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Summary

Neuromorphic computing aims to emulate the computational efficiency and adaptabil-
ity of biological neural systems. By integrating memory and processing within the same
physical substrate, neuromorphic architectures avoid the data movement bottlenecks that
limit traditional von Neumann systems. Spiking neural networks form the algorithmic
foundation of this paradigm, since they operate through discrete spikes that naturally en-
code time, sparsity, and causal relationships. Event-based cameras complement this form
of computation by producing asynchronous streams of events that directly correspond to
changes in the visual scene rather than capturing full frames at fixed intervals. Their high
temporal resolution, low latency, and sparse output make them well aligned with spike
based processing. This synergy creates an opportunity for designing visual perception
systems that operate efficiently in dynamic and resource constrained environments.

Despite these advantages, event-based data captured in automotive or mobile scenarios
contain both object motion and ego-motion. Ego-motion often produces large amounts of
background activity, which can obscure independently moving objects such as cars, pedes-
trians, bicycles, and motorcycles. Extracting meaningful motion patterns from these dense
event streams remains challenging, especially when lighting, contrast, and motion condi-
tions vary rapidly. Many existing approaches rely on reconstruction, supervised learning,
or hand tuned temporal heuristics. These strategies either reintroduce frame based com-
putation or limit generalizability. The aim of this thesis is to address these shortcomings
by developing a biologically inspired method that isolates independent motion directly
from the event stream using only local spiking and synaptic dynamics.

The proposed framework, named AMOS, which stands for Adaptive Motion Segmen-
tation using Spiking Neural Networks, is based on the idea that short-term synaptic
plasticity can serve as an adaptive filtering mechanism for event-based data. Short-term
plasticity temporarily changes the strength of synapses according to their recent activ-
ity. In particular, the Tsodyks Markram model provides two complementary mechanisms.
Short-term depression reduces synaptic efficacy under sustained stimulation, which sup-
presses repetitive background activity originating from ego-motion. Short-term facilita-
tion increases synaptic efficacy when presynaptic activity occurs in rapid succession, which
may emphasize consistent or salient motion. By embedding these mechanisms into spiking
convolutional layers implemented in the NEST simulator, AMOS filters event streams in
real time, enhancing transient motion patterns while attenuating static and redundant
ones.

To evaluate the contribution of synaptic plasticity, four main configurations were de-
signed and compared. The first configuration used direct one to one connections without
spatial interaction, serving as a baseline. The second configuration applied static convo-
lutional filters that captured spatial neighborhoods but lacked temporal adaptation. The
third configuration used depressing synapses, enabling automatic suppression of persis-
tent background activity. The final configuration attempted a hybrid design combining
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a facilitating center region with a depressing surround, inspired by receptive field struc-
tures observed in biological vision. Across all models, different membrane time constants
and synaptic parameters were explored to examine their influence on temporal selectivity,
responsiveness to motion, and robustness to noise.

Experiments were conducted using two publicly available automotive event-based datasets.
The first dataset, the Prophesee 1 Megapixel Automotive Detection Dataset, provides high
resolution recordings of urban, suburban, and highway driving conditions with extensive
annotation of vehicles and other road users. The second dataset, MVSEC, includes syn-
chronized event data, grayscale images, inertial measurements, and LiDAR readings. For
both datasets, evaluation was performed on timestamps where ground truth bounding
boxes were available. After filtering through the SNN based system, event clusters were
grouped using the DBSCAN algorithm to generate candidate detections. These detec-
tions were evaluated through precision, recall, the F1 score, and the mean Intersection
over Union metric.

Across experiments, AMOS revealed distinct behaviors among the four filtering mod-
els. Static filters achieved balanced precision and recall but generated high false positive
counts because they did not attenuate ego-motion. Depressing filters significantly reduced
false positives by adaptively suppressing sustained background activity. Although recall
was lower, these filters produced the most reliable detections and demonstrated strong
robustness to variations in lighting and motion. Hybrid filters provided mixed results.
While they were designed to combine facilitation and depression, facilitation often accu-
mulated too slowly in real scenes, leading to incomplete or inconsistent responses. In the
Prophesee dataset, static filters achieved reasonable F'1 scores under strict IoU thresholds,
whereas depressing filters performed better under relaxed IoU thresholds, where the focus
is on motion isolation. In the MVSEC dataset, depressing synapses again outperformed
all other configurations, achieving the highest F1 scores across different loU thresholds.

These results underline an important scientific observation. The reduction of false
positives, rather than absolute recall, appears to be the most meaningful measure of per-
formance for this work. One limitation arises from the fact that ground truth annotations
are frame derived and therefore not perfectly aligned with microsecond level event data,
but this is not the primary issue. The more significant problem is that these annotations
are generated by object detection algorithms that label all relevant objects in the scene,
including those that are completely static. AMOS, on the other hand, is designed to seg-
ment only moving objects. As a result, the ground truth contains many bounding boxes
that do not correspond to event generating motion, which means that standard evalua-
tion metrics cannot be fully trusted in this context even though the metrics themselves
are correct for datasets with accurate labels. Despite this limitation, consistent improve-
ments across both datasets confirm that short-term depression offers an effective way to
distinguish true motion from ego-motion and background noise.

The study also highlights several limitations and opportunities. DBSCAN performs
reasonably well for grouping spatial clusters of events, but its sensitivity to parameters
such as neighborhood radius and window duration limits full automation. Since the clus-
tering step collapses temporal information into short windows, some fine grained motion
cues are lost. A fully three dimensional approach that uses the x, y, and t coordinates of
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events may improve segmentation continuity. Similarly, the combination of polarity in-
formation could enhance selectivity for leading and trailing edges. Extending the spiking
network with additional layers, or stacking depressing and facilitating connections, may
allow multi scale representations of motion. Finally, the lack of event native annotations
in current datasets limits evaluation quality and suggests a need for improved datasets.

In conclusion, AMOS demonstrates that short-term synaptic plasticity can serve as a
biologically grounded and computationally efficient mechanism for motion segmentation
in event-based vision. The depressing Tsodyks Markram synapse model, in particular,
provides an adaptive filter that naturally suppresses sustained background activity while
preserving meaningful transient motion signals. By operating entirely in an event driven
manner, the framework avoids reconstruction, supervised training, and frame based pro-
cessing. This work contributes an interpretable and biologically motivated approach to
event-based perception and offers a foundation for future neuromorphic systems capable
of real time, low power motion understanding in dynamic environments.
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Chapter 1

Introduction

1.1 Biological Inspiration and Neuromorphic Moti-
vation

Throughout the history of engineering, humans have repeatedly turned to nature for
inspiration. Living organisms represent some of the most adaptive, resilient, and efficient
systems known, capable of growing, healing, reproducing, and operating under extreme
conditions. Early technological progress often began with simple observations of biological
mechanisms. The attempts to build flying machines were initially inspired by the wings
of birds, long before the principles of aerodynamics were formalized. Similar examples
appear across many fields, from echolocation in bats influencing sonar systems to the visual
system of insects inspiring agile robotics. In many cases, engineers first tried to imitate
what they observed, and only later did scientific understanding reveal the underlying
physical laws. This process of reverse engineering biological systems has shaped much of
modern technological development.

In the age of machine learning and computational intelligence, the human brain repre-
sents one of the most complex and powerful biological systems to draw inspiration from.
The brain combines processing, memory, and adaptation within the same substrate, op-
erating at a level of efficiency and robustness far beyond conventional computing archi-
tectures. While experimental neuroscientists study the mechanisms of neural circuits
through biological experimentation, engineers attempt to translate these principles into
computational models and hardware that can solve real-world problems. Neuromorphic
engineering lies at the intersection of these two domains. It aims to capture the essential
principles of neural computation and implement them in artificial systems that benefit
from the energy efficiency, adaptability, and event-driven nature observed in biological
brains.

1.2 Event-Based Vision and Challenges

One domain where neuromorphic principles have gained significant traction is computer
vision, particularly in dynamic environments. Conventional frame-based vision systems
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Introduction

operate by capturing full images at a fixed rate, regardless of how much of the scene
changes over time. This leads to redundant data, motion blur, and high computational
cost, especially in fast or low-light scenarios. Event-based cameras, such as the Dynamic
Vision Sensor (DVS) and Active Pixel Sensor (APS)-based sensors, provide an alternative
approach. Instead of recording snapshots at fixed intervals, they detect and transmit
only changes in pixel intensity. This produces an asynchronous stream of events with
high temporal resolution and low redundancy. Event-based vision is therefore naturally
aligned with Spiking Neural Networks (SNNs), which also operate on discrete events rather
than continuous-valued signals.

Despite these advantages, event-based data presents its own challenges. Scenes cap-
tured from moving platforms such as cars generate large amounts of background activ-
ity due to ego-motion. This background activity mixes with events generated by inde-
pendently moving objects such as vehicles, pedestrians, and cyclists. Filtering out ego-
motion-induced events while preserving meaningful motion patterns remains a significant
challenge, especially when object speeds, lighting conditions, and scene complexity vary
over time. Existing neuromorphic and event-based approaches often make simplifying
assumptions or rely on models that do not fully adapt to the structure of the input.
Some methods treat temporal isolation alone as sufficient, while others require iterative
optimization, frame reconstruction, or supervised training. As a result, they often strug-
gle in realistic driving scenarios that involve continuous motion, overlapping objects, or
non-uniform background activity.

1.3 Problem Statement

The central problem addressed in this thesis is how to isolate meaningful motion pat-
terns from event-based camera data in a fully event-driven and biologically plausible
manner. The objective is to suppress background activity generated by ego-motion while
highlighting events that originate from independently moving objects. Achieving this re-
quires a mechanism that adapts in real time to both the temporal structure and the local
spatial patterns of the event stream. Such a mechanism must be robust to variations in
motion speed, responsive to transient features, and computationally efficient enough to
operate on large-scale datasets.

1.4 Proposed Approach

To address this problem, this thesis proposes a neuromorphic motion segmentation
framework based on SNNs with STP. Inspired by synaptic dynamics in biological neural
circuits, the approach uses Tsodyks Markram (TM) synapses to modulate the efficacy
of synaptic transmission according to recent presynaptic activity. Depressing synapses
reduce their influence during sustained activation, which naturally suppresses repetitive
background events caused by ego-motion. Facilitating synapses enhance their influence
during repeated activation, which emphasizes consistent motion patterns associated with
independently moving objects. Combined with spatially local convolution-like receptive
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fields, this synaptic adaptation enables the network to perform adaptive filtering directly
on the event stream without training or reconstruction.

After filtering, the remaining events are grouped into spatially coherent structures using
clustering techniques. Because the number and size of objects vary over time, and because
event-based data naturally form irregular spatial patterns, density-based clustering, such
as Density Based Spatial Clustering of Applications with Noise (DBSCAN), is well suited
to this task. The clustering stage converts spike activity into bounding box predictions
that can be compared with ground truth annotations.

1.5 Contributions
The main contributions of this thesis are as follows.

o A biologically grounded framework for event-driven motion segmentation based on
the combination of local spatial filtering and STP.

o A systematic analysis of how different neuron and synapse configurations influence
motion filtering, including static, depressing, and hybrid synaptic dynamics.

o A demonstration that depressing TM synapses provide a robust and adaptive mech-
anism for suppressing ego-motion-induced background activity in realistic driving
environments.

« An integrated pipeline that connects NEural Simulation Tool (NEST)-based spik-
ing simulation with post processing and clustering to produce full bounding box
predictions on large automotive datasets.

e A comprehensive evaluation on both the MVSEC and Prophesee 1 Megapixel Auto-
motive Datasets, showing that biologically inspired synaptic adaptation can improve
event-driven motion segmentation without supervised learning or heavy computa-
tional models.

1.6 Thesis Outline

The remainder of this thesis is organized as follows. Chapter 2 provides the necessary
background on neuromorphic computing, SNNs, event-based vision, and object detection
in dynamic environments. Chapter 3 describes the methodology, including the NEST sim-
ulation environment, the proposed filtering models, and the clustering process. Chapter
4 presents the experimental setup, results, and discussion. The thesis concludes with a
summary of findings and potential directions for future work.
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Chapter 2

Background

2.1 Neuromorphic Computing: From Biology to En-
gineering

Modern computation is fundamentally built upon the von Neumann architecture, pro-
posed in 1945, which physically separates processing and memory units. In this structure,
data must shuttle continuously between a central processor and an external memory via
a limited communication bus. Although this design has underpinned decades of digital
progress, it has also introduced an inherent inefficiency known as the von Neumann bot-
tleneck, where data transfer becomes the main source of latency and energy consumption.
As applications grow increasingly data-intensive, from large-scale machine learning to per-
vasive sensor networks, these constraints become critical. It is estimated that 5-15 % of
the world’s total energy is already consumed by data movement and computation [1]. Fu-
ture exascale supercomputers, if still based on this paradigm, are projected to draw tens
of megawatts of power, far exceeding sustainable limits. Moreover, conventional proces-
sors lack the adaptive, self-organizing properties characteristic of biological intelligence,
relying instead on explicit programming and sequential instruction flow.

