Anil Bayram Gogebakan
AMOS: Adaptive Motion Segmentation using Spiking Neural Networks with Short-Term Synaptic Plasticity.
Rel. Stefano Di Carlo, Alessandro Savino, Alessio Carpegna, Alessio Caviglia. Politecnico di Torino, Corso di laurea magistrale in Ingegneria Informatica (Computer Engineering), 2025
|
PDF (Tesi_di_laurea)
- Tesi
Licenza: Creative Commons Attribution Non-commercial No Derivatives. Download (7MB) | Preview |
| Abstract: |
Neuromorphic computing seeks to emulate the efficiency and adaptability of biological neural systems, providing a foundation for processing asynchronous sensory data such as event-based vision. Within this paradigm, spiking neural networks (SNNs) enable temporal and sparse information processing through discrete spike communication. This study investigates how short-term synaptic plasticity (STP) can enhance motion segmentation and object detection by dynamically filtering background activity and emphasizing moving entities including vehicles, pedestrians, and two-wheelers. Using the NEST simulator, various neuron–synapse configurations inspired by cortical circuits are evaluated on the 1 Megapixel Automotive Detection and MVSEC Datasets. The results demonstrate that the Tsodyks–Markram synapse model in its depressing form achieves superior performance, showcasing the potential of STP-driven SNNs for adaptive and efficient perception in event-based vision. |
|---|---|
| Relatori: | Stefano Di Carlo, Alessandro Savino, Alessio Carpegna, Alessio Caviglia |
| Anno accademico: | 2025/26 |
| Tipo di pubblicazione: | Elettronica |
| Numero di pagine: | 71 |
| Soggetti: | |
| Corso di laurea: | Corso di laurea magistrale in Ingegneria Informatica (Computer Engineering) |
| Classe di laurea: | Nuovo ordinamento > Laurea magistrale > LM-32 - INGEGNERIA INFORMATICA |
| Aziende collaboratrici: | Politecnico di Torino |
| URI: | http://webthesis.biblio.polito.it/id/eprint/38651 |
![]() |
Modifica (riservato agli operatori) |



Licenza Creative Commons - Attribuzione 3.0 Italia