix , where entries are deducted by the economic cost of false positive or
false negative errors.

Beside these considerations, AUC and sensitivity are two strong indicators
in our setting.

In the German credit dataset, the SVM was the best classifier under this
point of view.

In the LoanP2P one, Logistic regression and Ensemble trees performed
the best, but the grater interpretability of GLMs makes the first option much
more preferable.

However, a relevant result is the improvement in the quality of the
model achieved by ensemble classifiers (especially blending and stacking,
that besides some technicalities, are conceptually equivalent). AUC of ensemble
models outperformed in both cases the best out of the five learners.

Furthermore, sensitivity, which we remark to be a very important indicator
in our setting, increased substantially in each situation.

However, it’s important to point out that EC can increase by a lot computa-
tional time , especially with respect to building only one model. Nevertheless,
considering a very common case, when we test various algorithms to choose the
one that seems to perform the best, combining their outputs into a single one
requires only one additional model, so not too much additional time.

In conclusion, ensemble classifiers are a very strong tool that should be
considered when dealing with machine learning in an economic setting.
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