In contrast, the human brain exemplifies an entirely different computational principle.
Biological neurons integrate information, store state, and perform computation within the
same local structure, effectively merging memory and processing. These neurons commu-
nicate using spikes—discrete, time-based electrical pulses that encode information in both
timing and rate. Through synaptic plasticity, the strength of connections between neu-
rons evolves as a function of activity, allowing the system to learn and adapt continuously.
Despite operating with roughly 10! neurons and 10'® synapses, the brain consumes only
about a few watts of power, several orders of magnitude more efficient than even the most
advanced supercomputers. Its architecture is inherently event-driven, massively paral-
lel, and fault-tolerant, where computation occurs only when needed. These properties
form the inspiration for neuromorphic computing, a discipline that aims to replicate the
efficiency, adaptability, and resilience of biological systems using electronic devices [1, 2].

The concept of neuromorphic engineering originated with Carver Mead in the late
1980s, who pioneered the use of analog VLSI circuits to emulate the physical behavior of
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Figure 2.1: Von Neumann architecture

neurons and synapses. Mead’s seminal work [3] inspired early prototypes such as the silicon
retina and silicon cochlea, which mimicked biological sensory processing through analog
circuits operating in the subthreshold regime [4]. These early systems demonstrated that
biological principles such as local processing and temporal encoding could be realized in
silicon, introducing a new paradigm distinct from both traditional digital computing and
software-based neural networks.

Over the years, the definition of neuromorphic computing has expanded beyond purely
analog systems. Today, it encompasses digital, mixed-signal, and hybrid architectures
that implement brain-inspired computation in hardware. Modern neuromorphic platforms
retain key biological principles:

« Event-driven operation, where computation occurs only in response to input spikes,
minimizing idle energy.

o Co-location of memory and computation, reducing data movement by storing synap-
tic weights locally.

e Massive parallelism, achieved through thousands of concurrently active neurons and
synapses.

o Asynchronous communication, which eliminates global synchronization and enhances
scalability.

These properties enable neuromorphic systems to process temporal and sensory in-
formation with remarkable energy efficiency. As Christensen [1] note, such systems are
particularly promising for edge computing, where low-power, on-device intelligence is es-
sential for autonomous perception and control.
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The implementation of neuromorphic principles has evolved through a wide range of
hardware and simulation platforms, each emphasizing different trade-offs between biolog-
ical realism, computational scalability, and power efficiency.

IBM TrueNorth (2014) demonstrated large-scale digital neuromorphic integration with
1 million neurons and 256 million synapses, achieving energy efficiencies around 70
mW per million neurons. Its architecture emphasizes deterministic spike routing and
high-throughput parallel inference [5].

Intel Loihi introduced in 2018, extends this paradigm by enabling on-chip learning.
Each Loihi core supports programmable plasticity mechanisms such as Spike-Timing-
Dependent Plasticity (STDP) and reinforcement learning, facilitating online adapta-
tion [6]. Loihi’s asynchronous, mesh-based interconnect allows distributed real-time
processing without centralized control.

SpiNNaker developed at the University of Manchester, implements a fully digital, packet-
based communication network interconnecting thousands of ARM cores. It can sim-
ulate up to a billion neurons in real time, providing a testbed for large-scale cortical
models [1].

BrainScaleS from Heidelberg University, adopts a hybrid analog-digital approach that
emulates membrane potential dynamics directly in hardware. By operating 10*
times faster than biological time, it enables accelerated experimentation on neural
dynamics and learning mechanisms [1].

NEST as complementing these physical systems, serves as a cornerstone of software-
based neuromorphic research. Designed for high-performance computing environ-
ments, NEST provides a flexible framework for simulating large-scale spiking neu-
ral networks with configurable neuron, synapse, and plasticity models. It supports
both biologically detailed simulations and large-scale computational studies across
distributed nodes. NEST’s open architecture has made it a reference tool for neu-
roscience and neuromorphic engineering alike, often used to prototype network dy-
namics or test new synaptic models before deployment on physical neuromorphic
hardware [7].

Together, these systems represent a continuum from biology to technology. TrueNorth
and Loihi emphasize low-power embedded intelligence; SpiNNaker and BrainScaleS fo-
cus on brain-scale modeling; and NEST provides the simulation backbone that bridges
theoretical neuroscience with hardware implementation. This multi-level ecosystem re-
flects the broader trend in neuromorphic research: integrating device-level innovation,
circuit design, and computational modeling into a unified framework for understanding
and replicating neural computation.

As highlighted in recent reviews, the field has matured beyond prototype systems de-
veloped in academic laboratories into production-level infrastructures with event-driven
processing, learning models, and community-driven software ecosystems [8]. These ad-
vances collectively indicate that neuromorphic computing is entering a critical phase, fo-
cused on scaling principles, interoperability, and standardized toolchains to ensure broad
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adoption. At its core, however, the success of neuromorphic computing depends on the
neural model that governs how spikes are generated, transmitted, and integrated. Whether
implemented in hardware or simulated in software, these systems rely on abstractions of
biological neurons that capture the dynamics of spiking, membrane potential evolution,
and synaptic transmission. The next section explores this computational foundation in
depth through the lens of SNNs the algorithmic framework that lies at the heart of all
neuromorphic architectures. SNNs provide the mathematical and functional description
of how information is encoded in time, how synaptic plasticity shapes learning, and how
event-driven processing leads to energy-efficient intelligence.

2.2 Spiking Neural Networks

At the algorithmic core of neuromorphic computing lie SNNs, which extend the con-
cept of conventional artificial neurons by incorporating time as a fundamental variable
of computation. Unlike Artificial Neural Networks (ANNs), which exchange continuous
activation values at fixed time steps, SNNs transmit information through discrete events
known as spikes. These spikes, represented as binary signals, encode information not only
in their occurrence but also in their precise timing. This temporal dimension allows SNNs
to process dynamic, asynchronous data streams and to perform computation only when
necessary, offering a pathway toward highly energy-efficient and event-driven intelligence
[9, 10, 11]. Beyond their engineering advantages, SNNs also serve as computational ab-
stractions of biological neural systems, linking neuroscience and machine learning under
a unified mathematical framework.

2.2.1 Spiking Neuron Models

Biological neurons act as the basic computational units of the brain. They receive
inputs through dendrites, integrate these signals in the soma, and emit an electrical pulse,
or spike, when the membrane potential surpasses a threshold. This process can be de-
scribed as a continuous evolution of the membrane potential, shaped by both external
currents and intrinsic electrical properties of the cell. Spiking neuron models abstract
this biophysical process into computational form, enabling simulation and mathematical
analysis while retaining the essential mechanism of integration and firing.

The simplest and most fundamental abstraction is the Integrate-and-Fire (IF) model.
In this formulation, the neuron integrates incoming weighted inputs over time, and when
the accumulated potential crosses a threshold Vj;, a spike is generated. Immediately
after firing, the potential is reset to a resting value Ep. The temporal evolution of the
membrane potential V,(¢) can be expressed as:

V() 1(t)
=T (2.1)

where I(t) is the total synaptic input current and C,, is the membrane capacitance.
When V,,(t) > Vip, the neuron emits a spike and resets V,,, to E. Despite its simplicity,
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2.2 — Spiking Neural Networks

the IF model captures the essential threshold-based firing mechanism and is computa-
tionally efficient, making it suitable for large-scale simulations where millions of neurons
are modeled. However, this abstraction neglects the passive decay of membrane voltage
that naturally occurs in biological neurons, meaning that the potential would increase
indefinitely in the presence of sustained input. As a result, the IF model fails to capture
the temporal filtering properties observed in real neurons, where past inputs gradually
lose influence if not reinforced by new spikes [10, 11].

To address this limitation, the Leaky Integrate-and-Fire (LIF) model introduces a pas-
sive decay term that continuously drives the membrane potential back toward its resting
state. This leak mimics the diffusion of ions through the membrane in biological cells and
ensures that the neuron responds primarily to recent inputs rather than accumulating all
past activity. The dynamics of the LIF neurons are described by the following differential
equation:

dVi(t)
at

where 7,,, = RC), is the membrane time constant, E, is the resting potential, and R
is the membrane resistance. When the potential reaches the threshold Vjj, the neuron
emits a spike and resets to Ey. The inclusion of the leak term adds only minimal compu-
tational overhead compared to the pure IF model, yet it dramatically improves biological
plausibility by producing temporally stable and decaying membrane dynamics. For this
reason, the LIF model has become the standard choice in most neuromorphic simulators,
such as NEST and Brian, as well as in hardware implementations like Intel’s Loihi chip.
A comparative figure illustrating the membrane potential trajectories of IF and LIF neu-
rons would show that, whereas the IF neuron’s potential increases linearly until spiking,
the LIF neuron exhibits exponential decay between synaptic inputs, resulting in more
biologically realistic firing behavior.

Beyond the LIF model, several extensions further increase biological fidelity at the
cost of computational complexity. The Adaptive Exponential Integrate-and-Fire (AdEzx)
model introduces an adaptation current that dynamically modulates the firing threshold,
reproducing bursting, spike-frequency adaptation, and other temporal firing patterns seen
in cortical neurons. Similarly, the Izhikevich model offers a compact yet flexible formu-
lation capable of capturing a wide spectrum of neuronal behaviors using a small set of
parameters. These enhanced models provide valuable realism when studying specific neu-
ral phenomena but require solving additional differential equations and maintaining more
internal state variables. Consequently, while IF and LIF neurons are preferred for effi-
ciency in large-scale or hardware-oriented simulations, models like AdEx and Izhikevich
are favored when biological interpretability and detailed spiking dynamics are the priority
[10, 11].

In summary, the progression from IF to LIF and then to more complex adaptive models
illustrates a fundamental trade-off in neuromorphic modeling: increasing biological realism
typically comes at the expense of computational simplicity. Depending on the purpose
large-scale simulation, real-time hardware implementation, or detailed biological study,
the choice of neuron model must balance accuracy, efficiency, and interpretability.

The behavior of individual spiking neurons forms the foundation for how information

—(Vin(t) — Er) + RI(t), (2.2)
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Figure 2.2: Comparison of Integrate and Fire and Leaky Integrate and Fire neurons under
the same step current input

is represented and processed in spiking neural networks. Once spikes are generated, their
timing, frequency, and correlation across neurons become the medium through which
signals are transmitted and encoded. Understanding these temporal patterns is essential to
explaining how SNNs store and transform information, leading naturally to the discussion
of temporal coding and information representation in the next section.

2.2.2 Temporal Information Processing and Coding Schemes

Information representation in SNNs is inherently temporal. Unlike conventional neural
networks, where neurons transmit static activation values, spiking neurons communicate
using discrete events that occur in time. Consequently, the meaning of a neural signal
is not embedded in its amplitude, but rather in the timing, frequency, and correlation
of spikes. The way these spikes encode information, referred to as the neural coding
scheme, is fundamental to how an SNN learns and processes data. Choosing a coding
scheme is therefore not a mere implementation detail; it directly influences the learning
algorithm, the network’s energy efficiency, and its ability to represent dynamic sensory
inputs. Figure 2.3 comparing different spike-based coding schemes can visually highlight
these distinctions and their implications for computation.
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The most widely used approach is rate coding. In this scheme, information is encoded
in the average firing rate of a neuron within a specific time window. The higher the
frequency of spikes, the stronger the represented signal. Rate coding is conceptually
simple and biologically supported by early studies of sensory neurons, where firing rates
correlate with stimulus intensity. From a computational perspective, rate coding allows
the use of statistical averaging, making it robust to individual spike noise and compatible
with many conversion-based training methods that map continuous activations to spike
rates. However, this robustness comes at a cost. To estimate a meaningful rate, neurons
must emit a sufficient number of spikes over time, which requires long simulation windows
and results in higher energy consumption. This can be illustrated by showing how a rate-
coded neuron accumulates multiple spikes to approximate a static signal level, sacrificing
temporal precision for stability.

