polito.it
Politecnico di Torino (logo)

AMOS: Adaptive Motion Segmentation using Spiking Neural Networks with Short-Term Synaptic Plasticity

Anil Bayram Gogebakan

AMOS: Adaptive Motion Segmentation using Spiking Neural Networks with Short-Term Synaptic Plasticity.

Rel. Stefano Di Carlo, Alessandro Savino, Alessio Carpegna, Alessio Caviglia. Politecnico di Torino, Corso di laurea magistrale in Ingegneria Informatica (Computer Engineering), 2025

[img]
Preview
PDF (Tesi_di_laurea) - Tesi
Licenza: Creative Commons Attribution Non-commercial No Derivatives.

Download (7MB) | Preview
Abstract:

Neuromorphic computing seeks to emulate the efficiency and adaptability of biological neural systems, providing a foundation for processing asynchronous sensory data such as event-based vision. Within this paradigm, spiking neural networks (SNNs) enable temporal and sparse information processing through discrete spike communication. This study investigates how short-term synaptic plasticity (STP) can enhance motion segmentation and object detection by dynamically filtering background activity and emphasizing moving entities including vehicles, pedestrians, and two-wheelers. Using the NEST simulator, various neuron–synapse configurations inspired by cortical circuits are evaluated on the 1 Megapixel Automotive Detection and MVSEC Datasets. The results demonstrate that the Tsodyks–Markram synapse model in its depressing form achieves superior performance, showcasing the potential of STP-driven SNNs for adaptive and efficient perception in event-based vision.

Relatori: Stefano Di Carlo, Alessandro Savino, Alessio Carpegna, Alessio Caviglia
Anno accademico: 2025/26
Tipo di pubblicazione: Elettronica
Numero di pagine: 71
Soggetti:
Corso di laurea: Corso di laurea magistrale in Ingegneria Informatica (Computer Engineering)
Classe di laurea: Nuovo ordinamento > Laurea magistrale > LM-32 - INGEGNERIA INFORMATICA
Aziende collaboratrici: Politecnico di Torino
URI: http://webthesis.biblio.polito.it/id/eprint/38651
Modifica (riservato agli operatori) Modifica (riservato agli operatori)