In contrast, temporal coding encodes information in the exact timing or relative latency
of spikes. Here, a single spike may be sufficient to convey a meaningful message if its timing
is precise. For instance, in a latency-coded scheme, the time delay between stimulus
onset and the first emitted spike reflects the stimulus intensity—stronger inputs produce
earlier spikes. Temporal coding aligns more closely with biological observations in auditory
and visual cortices, where neurons synchronize precisely to external rhythms or motion
cues. Computationally, this enables faster and more energy-efficient representations, since
fewer spikes are needed to transmit information. Yet, this precision makes temporal
coding more sensitive to noise and hardware jitter, posing challenges for stability and
learning. A suitable figure could show how neurons with temporal coding respond almost
instantaneously to stimuli, achieving high responsiveness with sparse spiking activity.
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(a) Rate coding: An input pixel (b) Temporal coding: An input pixel
of greater intensity corresponds to a of greater intensity corresponds to an
higher firing rate earlier spike time.

Figure 2.3: Most common coding schemes [12]

While rate and temporal coding represent two extremes as averaged versus time-precise
signaling, hybrid schemes combine their advantages. Phase coding, for example, uses spike
timing relative to an oscillatory phase, and population coding distributes information
across ensembles of neurons to enhance robustness and redundancy. These strategies
balance biological plausibility and computational reliability, often appearing in networks
designed for event-based vision or sensory fusion. Importantly, as noted by Yi et al. [10],
neural coding strategies enable both the brain and artificial spiking systems to represent
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spatiotemporal patterns compactly and adaptively. The chosen coding scheme determines
how information flows through layers, how learning rules operate, and how effectively the
network can exploit temporal structure. Therefore, the decision between rate-based and
time-based representations is not just architectural, it can fundamentally reshape the
algorithmic behavior and performance of the entire spiking system.

2.2.3 Training Approaches for Spiking Neural Networks

Training SNNs remains one of the main challenges in neuromorphic computing be-
cause the process of generating spikes is inherently non-differentiable. Unlike conven-
tional ANNs, where activations are continuous and gradients can be computed directly,
the binary and discontinuous nature of spikes prevents the straightforward application
of standard backpropagation algorithms. Over the years, several training strategies have
been developed to address this issue, each reflecting a different trade-off between biologi-
cal realism, computational cost, and learning efficiency. These strategies can be grouped
into four main categories: conversion-based training, direct gradient-based optimization,
biologically inspired local learning rules, and evolutionary or reinforcement-based opti-
mization [10, 11, 13, 9].

Conversion-based Training

Conversion-based training was one of the earliest approaches proposed for SNNs.
Rather than training a spiking model directly, a conventional ANN is first optimized
using standard gradient-descent techniques, after which its learned parameters are trans-
ferred to an equivalent spiking architecture by mapping continuous activations to firing
rates. In this way, the spiking network can reproduce the behavior of the original ANN
while exploiting the sparse and event-driven computation that characterizes SNNs.

This method is conceptually simple and compatible with existing deep-learning mod-
els, allowing researchers to reuse architectures such as VGG or ResNet. It is particularly
advantageous for inference-oriented applications, where energy efficiency and latency are
prioritized over online adaptation. However, since the temporal dynamics of spiking neu-
rons are not explicitly modeled during training, converted networks typically rely on rate
coding, which requires longer simulation windows to estimate firing statistics accurately.
This limitation can increase inference latency and energy consumption. Additionally, the
transformation from continuous activations to spike rates introduces information loss and
limits the precision of temporal processing [13].

Recent methods such as knowledge-distillation-based conversion mitigate these draw-
backs by transferring not only the final outputs but also intermediate feature representa-
tions from a trained ANN (the teacher) to a spiking network (the student). This process
enhances both the representational richness and robustness of the converted network, en-
abling SNNs to achieve competitive accuracy on large-scale visual tasks while maintaining
low power consumption [13, 9].
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Direct Gradient-based Training

Direct gradient-based training methods were developed to overcome the limitations of
indirect conversion and to optimize spiking networks directly within the temporal domain.
The central idea is to apply Backpropagation Through Time (BPTT), a technique com-
monly used for recurrent neural networks, to capture the evolution of membrane potentials
and spike activity over time. During training, the network is unfolded across discrete time
steps, and gradients are propagated backward through each neuron’s membrane potential
updates to minimize a task-specific loss function [9, 11].

The primary challenge in this approach arises from the spike generation mechanism
itself, which is defined by a discontinuous threshold function. Its derivative is zero almost
everywhere and undefined at the firing point, making it impossible to compute exact gra-
dients. To address this, surrogate gradient methods replace the non-differentiable spike
function with a smooth approximation during the backward pass. Common surrogate
functions include sigmoid, fast-sigmoid, exponential, or piecewise-linear shapes that ap-
proximate the sharp threshold transition while maintaining differentiability [9].

This approximation provides a non-zero slope around the threshold, allowing learning
signals to propagate backward through the spiking network. During the forward pass, the
neuron still emits binary spikes, preserving the discrete dynamics of biological neurons,
while during the backward pass, the smooth surrogate function enables efficient gradient
computation. The surrogate gradient approach has become the foundation of modern
SNN optimization and is implemented in frameworks such as SLAYER, snnTorch, and
Norse.

Variants like the e-prop algorithm further improve scalability by estimating local gra-
dients without storing the entire network history, significantly reducing memory usage
and computational cost. Although direct gradient-based training methods achieve state-
of-the-art performance on event-based benchmarks and enable fully supervised learning,
they remain computationally intensive and less biologically plausible than local learning
rules [9, 10]. Nevertheless, they provide an effective bridge between traditional deep-
learning techniques and neuromorphic computation, demonstrating that spiking networks
can be trained using modern optimization principles while preserving temporal processing
capabilities.

Biologically Inspired Local Learning Rules

While gradient-based learning allows SNNs to achieve high performance on benchmark
tasks, biological neural systems rely on local adaptation mechanisms that depend only
on spike interactions. Instead of propagating global error signals, neurons modify their
synaptic connections based on locally available information such as pre- and post-synaptic
firing activity. In spiking neural networks, these mechanisms are modeled through synaptic
plasticity rules that govern how the synaptic weight w evolves over time as a function of
spike timing, firing rate, and synaptic state variables [10, 11, 14, 15].

The foundational concept underlying these learning mechanisms is the Hebbian prin-
ciple, often summarized as “neurons that fire together wire together.” It states that when
a presynaptic neuron consistently contributes to the activation of a postsynaptic neuron,
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their synaptic connection strengthens. A simple mathematical expression of this principle
can be written as:

Aw = 1 Tpre Tpost, (2.3)

where 7 is the learning rate, and x,.. and xpes denote the activity of the pre- and
post-synaptic neurons, respectively. This local correlation rule forms the basis for both
short-term and long-term plasticity.

Short-Term Plasticity (STP): Short-Term Plasticity (STP) refers to transient, re-
versible changes in synaptic efficacy that occur on the timescale of milliseconds to seconds.
Unlike long-term mechanisms that permanently alter the synaptic weight, STP modulates
the effective strength of a synapse dynamically according to recent presynaptic activity.
STP manifests as two complementary processes: facilitation, which temporarily increases
neurotransmitter release probability after repeated firing, and depression, which decreases
it due to vesicle depletion.
A general mathematical description of STP can be formulated as:

du u—U

_ 1 — _ tbre 2.4
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where u(t) represents the utilization of synaptic resources (facilitation), x(t) the frac-
tion of available neurotransmitters (depression), U the baseline utilization, 74 and 74 the
facilitation and depression time constants, and ¢} ° the timing of presynaptic spikes. The

effective postsynaptic response is then defined as:

A(t) = wu(t) z(t). (2.6)

Through this mechanism, STP acts as a temporal filter: it emphasizes novel or rapidly
changing inputs while suppressing repetitive patterns. In neuromorphic systems, STP
provides a biologically inspired means of implementing adaptive signal processing with-
out modifying long-term weights, which makes it particularly useful for event-based and
streaming sensory data.

Long-Term Plasticity (LTP and LTD): Long-Term Plasticity (LTP/LTD) describes
persistent modifications of synaptic strength that underlie learning and memory in the
brain. When presynaptic and postsynaptic neurons repeatedly exhibit correlated activ-
ity, their synaptic connection strengthens (LTP), whereas uncorrelated or anti-correlated
activity weakens it (LTD). A general form of this process can be represented as:

d
d%} = 1 F(pre, post), (2.7)
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where F'(pre, post) denotes a nonlinear correlation function describing how pre- and
post-synaptic firing patterns influence synaptic modification. Positive correlation (F' > 0)
leads to potentiation, and negative correlation (F' < 0) results in depression.

STDP: A precise and widely studied formulation of long-term plasticity is STDP, which
explicitly links the timing between pre- and post-synaptic spikes to the direction and
magnitude of synaptic modification. If the presynaptic neuron fires shortly before the
postsynaptic neuron, the connection is strengthened (LTP). Conversely, if the postsynaptic
spike precedes the presynaptic one, the connection is weakened (LTD). This relationship
can be modeled mathematically as:

A — {A+6—At/m §f At > 0, (2.8)

—A_eBT-if At <0,

where At = tpost — tpre is the temporal difference between post and presynaptic spikes,
A, and A_ are the maximum potentiation and depression amplitudes, and 7, and 7_
represent their respective decay constants. This formulation unifies LTP and LTD as two
complementary outcomes of a single timing-dependent learning rule [10, 11, 14].

More advanced extensions of STDP introduce additional modulatory factors that in-
fluence weight updates, leading to three-factor learning rules. These can be expressed
as:

Aw = n M(t) G(pre, post), (2.9)

where M (t) is a global modulatory signal, such as a reward or dopamine concentration,
and G(pre, post) describes local spike-based interactions. These mechanisms provide a
bridge between unsupervised and reinforcement learning by allowing synaptic changes to
be shaped by both local correlations and global feedback signals.

Together, short- and long-term plasticity mechanisms form a hierarchical and biolog-
ically plausible framework for local learning in SNNs. STP enables rapid adaptation to
changing stimuli by modulating synaptic efficacy on short timescales, while STDP im-
plements lasting memory traces through spike-timing-dependent weight changes. Their
integration allows spiking neural networks to learn continuously and autonomously, adapt-
ing to dynamic environments without relying on global error propagation.

Evolutionary and Reinforcement-based Optimization

A complementary class of training methods for SNNs treats learning as a global opti-
mization process rather than relying on gradient propagation. These approaches explore
the large and non-differentiable parameter space of spiking networks, including synaptic
weights, firing thresholds, delays, and even connectivity patterns. Since they do not de-
pend on differentiable operations, they are particularly suitable for neuromorphic systems
where discrete spikes, hardware constraints, or non-continuous dynamics make backprop-
agation impractical [9, 10, 11].

Evolutionary algorithms such as genetic algorithms, differential evolution, and parti-
cle swarm optimization employ population-based search strategies to iteratively improve
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candidate solutions according to a fitness function. Each generation refines the popula-
tion through selection, mutation, and recombination, enabling the discovery of optimal or
near-optimal configurations. These algorithms can optimize both network topology and
synaptic parameters, supporting multi-objective goals such as accuracy, sparsity, and en-
ergy efficiency. Their main advantage lies in their ability to explore complex, non-convex
optimization landscapes and adapt model structure autonomously. However, evolutionary
methods are computationally demanding because they require evaluating many candidate
networks over multiple generations. Hybrid strategies that combine evolutionary search
for network structure with gradient-based fine-tuning have been proposed to mitigate this
limitation [16].

Reinforcement-based optimization draws inspiration from reward-driven learning ob-
served in biological systems, where synaptic changes are guided by global feedback signals
rather than explicit error gradients. A widely used formulation is the reward-modulated
spike-timing-dependent plasticity (R-STDP) rule, which extends STDP by introducing a
scalar reward term that scales weight updates according to task performance:

Aw = R(t) f(AL), (2.10)

where R(t) denotes the reward signal and f(At) represents the STDP learning ker-
nel as a function of spike timing. This mechanism allows networks to associate spik-
ing activity with favorable outcomes, enabling adaptive behavior in control or decision-
making tasks. Although biologically plausible and compatible with neuromorphic hard-
ware, reinforcement-based methods generally converge slowly and scale poorly for large
or deep architectures [10, 14].

In summary, evolutionary and reinforcement-based optimization represent biologically
inspired, gradient-free alternatives to supervised learning. They are robust to disconti-
nuities, require no backpropagated gradients, and are well suited for on-chip or online
learning scenarios. However, their computational expense and limited scalability remain
active challenges. Recent research increasingly explores hybrid frameworks that integrate
these global optimization strategies with local plasticity or gradient-based learning to
balance adaptability, efficiency, and biological realism.

2.3 Event-Based Vision

Conventional frame-based cameras capture visual information at fixed time intervals,
typically 30 or 60 frames per second. Each frame represents a complete snapshot of the
scene, regardless of whether changes occur in every pixel. This approach, while effective
for many applications, introduces limitations in dynamic or high-speed environments.
The discrete sampling process leads to temporal aliasing and motion blur when objects
move faster than the frame rate, and the redundant capture of static regions results in
massive data overhead. Additionally, because every frame requires global exposure and
readout, traditional cameras exhibit limited dynamic range and high latency, especially
under challenging lighting or motion conditions [17, 18].

Event-based cameras, also known as neuromorphic or bio-inspired vision sensors, op-
erate under a fundamentally different principle. Instead of recording full images at fixed
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Figure 2.4: Behaviors of standard camera output and event-based camera output in dif-
ferent scenarios [19].

intervals, they detect changes in brightness asynchronously and independently at each
pixel. Whenever the logarithmic intensity at a pixel changes by more than a predefined
contrast threshold, the pixel generates an event, encoding the occurrence, location, time,
and polarity of that change. This mechanism, first implemented in the Dynamic Vision
Sensor (DVS) and later extended in devices such as DAVIS and Prophesee, draws direct
inspiration from biological retinas, which signal only local luminance changes rather than
absolute intensity values [20, 18].

The benefits of this sensing paradigm are significant. Event cameras achieve microsecond-
level temporal resolution and sub-millisecond latency because each pixel operates inde-
pendently and continuously. They capture motion without blur, maintain wide dynamic
ranges exceeding 120 dB, and drastically reduce redundant data by transmitting only
meaningful brightness variations. These properties lead to lower bandwidth and power
consumption, making event-based sensors ideal for embedded and edge computing. Such
characteristics are particularly advantageous in robotics, autonomous vehicles, and surveil-
lance systems, where real-time and energy-efficient processing is critical [17].

Event-based vision therefore provides a sensory front-end naturally aligned with the
temporal and sparse information processing capabilities of spiking neural networks. Both
systems share asynchronous, event-driven computation and temporal precision, forming a
biologically consistent integration between sensing and processing.
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2.3.1 Asynchronous Sensing Principles

At the core of event-based sensing lies its asynchronous, data-driven operation. Each
pixel measures the logarithmic light intensity L(z,y,t) = logI(x,y,t), where I repre-
sents the input brightness. An event is triggered when the change in intensity exceeds a
threshold C"

AL(x,y,ty) = L(x,y, tp) — L(z,y,tg—1) > pC, (2.11)

where p € {+1, —1} denotes the polarity, indicating whether brightness increased (ON
event) or decreased (OFF event). Each event can be represented as a tuple:

er = (Tk, Yk, thy Dk, (2.12)

defining the spatial coordinates (zg, yx), timestamp tx, and polarity py.

This event stream encodes dynamic information directly rather than static intensity
values. Since each pixel operates independently, the number of generated events naturally
adapts to scene dynamics: moving objects produce dense streams of events, while static
regions remain inactive. From a signal-processing perspective, event streams approximate
the temporal derivative of image intensity, emphasizing changes and eliminating redun-
dancy.

The asynchronous nature of this operation removes the need for a global exposure time,
allowing microsecond temporal precision and continuous motion capture. This principle of
“only sensing change” reduces latency, increases temporal fidelity, and minimizes energy
consumption.

Event-based sensing closely mirrors the biological retina, where photoreceptors and
ganglion cells respond to changes in luminance rather than constant illumination. Sim-
ilarly, event cameras generate spike-like outputs that resemble neural activity, making
their data format inherently compatible with the temporal coding and sparsity of spiking
neural networks [20, 18].

2.3.2 Event Cameras and Data Characteristics

Several commercial and research-grade event cameras are now widely used, including
the Dynamic Vision Sensor (DVS), the Dynamic and Active Vision Sensor (DAVIS), and
Prophesee’s GEN series and 1-Megapixel sensors. The DAVIS family integrates both
asynchronous DVS and conventional Active Pixel Sensor (APS) circuits, allowing the
simultaneous capture of event and frame data streams. The Prophesee 1-Megapixel sensor
and DAVIS346 models are among the most commonly adopted, offering microsecond-level
temporal precision and high dynamic ranges beyond 120 dB [20].

Event-based datasets have expanded substantially, supporting a range of research do-
mains. Examples include MVSEC, which provides multimodal data (stereo, IMU, LiDAR)
for 3D perception; DDD17 and DSEC, which target driving scenarios; GEN1 and the 1-
Megapizel Automotive Dataset for object detection; and gesture recognition datasets such
as DVS Gesture and EHWGesture, the latter combining RGB, depth, and event modalities
for multimodal gesture understanding [21]. These datasets collectively cover applications
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in autonomous driving, robotics, and human—computer interaction, providing valuable
benchmarks for both neuromorphic and conventional vision models.

Event data consist of discrete events {ex = (=, Yk, tr, pr)} collected over time. For
processing, events can be grouped into time intervals to form event frames, voxel grids,
or time surfaces, enabling the reuse of conventional convolutional pipelines. However,
such accumulation partially sacrifices the asynchronous nature of the data. Alternatively,
spiking neural networks and neuromorphic processors can operate directly on raw event
streams, exploiting their temporal precision and sparsity for real-time and energy-efficient
computation [17, 18].

Event-based data are characterized by high temporal density in dynamic regions, sparse
spatial activity in static areas, and explicit polarity encoding. These attributes make event
cameras ideal for applications that require low latency, high dynamic range, and motion
awareness. By coupling event-based sensing with neuromorphic computation, complete
perception pipelines can be built that operate efficiently, adaptively, and in real time,
emulating the sensing—processing synergy observed in biological vision systems.

2.4 Object Detection in Dynamic Environments

Object detection is a fundamental task in computer vision, aiming to identify and
localize objects within a scene by predicting their class labels and bounding boxes. Tra-
ditional frame-based approaches such as R-CNN, SSD, and YOLO have achieved remark-
able success in static imaging domains, leveraging deep convolutional networks to per-
form large-scale detection across diverse categories. These architectures, operating on
fixed-rate video or image sequences, have enabled breakthroughs in applications ranging
from surveillance to autonomous driving. However, their reliance on frame-based acqui-
sition and dense pixel processing introduces inefficiencies when applied to dynamic or
resource-constrained environments. Each frame contains significant redundancy, as most
pixels remain unchanged between consecutive captures. Moreover, motion blur, limited
dynamic range, and high computational load hinder their performance under fast motion
or rapidly changing illumination [22, 23].

Neuromorphic vision offers a promising alternative to overcome these limitations.
Event-based sensors and spiking neural networks operate asynchronously, capturing only
meaningful changes in the visual field. Instead of processing entire images at a fixed rate,
they encode sparse, time-resolved events triggered by local brightness variations. This
paradigm enables continuous perception with minimal latency and power consumption,
as computation is driven solely by informative input rather than periodic sampling. In
contrast to frame-based models, which often expend resources processing static back-
ground information, neuromorphic systems react instantaneously to motion, offering a
scalable and energy-efficient solution for real-time perception in dynamic environments.
Such efficiency makes them particularly well suited for mobile and embedded systems,
where computational and energy budgets are limited [20, 18, 17].
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2.4.1 Conventional Vision vs. Neuromorphic Vision

The contrast between conventional and neuromorphic vision highlights the trade-offs
between temporal density, redundancy, and responsiveness. Frame-based systems acquire
complete images at discrete intervals, operating under global synchronization. This design
ensures compatibility with standard deep-learning pipelines but inherently introduces la-
tency proportional to the frame rate. Additionally, each frame is processed in its entirety,
regardless of scene dynamics, leading to significant data redundancy and unnecessary com-
putation. For instance, in a surveillance camera observing a mostly static scene, identical
background pixels are repeatedly analyzed, consuming bandwidth and energy without
contributing new information [22, 23].

Neuromorphic vision, in contrast, replaces this periodic sampling with continuous,
event-driven sensing. Each pixel operates independently, generating events only when
the local logarithmic intensity changes beyond a defined threshold. This asynchronous
mechanism ensures that processing resources are devoted exclusively to regions under-
going change. The resulting output is temporally precise, sparse, and free of redundant
information, enabling microsecond response times. Beyond latency reduction, event-based
systems exhibit resilience to motion blur and perform reliably under extreme lighting con-
ditions where conventional sensors would saturate. These attributes make neuromorphic
cameras advantageous for real-world applications requiring both speed and adaptability,
including robotics, UAV navigation, and autonomous driving [18, 24].

While deep-learning methods in frame-based vision continue to evolve with architec-
tures such as vision transformers and multi-scale detection heads, they remain constrained
by the frame-based paradigm. Neuromorphic systems, by contrast, represent a shift to-
ward perception that is both biologically inspired and computationally efficient. This
paradigm shift is expected to redefine the design of future vision systems, emphasizing
continuous information flow, sparse computation, and adaptive intelligence [20, 22].

2.4.2 Applications in Autonomous Driving

Perception lies at the core of autonomous driving, enabling vehicles to understand and
interact with their environment through continuous detection, segmentation, and tracking
of surrounding entities such as cars, pedestrians, cyclists, and traffic signs. Conventional
vision-based pipelines, often relying on frame-based cameras paired with deep networks
like YOLO or SSD, have achieved substantial progress under controlled conditions. How-
ever, these systems face severe challenges in real-world driving: rapidly changing illumi-
nation between sunlight and shadows, nighttime scenes with high dynamic range, and
high-speed motion that causes motion blur. Furthermore, high-resolution image streams
require immense computational power and bandwidth, leading to elevated energy con-
sumption and limited scalability on embedded automotive hardware [22, 23].

Event-based and neuromorphic vision systems directly address these challenges. Their
microsecond-level temporal resolution enables the detection of fast-moving objects without
motion blur, while their high dynamic range ensures reliable perception under both bright
and low-light conditions. Moreover, their sparse and asynchronous output significantly
reduces data transfer and computation demands, enabling real-time performance even on
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low-power processors. These properties are critical for automotive scenarios where timely
reactions can prevent accidents and improve system efficiency [20, 17].

Recent research has demonstrated the growing potential of event-based object detec-
tion for autonomous vehicles. Approaches such as ASTMNet, Mixed-YOLO, and Recur-
rent Vision Transformers (RVT) process event streams to achieve robust detection under
adverse weather and illumination. Other studies explore fusion-based architectures that
combine event data with RGB frames to leverage the complementary strengths of both
modalities. Large-scale datasets such as MVSEC, DDD17, DSEC, and the Prophesee
1-Megapizel Automotive Dataset provide real-world benchmarks for evaluating such mod-
els, containing synchronized event, frame, and inertial data recorded in dynamic driving
scenarios [18, 20].

Within this context, neuromorphic algorithms based on SNNs extend these advantages
by performing event-driven inference with minimal energy consumption. Networks incor-
porating biologically inspired mechanisms such as short-term synaptic plasticity (STP) can
dynamically adapt to background activity and highlight motion patterns relevant to object
detection. This adaptability enables the system to prioritize salient visual features—such
as approaching obstacles or pedestrians—while suppressing irrelevant background noise.
Consequently, the combination of event-based sensing and neuromorphic computation
forms a unified perception framework capable of operating efficiently and robustly under
the most demanding real-world conditions.

2.4.3 Related Work

This section reviews studies closely related to the proposed framework for event-based
object detection and motion segmentation. Each work represents a significant contribution
to neuromorphic vision but exhibits key limitations that motivate the present study. The
discussion highlights how the proposed approach, based on short-term synaptic plasticity
(STP) implemented through Tsodyks—Markram synapses, addresses these gaps.

Nagaraj et al. (2022) — DOTIE: Detecting Objects through Temporal Isola-
tion of Events using a Spiking Architecture

Nagaraj et al. [25] introduced DOTIE, a lightweight spiking neural network designed
for object detection using event cameras. Their approach isolates objects by separating
event streams according to motion speed, leveraging the temporal structure of events to
identify distinct motion patterns. The network consisted of a single-layer leaky integrate-
and-fire (LIF) neuron model that grouped temporally similar events. After this temporal
separation, spatial clustering was applied to localize object regions, resulting in a system
that achieved low latency and energy efficiency without relying on supervised training or
frame reconstruction.

Although innovative, DOTIE assumes that temporal isolation alone is sufficient for
motion segmentation. It lacks adaptive synaptic dynamics, meaning all synapses respond
identically to repeated stimuli, regardless of novelty or frequency. As a result, the model
struggles in complex scenes with overlapping motions, background noise, or varying illu-
mination. Additionally, it does not account for biologically realistic synaptic behaviors
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such as short-term depression or facilitation.

The proposed work extends DOTIE’s principle by integrating short-term synaptic plas-
ticity through the Tsodyks—Markram model. In the presented framework, depressing
synapses suppress redundant background spikes, while facilitating ones enhance tran-
sient motion cues. This dynamic adjustment enables adaptive motion segmentation that
is robust to noise and speed variations. Furthermore, the use of biologically detailed
iaf _psc_delta neurons within the NEST simulator enhances temporal precision and in-
terpretability compared to the simplified LIF neurons used in DOTIE.

Stoffregen et al. (2019) — Event-Based Motion Segmentation by Motion
Compensation

Stoffregen et al. [26] proposed one of the earliest event-based motion segmentation
algorithms, based on motion compensation. Their method aligned events by iteratively
estimating motion parameters for each object or background region, using an expectation-
maximization (EM)-like optimization process. The algorithm jointly optimized cluster
membership and motion parameters, allowing per-event segmentation without explicit
optical flow computation. This framework achieved robust segmentation under ego-motion
and complex dynamic scenes.

However, the approach is computationally demanding and unsuitable for real-time
operation on neuromorphic hardware. It relies on iterative parameter optimization and
assumes motion can be modeled through simple geometric transformations such as trans-
lation or rotation. These assumptions break down for non-rigid or irregular object motion.
Moreover, the algorithm lacks any biological foundation and does not exploit neural or
synaptic computation principles.

In contrast, the proposed system performs segmentation through biological temporal
filtering at the synaptic level. The Tsodyks—Markram synapses inherently modulate signal
transmission based on recent activity, effectively separating dynamic and static regions
in real time. This enables continuous, low-latency segmentation without the need for
iterative motion estimation. The clustering module in the proposed work replaces the
heavy EM optimization with a lightweight, spike-driven grouping mechanism for object
localization.

Gehrig and Scaramuzza (2024) — Low-Latency Automotive Vision with Event
Cameras

Gehrig and Scaramuzza [27] presented a hybrid event- and frame-based system for low-
latency automotive perception. Their framework combined asynchronous event streams
with conventional RGB frames, leveraging the high temporal resolution of events alongside
the spatial detail of frames. This fusion achieved high detection performance at an effective
rate of several thousand frames per second while maintaining competitive accuracy in
autonomous driving benchmarks.

Despite its impressive performance, the hybrid design reintroduces frame-based sens-
ing and deep-learning components, which compromises the fully neuromorphic paradigm.
The system depends on supervised training, frame fusion, and high computational power,
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limiting its applicability in low-power or embedded contexts. It also lacks biological plau-
sibility, as it does not incorporate spike-based computation or adaptive synaptic filtering.

The proposed framework remains fully event-driven and biologically inspired. By
processing asynchronous event data directly through spiking neurons and STP-enabled
synapses, it achieves temporal adaptability and low latency intrinsically, without requir-
ing sensor fusion or deep-learning components. This makes it more energy-efficient and
better aligned with the principles of neuromorphic computing.

Clerico et al. (2025) — Retina-Inspired Object Motion Segmentation for Event
Cameras

Clerico et al. [28] developed a retina-inspired motion segmentation model based on
Object Motion Sensitivity (OMS) circuits observed in the mammalian visual system. Their
method emulated the center—surround receptive fields of bipolar and ganglion cells, using
spatial convolutional filters to detect motion saliency while compensating for ego-motion.
The model achieved parameter efficiency and effective motion segmentation by combining
biological inspiration with computational practicality.

While biologically grounded, their approach aggregates events into short temporal
frames to perform spatial convolutions, reintroducing frame-based latency and losing
microsecond-level temporal precision. The model relies solely on spatial contrast compu-
tations and lacks mechanisms for temporal adaptation at the synaptic level. Consequently,
it struggles with rapidly changing illumination or motion speed variability and does not
exploit per-event processing.

The proposed work complements and extends this concept by introducing temporal
adaptability through short-term synaptic plasticity. Instead of frame accumulation, each
synapse dynamically modulates its efficacy on a per-event basis. This allows the system
to preserve continuous temporal resolution and adapt in real time to scene dynamics.
Functionally, the proposed STP mechanism serves as a temporal analogue to the retina’s
center—surround structure, enabling adaptive motion filtering entirely within the spiking
domain.

Summary of Key Differences

In summary, previous works have demonstrated effective event-based motion segmen-
tation through either temporal isolation, optimization-based modeling, or bio-inspired fil-
tering. However, they often lack temporal adaptability, biological plausibility, or real-time
efficiency. The proposed framework addresses these challenges by introducing short-term
synaptic plasticity as a dynamic, biologically grounded mechanism for per-event tempo-
ral filtering. This approach enables continuous, energy-efficient, and adaptive motion
segmentation, advancing the state of neuromorphic event-based perception.
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Chapter 3

Methodology

3.1 Overview of the Proposed Framework

The objective of this work is to segment moving objects within event-based camera
data by assigning bounding boxes to their spatial locations. In such recordings, each event
represents a change in pixel intensity, which can be triggered by two main sources: the
motion of objects in the scene and the ego-motion of the camera itself. When the camera
is stationary, all events originate from moving objects, and no additional processing is
required to isolate them. However, in most real-world scenarios, especially in automotive
environments, the camera is in motion. This ego-motion produces a significant number of
background events that do not correspond to meaningful object activity.

Because the speed and direction of ego-motion vary over time, a fixed filtering mech-
anism would fail to adapt to these changes. Therefore, the filtering process must dynam-
ically respond to the temporal and spatial characteristics of the input. One key feature
that the proposed framework exploits is locality, both in space and time. By leverag-
ing this local structure, the system can distinguish between background noise caused by
ego-motion and event patterns associated with independently moving objects.

The overall framework consists of two main stages: filtering and clustering. The fil-
tering stage is implemented using the NEST simulator, which enables the modeling of
biologically inspired spiking neural networks with various neuron and synapse configu-
rations. Among the tested configurations, the most effective combines convolution-like
spatial connectivity with depressing Tsodyks—Markram synapses, which naturally sup-
press repetitive background activity while enhancing transient motion features.

Once background events are filtered out, the remaining activity primarily corresponds
to moving objects. The next stage applies a clustering algorithm to group these events
into separate object regions. Because the number of objects in a scene is unknown a priori,
density-based methods such as DBSCAN are well suited for this task. Besides isolating
individual objects, clustering also helps remove residual noise by treating sparse or weakly
correlated activity as outliers.

The following sections describe the methodology adopted in this study. First, the
simulation environment based on the NEST simulator is presented, including details on the
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Filtering

Input stream

Clustering

Figure 3.1: This figure provides an overview of the proposed framework. From left to
right, the event-based input is first processed as either unipolar or bipolar depending on
the selected filter configuration. The filtering stage then applies the spiking model to
suppress background activity and emphasize motion related events. In the final stage, the
clustering algorithm removes residual noise and groups the remaining events into object
regions, where bounding boxes are generated.

neuron and synapse models used to construct the proposed filtering mechanisms. Next, the
specific filtering configurations are introduced, illustrating how different neuron—synapse
combinations can emphasize motion-related activity and suppress background noise. The
subsequent section focuses on post-processing and clustering, where the filtered event data
are grouped into object regions and bounding boxes are generated. Finally, the evaluation
metrics used to assess the performance of the proposed framework are discussed.

3.2 NEST Simulation Environment

The NEST simulator is a high-performance simulation framework specifically devel-
oped for modeling large networks of spiking neurons. It provides an event-driven archi-
tecture optimized for the efficient propagation and scheduling of spike events, making
it suitable for studying the dynamics of biologically inspired neural systems at different
scales, from small microcircuits to large cortical networks.

In NEST, each neuron and synapse is represented as an individual process with its
own state variables and update equations, while communication between elements oc-
curs through discrete spike events transmitted along directed connections. The simulator
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employs a hybrid integration approach in which subthreshold dynamics are computed an-
alytically between events. This ensures numerical precision, stability, and reproducibility
across different simulation back ends and hardware configurations.

Beyond computational efficiency, NEST offers a modular and extensible structure that
enables the definition of custom neuron, synapse, and plasticity models through its model
library or user-defined extensions written in C++ or Python. This flexibility makes it
a suitable platform for exploring biologically plausible mechanisms such as adaptation,
recurrent connectivity, and short-term synaptic plasticity.

In this work, NEST serves as the core simulation environment for implementing the
proposed spiking filters. The following sections describe the specific neuron and synapse
models used in the simulations, along with their biophysical interpretations and compu-
tational formulations.

3.2.1 Neurons
iaf _psc_ delta

The integrate-and-fire neuron with delta-shaped postsynaptic currents (iaf_psc_delta)
is one of the fundamental neuron models implemented in the NEST simulator. It origi-
nates from the theoretical and numerical framework established by Rotter and Diesmann
[29] and further utilized in large-scale network analyses by Diesmann et al. [30]. The
model provides a minimal yet biophysically interpretable description of neuronal dynam-
ics by separating subthreshold integration governed by a linear, time-invariant differential
equation from nonlinear spike generation through threshold and reset mechanisms.

In this formulation, synaptic inputs are represented as Dirac delta functions, corre-
sponding to instantaneous charge injections that cause discrete voltage jumps. This as-
sumption allows the system to be treated within the framework of exact digital simulation,
where the continuous subthreshold dynamics are analytically integrated between events.
Despite its simplicity, this model captures essential features of neuronal computation such
as temporal summation, refractoriness, and precise spike timing, while maintaining com-
putational efficiency suitable for large-scale network simulations and state-space analyzes
of synchronized spiking activity.

Parameter Unit Description

£y mV Resting membrane potential

Cm pF Capacitance of the membrane

Tm ms Membrane time constant

tref ms Duration of refractory period

Vin mV Spike threshold

Vieset mV Reset potential of the membrane

I, PA Constant input current

Vinin mV Absolute lower value for the mem-

brane potential

Table 3.1: Parameters of the iaf psc_ delta model
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The temporal evolution of the membrane potential V;, follows the differential equation:

AV, Voo — F . Ty + 1,
E— L+Asyn+y7

dt Tm Cm

(3.1)

where Ey, represents the resting potential, 7, is the membrane time constant, Asyn(t)
denotes the rate of voltage change due to synaptic inputs, I. is an external constant
current, and (), is the membrane capacitance.

A spike event occurs at time t* = t;.1; when the membrane potential crosses the
threshold from below:

Vm(tk) < Vin and Vm(tk+1) > Vi (3.2)

Following spike emission, the membrane potential is held at the reset value throughout
the refractory interval:

Vin(t) = Vieser  for 5 <t < t* +tyey (3.3)

The contribution of synaptic inputs to membrane potential changes is expressed as:
Agyn(t) =D wi Y 8(t =t = dy) (3.4)
j k

where j indexes presynaptic neurons (with w; > 0 for excitatory and w; < 0 for
inhibitory connections), k indexes individual spike times from neuron j, d; represents the
synaptic delay, and ¢§ is the Dirac delta distribution. Each synaptic event produces an
instantaneous voltage jump:

Agyn = w (3.5)

where w is the synaptic weight measured in millivolts. The corresponding postsynaptic
current takes the form:

Gsyn(t) = Crmy - w - 0(1) (3.6)

resulting in a total charge transfer per synaptic event of:

q= / isyn(t) dt = Cm W (37)
0

The model employs exact integration methods for subthreshold dynamics, ensuring
numerical precision in membrane potential evolution. By default, the membrane potential
is unbounded from below; however, a minimum voltage parameter V,,;, can be specified
to prevent unphysical hyperpolarization. Synaptic inputs arriving during the refractory
period are typically discarded.
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3.2.2 Synapses
Static synapse

A static synapse is a synapse that does not exhibit any form of plasticity. It represents
a straightforward connection, where the effective synaptic weight is simply the synaptic
weight itself, as shown in Eq. 3.8.

z(t) - w (3.8)

Tsodyks Markram synapse

Parameter Unit Description

U real Parameter determining the increase in w
with each spike [0,1]

Tpse ms Time constant of synaptic current

Tfac ms Time constant for facilitation

Trec ms Time constant for depression

x real Initial fraction of synaptic vesicles in the
readily releasable pool [0,1]

Y real Initial fraction of synaptic vesicles in the
synaptic cleft [0,1]

U real  Initial release probability of synaptic vesi-
cles [0,1]

Table 3.2: Parameters of the tsodyks_synapse model

The TM synapse model describes a form of STP, where the efficacy of synaptic trans-
mission depends on the recent history of presynaptic activity. Experimental observations
show that, in certain neurons, previous presynaptic events modulate the probability of
neurotransmitter release [31]. The TM model provides a mathematical formulation of
this mechanism.

Two distinct scenarios are typically observed. In some synapses, frequent presynap-
tic activation leads to a depletion of available neurotransmitter resources, resulting in
a gradual reduction of synaptic efficacy over time, a phenomenon known as Short-term
Depression (STD). In contrast, in other synapses, repetitive presynaptic firing enhances
synaptic strength due to calcium accumulation in the axon terminal, a process called
Short-term Facilitation (STF).

These forms of short-term plasticity have been observed in various regions of the human
nervous system, particularly within the visual cortex, where some areas are predominantly
STD dominated while others exhibit stronger STF. Despite their seemingly opposite ef-
fects, both mechanisms can coexist within the same neural circuit. Importantly, since
these processes do not involve permanent structural modifications, they represent tran-
sient, activity-dependent changes in synaptic efficacy.
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Although the real dynamics are much more complex, a simplified formulation was
proposed in the original paper. The synaptic effect evolves according to the following
system of kinetic equations:

dx z

E = Tree —U.T(S(t—tsp), (39)
dy Yy

= =_2 - 1
7 . +uzdt —tp), (3.10)
z _y _ = (3.11)

dt T Trec

Here, z, y, and z represent the fractions of synaptic resources in the recovered, active,
and inactive states, respectively. The variable ¢, denotes the timing of presynaptic spikes,
71 is the decay constant of the Postsynaptic Currents (PSCs), and Ty is the recovery time
constant from synaptic depression. Synaptic depression arises due to the depletion of
vesicles in the readily releasable pool, corresponding to the variable x in Eq. 3.9.

Synaptic facilitation, on the other hand, results from an increase in the presynaptic
release probability. This process is captured by the variable u, which evolves according
to:

du U
— == 1- —tp), 12
i — +U(1—u) &t — tsp) (3.12)

where T, 18 the facilitation time constant, and U represents the baseline utilization
of synaptic efficacy. When 7.1 — 0, the model reduces to a purely depressing synapse.

However, there are cases where this synapse model is applied to neuron models that
do not include explicit PSCs dynamics. In such cases, the effective synaptic weight trans-
mitted to the postsynaptic neuron upon the occurrence of a spike at time ¢ is given by

u(t) - z(t) - w, (3.13)

where u(t) and x(t) are defined in Egs. 3.9 and 3.12, and w is the static synaptic weight
specified during connection. This formulation can be interpreted in two components: the
term wu(t).x(t) represents the probability of release times the amount of available synaptic
resources, while w corresponds to the fixed synaptic efficacy.

The resulting product determines the amplitude of the synaptic impulse that triggers
the postsynaptic response. The corresponding transmitter concentration y(t) then decays
back to zero with the time constant 7pgc.

Depressing and Facilitating Behavior of TM Synapses

The Tsodyks Markram model captures both forms of STP through the interaction be-
tween two key variables: the release probability u(t) and the fraction of available synaptic
resources z(t). Whether a synapse behaves as depressing or facilitating depends on how
these variables evolve in response to repeated presynaptic spikes, and this evolution is
controlled by the parameters U, Tyec, and Tgac.
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A synapse exhibits depressing behavior when the baseline utilization U is high and
the recovery time constant 7. is long. Under these conditions, repeated spikes cause the
available resources x(t) to decrease faster than they can replenish. With every spike, the
product u(t)x(t) becomes smaller, reducing the effective synaptic response. Depressing
synapses therefore respond strongly to isolated or infrequent spikes but produce weaker
responses during rapid or sustained presynaptic activity. In practical terms, this behavior
suppresses high frequency inputs and can attenuate repetitive background activity, such
as motion caused by camera ego movement.

In contrast, facilitating behavior emerges when the facilitation time constant 7g,, is
large and the baseline utilization U is low. In this regime, repeated presynaptic spikes
cause the release probability u(t) to gradually increase. As u(t) accumulates, the synapse
becomes more effective with each spike. Facilitating synapses therefore produce modest
responses to isolated spikes but increasingly strong responses to bursts or continuous
presynaptic input. This mechanism enhances temporally consistent patterns and can
emphasize features that persist within a localized region.

These two modes arise from the same mathematical model but represent opposite op-
erating regimes. Depressing synapses reduce their contribution during sustained activity,
whereas facilitating synapses strengthen their contribution. Both behaviors can coexist
within the same neural circuit, and their relative influence can be controlled by adjusting
the parameters. This flexibility allows the Tsodyks Markram model to reproduce a broad
range of synaptic responses observed in biological systems.
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Membrane Potentials: Depressing vs Facilitating vs Static Synapses
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Figure 3.2: Comparison of synaptic plasticity effects with regular input pattern. Top:
Membrane potentials of three neurons with depressing, facilitating, and static synapses.
Bottom: Input spike pattern and corresponding output spikes from each neuron type.
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Membrane Potentials: Depressing vs Facilitating vs Static Synapses
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Figure 3.3: Comparison of synaptic plasticity effects with burst input pattern. Top:
Membrane potentials of three neurons with depressing, facilitating, and static synapses.
Bottom: Input spike pattern and corresponding output spikes from each neuron type.
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Membrane Potentials: Depressing vs Facilitating vs Static Synapses
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Figure 3.4: Comparison of synaptic plasticity effects with Poisson input pattern. Top:
Membrane potentials of three neurons with depressing, facilitating, and static synapses.
Bottom: Input spike pattern and corresponding output spikes from each neuron type.
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3.3 Proposed Filtering Models

The filtering stage is responsible for suppressing background activity and highlighting
event patterns that correspond to independently moving objects. Although the overall
framework supports arbitrary neuron and synapse configurations, four specific filtering
models were explored in this work. These models differ in two aspects: the spatial con-
nectivity pattern between input events and filter neurons, and the synaptic mechanisms
used to transmit spikes. Temporal processing is handled by the neuron dynamics in all
configurations, while spatial processing is determined by how each model uses its local
receptive field. The purpose of evaluating different configurations is to investigate how
various combinations of locality and synaptic behavior influence event driven motion fil-
tering.

3.3.1 Direct (One-to-One) with Static Synapses

Figure 3.5: One to one connections.

In the first configuration, each input pixel is connected directly to a corresponding
neuron in the filtering layer. All synapses are static and maintain a constant efficacy
throughout the simulation. This setup does not incorporate any spatial interactions, since
each neuron responds only to its own pixel without considering neighboring activity. The
configuration serves as a structurally simple baseline that processes events independently
across the spatial domain.

3.3.2 Convolution with Static Synapses

The second configuration introduces a convolution like connectivity pattern. Each
neuron receives input from a small receptive field defined by a spatial kernel, allowing
it to integrate information from its local neighborhood. The synapses remain static and
do not change their strength over time. Typically, the central connection of the kernel is
assigned a larger weight than the surrounding connections, providing stronger influence
from the center pixel while still incorporating spatial context. This configuration mirrors
the structure used in the DOTIE approach and allows the extraction of simple local motion
cues [25].

45



Methodology

(a) Convolutional filtering configuration with (b) Spatial connections
static synapses.

Figure 3.6: Comparison of convolutional and spatial connectivity patterns.

3.3.3 Convolution with Depressing Synapses

In this configuration, the convolutional connectivity pattern is preserved, but all synapses
in the kernel use depressing Tsodyks Markram dynamics. Depressing synapses temporar-
ily reduce their efficacy in response to frequent activation, which enables the model to
respond differently to repeated input patterns compared to isolated events. This configu-
ration therefore incorporates both spatial locality and STP. The kernel is typically defined
as a 3 x 3 receptive field, with the central connection usually assigned a higher weight
than the surrounding ones.

Convolution, depressing synapses

Udep Udep Udep

Udep Udep Udep

Udep Udep Udep

(a) Convolutional filtering configuration with ~ (b) Spatial connections with depressing
depressing Tsodyks Markram synapses. synapses

Figure 3.7: Comparison of convolutional and spatial connectivity patterns under depress-
ing synaptic dynamics.

3.3.4 Convolution with Hybrid Synapses

The hybrid configuration combines depressing and facilitating synapses within the
same receptive field. The central connection employs a facilitating synapse whose efficacy
increases when activated repeatedly, while the surrounding connections use depressing
synapses. This design provides an asymmetric plasticity profile within the receptive field,
allowing the model to explore how mixed short term synaptic dynamics interact with
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(a) Hybrid convolutional filtering configura- (b) Spatial connections with hybrid synapses
tion with a facilitating center and depressing
neighbours.

Figure 3.8: Comparison of hybrid convolutional connectivity and spatial hybrid connec-
tivity patterns.

event distributions in dynamic scenes.

3.4 Post Processing and Clustering Algorithms

Although the spiking framework filters a large portion of background activity, the
output still contains some residual noise and irrelevant events. In addition, multiple
moving objects may appear in the scene simultaneously, and each must be identified as
a separate entity according to the task definition. For this reason, the post processing
stage consists of two main steps. First, the filtered event stream is converted into frame-
like representations using a sliding window approach and then refined with morphological
operations. Second, a clustering algorithm is applied to isolate individual objects and to
generate bounding boxes around them.

3.4.1 Post Processing from Events to Frames

After the filtering stage, the output takes the form of an event cloud with coordinates
in the z, y and ¢ dimensions. The temporal resolution is determined by the simulation
time step of NEST. In the experiments, a resolution of 1 millisecond was used to preserve
as much temporal detail as possible while avoiding excessive computational overhead.

To apply morphological operations, the event cloud must first be converted into a
frame. This is achieved with a sliding temporal window that accumulates events within
a short time interval and projects them onto a two-dimensional grid. These frames are
then processed with standard morphology functions such as dilation and opening, which
help suppress noise and enhance the spatial continuity of object contours.

Because morphological operators may generate artificial pixels that did not exist in
the original event stream, an additional logical AND operation is applied between the
input frame and the processed frame. This step removes false positives introduced during
filtering or morphology and ensures that only events supported by real activity remain in
the final representation.
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3.4.2 Clustering with DBSCAN

While various clustering algorithms can be applied to event-based data, they differ
significantly in their assumptions and requirements. In the present task, the main chal-
lenge is that the number of moving objects is unknown at every moment of the sequence.
This makes algorithms that require a predefined number of clusters unsuitable. Meth-
ods such as K-Means or Gaussian Mixture Models depend on specifying the number of
clusters, and although heuristics like the silhouette score can be used to estimate this
value, such strategies introduce considerable computational overhead and often produce
unstable results over time, as also reported in the DOTIE framework [25].

In contrast, DBSCAN [32] is well suited for this scenario because it does not require
the number of clusters to be specified. Instead, it identifies clusters as regions of higher
point density that are separated by areas of lower density. This property aligns naturally
with event-based motion segmentation, where each independently moving object forms a
locally dense set of events, whereas background or residual noise remains comparatively
sparse.

Mathematically, DBSCAN relies on two parameters: the neighborhood radius ¢ and
the minimum number of points MinPts. A point is classified as a core point if its e-
neighborhood contains at least MinPts points. Clusters are then formed by iteratively
expanding from these core points through the notions of density reachability and density
connectivity. Points that satisfy the reachability condition are included in the cluster,
border points are attached to the nearest dense region, and isolated points that do not
meet any density requirement are labeled as noise. These definitions form the basis of
the original DBSCAN formulation [32] and have been further analyzed and formalized in
later studies [33].

A key advantage of DBSCAN in this application is its robustness to noise, which is
inherent in event-based camera data. Even after the filtering stage, isolated events may
appear due to sensor artifacts, weak reflections, or background inconsistencies. These
events typically do not meet the density threshold and are therefore automatically dis-
carded as noise. This behavior is highlighted in both the original DBSCAN paper and its
subsequent theoretical analyses.

Another important advantage is DBSCAN’s ability to detect clusters of arbitrary
shape. Events generated by moving objects rarely form convex or regular patterns; instead,
their shapes may be elongated, irregular, or fragmented depending on object geometry
and motion. Algorithms that assume convex clusters struggle under such conditions. DB-
SCAN, being density based, adapts naturally to any geometry as long as local density is
sufficient, which is particularly valuable for dynamic scenes with heterogeneous objects.

Finally, DBSCAN is computationally efficient for two dimensional spatial data, espe-
cially when neighborhoods remain small. The algorithm avoids iterative optimization and
uses a deterministic expansion process governed entirely by the density parameters. This
makes DBSCAN a practical choice for integration into an event-based detection pipeline,
where consistent performance and low overhead are essential.
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3.5 Evaluation Metrics

Evaluating event-based object segmentation requires comparing the predicted bound-
ing boxes with the available ground truth annotations in each dataset. Some datasets,
such as the 1 Megapixel Automotive Detection dataset, provide ground truth bound-
ing boxes directly. Others, such as MVSEC, do not include bounding box annotations,
and ground truth information must be generated externally. Following common practice,
ground truth boxes for MVSEC were produced by applying a conventional frame based
object detector such as YOLOvV3 to the grayscale camera stream.

Even in datasets that already contain ground truth, these annotations originate from
frame based models that operate at a much lower frame rate than event-based systems.
Consequently, there is a temporal mismatch between the annotations and the proposed
framework, which produces predictions at every time window. For this reason, evaluation
is performed only at the timestamps for which ground truth bounding boxes are available.
Predictions at intermediate timestamps are not considered in the scoring process.

For each time window with ground truth, the predicted bounding boxes are compared
with the ground truth using the Intersection over Union (IoU) metric, defined as

_Area of Overlap

IoU = . 3.14
Area of Union ( )
Prediction

[ ] Ground truth box
) || Predicted box
Intersection
|| Intersection

Ground truth

Union area = blue area + red area — intersection

Figure 3.9: Illustration of Intersection over Union (IoU) between a ground truth bounding
box and a predicted bounding box. IoU is defined as the ratio between the area of the
intersection and the area of the union of the two boxes.

A predicted box is counted as a True Positive (TP) if its IoU with a ground truth box
exceeds a threshold of 0.5. When IoU < 0.5, the spatial overlap is considered insufficient
and the prediction is treated as a False Negative (FN). This threshold is motivated by
the fact that an IoU value below 0.5 indicates that more than half of the predicted or
ground truth region does not overlap, implying that the detection is too inaccurate to be
considered correct. If a predicted box does not overlap with any ground truth box, it is
labeled as a False Positive (FP).

Based on the counts of TP, FP and FN, standard evaluation metrics are computed.
Precision measures the proportion of correctly predicted objects, recall quantifies how
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many of the actual objects were detected, and the F1 score provides a balanced combina-
tion of the two. Their definitions are

TP
Precision = TP+ TP’ (3.15)
TP
l= ——— 1
Reca TP L PN (3.16)

Precision - Recall
F1 =2- . 3.17
Seore Precision + Recall ( )

These metrics collectively evaluate the correctness and completeness of the detections,
providing a reliable and widely used means of assessing the performance of object detection
systems, including event-based approaches such as the one proposed in this work.
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Chapter 4

Results & Experiments

4.1 Experimental setup

4.1.1 Datasets
Prophesee 1 Megapixel Automotive Detection Dataset

The Prophesee 1 Megapixel Automotive Dataset [34] is the first large-scale, high-
resolution dataset dedicated to event-based object detection in real driving conditions.
It was designed to bridge the gap between low-resolution neuromorphic recordings and
frame-based automotive benchmarks by combining long-duration event sequences with
dense object-level annotations.

The data were collected using a 1280x720 event camera mounted behind the wind-
shield of a car, alongside an RGB camera. Both cameras were fixed on a rigid mount
with minimal baseline distance to reduce parallax. The RGB stream was recorded at 4
megapixels and 60 Hz, ensuring temporal and spatial overlap with the asynchronous event
stream.

A fully automated labeling protocol was developed to generate bounding-box annota-
tions for the event data. The process consisted of three main steps:

1. Temporal synchronization of the RGB and event cameras, achieved through either
a physical trigger or an algorithmic cross-correlation procedure;

2. Detection of objects in each RGB frame using a high-performance commercial
automotive detector that identified cars, pedestrians, and two-wheelers;

3. Spatial mapping of the detected bounding boxes from the RGB image plane to the
event-camera coordinates using a homography transformation.

This automatic transfer method produced temporally aligned and geometrically con-
sistent labels at a frequency of 60 Hz. The synchronization and homography assumptions
introduced only minor deviations which remained negligible in the context of typical road-
scene distances.

The final dataset comprises approximately 14.65 hours of recordings, divided into 11.19
hours for training, 2.21 hours for validation, and 2.25 hours for testing. Recordings cover
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a broad range of environments including dense urban traffic, highways, suburban neigh-
borhoods, and rural roads, collected over several months and under diverse daylight and
weather conditions. The resulting corpus contains more than 25 million bounding boxes,
providing dense spatiotemporal supervision at automotive scale.

For this work, the availability of precise, high-frequency bounding boxes allows the
evaluation of event-driven detection and tracking approaches without relying on frame
reconstruction. Owing to its high spatial resolution, temporal density, and automated
annotation pipeline, the Prophesee 1 Megapixel Automotive Dataset serves as a robust
benchmark for assessing event-based object-detection algorithms in challenging real-world
conditions.

Figure 4.1: Example scene from Prophesee 1 Megapixel Automotive Dataset. This frame
is generated by accumulating events in 1/60 second of a time window

MVSEC Dataset

The MVSEC Dataset [35] provides multimodal recordings collected using a stereo pair
of event-based cameras, grayscale cameras, Inertial Measurement Unit (IMU) sensors, and
a Light Detection and Ranging (LiDAR). The data was recorded on multiple platforms
including a handheld rig, a hexacopter, a motorcycle, and a car.In this thesis, only the car-
mounted sequences are used, as they provide large-scale, outdoor, and dynamic driving
scenarios that closely resemble real-world traffic environments.

In the car configuration, the stereo cameras were installed on the sunroof of a sedan,
facing forward with a slight downward pitch to capture the road and surrounding traffic.
The sequences include both daytime and evening recordings, with vehicle speeds reaching
up to 12 m/s. Each DAVIS camera captures both asynchronous events and grayscale
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frames at a resolution of 346 x 260 pixels. The grayscale frames serve as low-rate reference
images and are timestamp-aligned with the event stream.

Since the MVSEC dataset itself does not include bounding-box annotations, this work
leverages the DOTIE framework [25] to extract bounding boxes for moving objects from
the grayscale frames. In its original formulation, DOTIE uses YOLOv3 detections on
MVSEC grayscale frames as ground truth to validate its event-based segmentation results.

In this thesis, the same DOTIE pipeline is applied to generate bounding boxes aligned
with the grayscale frames of the MVSEC car-day and car-evening sequences. These bound-
ing boxes define spatial regions corresponding to moving objects (primarily vehicles) and
are used as region-of-interest references for evaluating event-based detection performance.
The resulting annotations preserve the asynchronous nature of the event data while main-
taining geometric alignment with the corresponding grayscale imagery.

Figure 4.2: Example scene from MVSEC. This frame is generated by accumulating events
in 1/30 second of a time window

4.1.2 Experiment Configuration

The experiments are conducted using both datasets introduced in the previous section.
Due to the large size and computational demands of these recordings, only representative
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portions are selected for simulation. For the MVSEC dataset, the outdoor _day_ 2 sequence
is used, which consists of a single recording of approximately eleven minutes. For the
Prophesee dataset, the validation 2 split is selected, containing twenty nine recordings of
one minute each. Since running NEST simulations on the full duration of these videos is
not practical, each sequence is divided into shorter temporal segments. MVSEC recordings
are partitioned into twenty second windows, while the Prophesee videos are segmented into
ten second windows. Each segment is then processed independently to allow parallelism
and reduce memory requirements.

As explained earlier, four groups of filtering models are evaluated. These include
direct one to one connections, spatial filtering kernels, depressing synapses based on STD,
and hybrid models that combine facilitation and depression. Within each model group,
multiple membrane time constants are tested to investigate the influence of temporal
dynamics on event integration. For plastic synapse models, different strengths of STD or
STF are also explored to understand how synaptic adaptation affects the suppression of
background activity and the highlighting of moving targets.

After filtering, a clustering stage groups the remaining spike activity into spatially
coherent detections. This step is essential because the filtering models output binary spike
maps rather than explicit object regions. A combination of spatial recovery, density based
clustering, and size pruning is employed to convert these spike patterns into bounding box
proposals. Multiple parameter sets are tested to evaluate the stability of the clustering
pipeline across scenarios that vary in object density, motion, and noise levels.

Table 4.1: Summary of all NEST simulation configurations used in the experiments. The
table is organized by model complexity, from simple static connections to hybrid STP
mechanisms.

Model Dynamics Kernel Synapse Notes
Fast 1x1 Static
Model 1 Moderate fast  1x1 Static No spatial interaction,
(Direct) Slow I1x1 Static no plasticity
Slowest 1x1 Static
Fast 3x3 Static
Model 2 Slow 3x3 Static Spatial kernel,
(Only Spatial Filter) Moderate fast ~ 3x3 Static no plasticity
Slowest 3x3 Static
Fast 3x3 ™
Model 3 Slow 3x3 T™ Spatial kernel with
(Depression) Fast 3x3 ™ weak or strong STD
Slow 3x3 ™
Fast 3x3 ™
Model 4 Slow 33 ™ Spatial kernel with
(Hybrid) Fast 3x3 TM  weak or strong STD and STF
Slow 3x3 ™
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Table 4.2: Clustering and post processing parameters explored in the grid search.

Parameter Values Explanation

recovery_neighborhood 5,7, 10, 12, 15 Controls the spatial extent used to reconnect
fragmented activity regions. Larger values
increase region continuity but may merge
nearby objects.

eps_val 5,7, 10, 12, 15 Distance threshold for density based cluster-
ing. Larger values allow broader clusters,
while smaller values produce more compact
ones.

min_samples_val 5, 7,10, 12, 15 Minimum number of events required to form
a valid cluster. Higher values suppress noise
but may remove small or weak objects.

mindiagonalsquared 2000, 2300  Minimum bounding box diagonal squared.
Filters out very small detections and en-
forces a lower size limit.

4.2 Results

This section presents the quantitative results obtained from the event-based filtering
and clustering pipeline described in the previous chapters. Four filtering approaches are
evaluated on two datasets using a combination of temporal dynamics and clustering pa-
rameters. The tables report, for each filter type, the configuration that achieved the best
overall balance across precision, recall, F1 score, and mean Intersection over Union (IoU).
Unless stated otherwise, the IoU threshold used for matching detections is 0.5.

The results for each dataset are presented in pairs, with the standard threshold table
followed by the corresponding reduced threshold table. This organisation allows direct
comparison of the performance under the default loU requirement and a relaxed threshold
of 0.25, which provides an additional perspective on filters that tend to generate detections
with partial but consistent spatial overlap.

Prophesee 1 Megapixel Dataset
Results at IoU Threshold 0.5

Table 4.3 reports the best performing configuration from each filtering family under an
IoU threshold of 0.5. The direct and spatial filters achieve the highest overall F1 scores,
both reaching 0.157. Their precision and recall values are also relatively balanced. The
direct filter attains a precision of 0.169 and a recall of 0.147, while the spatial filter yields
a precision of 0.158 and a recall of 0.155. Both models produce a large number of false
positives, with the direct filter generating 89510 false detections and the spatial filter
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generating 98976.

In contrast, the depressing and hybrid filters produce substantially lower F1 scores,
both around 0.027. Their precision remains low, with values of 0.020 for the depressing
model and 0.021 for the hybrid model. Recall follows a similar trend, remaining limited at
0.041 and 0.042 respectively. These models generate fewer true positives compared to the
static filters, with 391 detections for the depressing model and 743 for the hybrid model.
The number of false positives is also considerably lower: 18888 for the depressing filter
and 34741 for the hybrid filter. Despite the reduced activity, both filters preserve mean
IoU values above 0.60, which is comparable to the static filters.

Overall, the depressing and hybrid filters operate with reduced detection counts and
lower recall, accompanied by significantly fewer false positives, while the direct and spatial
filters produce higher activity levels, higher recall, and substantially larger FP values.

Filter Dynamics Precision Recall F1 Mean IoU TP FP FN

Direct Slowest 0.169 0.147  0.157 0.657 18254 89510 106081

Spatial ~ Moderate Fast 0.158 0.155 0.157 0.648 18522 98976 100646
Depressing Slow 0.020 0.041 0.027 0.610 391 18888 9125

Hybrid Slow 0.021 0.042 0.0279 0.605 743 34741 17118

Table 4.3: Top performing filtering configurations for the Prophesee 1 Megapixel dataset
(IoU threshold 0.5).

Results at IoU Threshold 0.25

Lowering the IoU threshold from 0.5 to 0.25 results in substantial metric increases for
both depressing and hybrid filters. For the depressing filter, precision increases from 0.020
to 0.098, recall rises from 0.041 to 0.218, and the F1 score increases from 0.027 to 0.135.
The number of true positives grows from 391 to 2125, while false positives remain similar,
increasing only from 18888 to 19486. False negatives decrease from 9125 to 7584. The
mean loU decreases from 0.610 to 0.396.

A similar pattern is observed for the hybrid filter. Precision improves from 0.021 to
0.095, recall increases from 0.042 to 0.199, and the F1 score increases from 0.0279 to
0.128. True positives more than double, from 743 to 1668. False positives remain lower
than those of the static filters, increasing moderately from 34741 to 15958. False negatives
drop from 17118 to 6723. As with the depressing filter, the mean IoU decreases from 0.605
to 0.390.

When compared with the direct and spatial filters at the 0.5 threshold, the reduced
threshold depressing and hybrid filters remain below their F1 scores of 0.157. Precision
values of both depressing and hybrid filters move closer to the ranges of the direct and
spatial filters, which lie between 0.158 and 0.169. Their false positive counts remain much
lower than those of the static filters, which exceed 89500 for the direct model and 98900
for the spatial model. This yields a substantially different balance between true and false
detections, although the mean IoU values remain lower than those of the static filters.
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Filter = Dynamics Precision Recall F1 Mean IoU TP FP FN
Depressing Slow 0.098 0.218 0.135 0.396 2125 19486 7584
Hybrid Fast 0.095 0.199 0.128 0.390 1668 15958 6723

Table 4.4: Best performing depressing and hybrid filters for the Prophesee 1 Megapixel
dataset under a reduced IoU threshold of 0.25.

MVSEC Dataset
Results at IoU Threshold 0.5

Table 4.5 reports the best performing configurations for each filter type using an IoU
threshold of 0.5. Among all models, the depressing filter achieves the highest F1 score
with a value of 0.090, followed by the hybrid filter at 0.086. Their precision values are
0.074 and 0.071 respectively, which exceed those of both the direct and spatial filters.
Recall values for the depressing and hybrid models are 0.118 and 0.109.

The direct filter attains a precision of 0.054 and a recall of 0.163, resulting in an F1
score of 0.081. It generates the highest number of true positives, with 1133 detections,
but also produces the largest number of false positives at 19786. The spatial filter shows
a precision of 0.045 and a recall of 0.142, with an F1 score of 0.068. It produces 137 true
positives and 2876 false positives.

Compared to the static filters, both depressing and hybrid models exhibit higher pre-
cision and higher F1 scores, despite generating fewer detections overall. The depressing
filter yields 51 true positives and 638 false positives, while the hybrid filter reports 30 true
positives and 395 false positives. The false negative counts for the depressing and hybrid
filters are 383 and 245 respectively. Their mean loU values, 0.638 for the depressing model
and 0.607 for the hybrid model, are comparable to those of the static filters.

Overall, the depressing and hybrid filters achieve the highest precision and highest F1
values among all four filter types, while the direct and spatial filters produce higher recall
and substantially larger false positive counts.

Filter = Dynamics Precision Recall F1 Mean IoU TP FP FN

Direct Slow 0.054 0.163 0.081 0.639 1133 19786 5823

Spatial Slowest 0.045 0.142  0.068 0.633 137 2876 827
Depressing Slow 0.074 0.118 0.090 0.638 51 638 383

Hybrid Slow 0.071 0.109 0.086 0.607 30 395 245

Table 4.5: Top performing filtering configurations for the MVSEC dataset (IoU threshold
0.5).

Results at IoU Threshold 0.25

Lowering the IoU threshold from 0.5 to 0.25 leads to clear increases in all core detection
metrics for both depressing and hybrid filters. For the depressing filter, precision increases
from 0.074 to 0.146, recall rises from 0.118 to 0.266, and the F1 score increases from 0.090
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to 0.188. The number of true positives grows from 51 to 132, while false positives increase
moderately from 638 to 772. False negatives decrease from 383 to 365. The mean IoU
decreases from 0.638 to 0.468.

The hybrid filter shows similar improvements. Precision increases from 0.071 to 0.160,
recall increases from 0.109 to 0.273, and the F1 score increases from 0.086 to 0.201. True
positives more than double, rising from 30 to 75. False positives remain low, at 395 in
this configuration, and false negatives decrease from 245 to 200. The mean IoU decreases
from 0.607 to 0.457.

When compared to their counterparts at the standard threshold, both filters achieve
substantially higher precision, recall, and F1 scores under the reduced threshold while
maintaining relatively low false positive counts. Their gains in recall are especially pro-
nounced, increasing by more than a factor of two for both models.

Compared to the direct and spatial filters at IoU 0.5, the reduced-threshold depressing
and hybrid filters exceed all static models in both precision and F1 score. The hybrid
filter reaches an F1 value of 0.201, surpassing the direct filter’s 0.081 and the spatial
filter’s 0.068. Their precision values, 0.146 and 0.160, are also considerably higher than
the precision of the direct and spatial models, which remain at 0.054 and 0.045. Although
their recall values stay below the direct filter’s 0.163 and the spatial filter’s 0.142, the
reduced-threshold depressing and hybrid filters maintain significantly lower false positive
counts, remaining far below the 19786 and 2876 false positives produced by the direct and
spatial filters respectively.

Overall, under the reduced IoU threshold, the depressing and hybrid filters achieve the
highest precision and highest F1 scores among all filtering models, while still producing
substantially fewer false positives than the static filters.

Filter = Dynamics Precision Recall F1 Mean IoU TP FP FN
Depressing Slow 0.146 0.266  0.188 0.468 132 772 365
Hybrid Slow 0.160 0.273 0.201 0.457 75 395 200

Table 4.6: Best performing depressing and hybrid filters for the MVSEC dataset under a
reduced IoU threshold of 0.25.

4.3 Discussion

The results presented in the previous section highlight how different filtering strategies
behave under the constraints of real-world event camera datasets and model-generated
ground truth. While the quantitative metrics provide an initial indication of performance,
their interpretation requires careful consideration of the datasets, the annotation process,
and the operational goals of the proposed filtering approach. This discussion examines
these factors in detail, focusing on the interaction between dataset characteristics and
evaluation metrics, the behavior of the filtering models relative to their intended function,
and the influence of the clustering pipeline on the final detections. Together, these analyses
provide a clearer understanding of the strengths and limitations of the proposed method
in its current form.
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4.3.1 Dataset and Metrics

This work evaluates an event-based filtering and segmentation algorithm using two
datasets that were not originally designed for pixel level segmentation in the event domain.
Both the Prophesee 1 Megapixel and MVSEC datasets provide ground truth in the form
of bounding boxes extracted by applying an object detection model to RGB or grayscale
video streams. The event data themselves do not include explicit per event segmentation
labels. As a result, the evaluation pipeline is constrained by the limitations of frame based
annotations transferred to an asynchronous domain.

Although the algorithm is fundamentally designed for segmentation of event streams,
it can be adapted to provide bounding box detections through post processing, as demon-
strated in this thesis. However, this is not an ideal evaluation setting. Attempts to obtain
segmentation ground truth directly from the event data using state-of-the-art models such
as SAM 2 [36] produced poor results, particularly because only the MVSEC dataset con-
tains grayscale frames and because the temporal density of events far exceeds what current
segmentation models are designed to process. Furthermore, the Prophesee dataset does
not provide RGB footage at all. Even when non event-based segmentation can be esti-
mated, the inherent frame rate mismatch poses a fundamental constraint: typical RGB
or grayscale cameras operate at around 60 Hz, whereas event cameras produce updates
at microsecond resolution with effective rates approaching 100000 Hz. Consequently, only
event windows that correspond to the timestamps of the available ground truth can be
evaluated.

A more significant challenge arises from the nature of the ground truth itself. The
bounding box annotations in both datasets identify all objects present in the scene, re-
gardless of whether they are moving or static. In contrast, the filtering algorithm is
explicitly designed to highlight moving objects and suppress static background struc-
tures. This mismatch between annotation semantics and algorithmic intent complicates
the interpretation of standard detection metrics.

The DOTIE evaluation strategy partially addresses this by defining a true positive
when the predicted box reaches an IoU of at least 0.5 with a ground truth box. If the IoU
falls below this threshold, the prediction is counted as a false negative, while predictions
with no matching ground truth are considered false positives. This procedure implicitly
assumes that every moving object is captured sufficiently well in at least one ground
truth bounding box. In practice, this assumption is often invalid. For example, a moving
object may be detected by the filter but represented in the ground truth with low spatial
accuracy due to limitations of the frame based detector. The resulting low IoU leads to a
false negative assignment despite the algorithm correctly identifying the motion.

Conversely, static objects that appear in the ground truth are sometimes erroneously
highlighted by the filtering process because of noise or ego-motion. In these cases, the
evaluation protocol counts them as true positives or false negatives based on IoU, even
though they should be labeled as false positives from the perspective of motion based
detection. These inconsistencies explain why the total number of true positives and false
negatives varies across experiments despite representing the same scenes. Since the ground
truth is itself model generated rather than manually annotated for motion, standard
metrics such as precision, recall, and F1 score become difficult to interpret reliably.
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Based on these observations, the most informative metric in this context is the num-
ber of false positives. False positives directly measure how effectively a filter suppresses
background activity, ego-motion artifacts, and noise driven spiking. For a motion based
segmentation algorithm, a low false positive rate provides strong evidence that the filter is
performing its intended role even when precision and recall are distorted by the limitations
of the ground truth annotation process.

4.3.2 Filters

The behavior of the four filtering configurations illustrates how spatial connectivity,
temporal integration, and synaptic dynamics shape the ability of the system to extract
motion related event patterns.

Direct Filter The direct one to one configuration operates without any spatial integra-
tion and relies entirely on the temporal characteristics of individual neurons. Each neuron
receives input from a single pixel, allowing it to function as an independent temporal filter.
This setup is effective for attenuating transient noise and high frequency artifacts caused
by sensor distortion, since the neuronal decay parameter naturally suppresses isolated
spikes that are not part of coherent motion. The same mechanism also enables implicit
speed selectivity, because event streams with different temporal densities interact differ-
ently with the membrane potential dynamics. As a result, motion components outside the
time constant of the neuron decay rapidly and contribute little to the output. However,
the absence of spatial context means that this configuration cannot suppress noise that
manifests across multiple neighboring pixels, nor can it group related events into larger
spatial structures.

Spatial Filter The spatial filtering configuration extends the direct model by incorpo-
rating a convolution like receptive field. Each output neuron integrates events from a local
neighborhood, which enables suppression of isolated background activity that does not
match the pattern supported by the kernel. This spatial coupling is particularly effective
when the scene contains limited ego-motion, since local neighborhoods remain relatively
stable and background noise tends to occur as scattered spurious activations. In static or
low motion conditions, the kernel structure therefore helps the model emphasize coherent
activity while reducing random firing.

However, the effectiveness of the spatial filter diminishes significantly in the presence
of strong ego-motion. Large scale motion causes widespread activation across many neigh-
boring pixels, which appears coherent to the convolutional kernel even when it originates
from the background. As a result, the receptive field amplifies rather than suppresses ego-
motion artifacts, making it difficult for the filter to distinguish background motion from
independent object motion. Varying the kernel size can shift the balance between noise
suppression and spatial smoothing, but the fundamental limitation remains the same.

Depressing Filter The depressing configuration introduces STP into the filtering pro-
cess. Each synapse reduces its efficacy in response to repeated activation, which allows
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Figure 4.3: Spatial filter works well when background noise caused by ego-motion is not
strong. Left is input, middle is the raw output after filter, right is post processed output

the filter to adapt to persistent background motion. This adaptive mechanism is highly
effective at suppressing noise patterns generated by ego-motion, since large static struc-
tures such as buildings or the road surface produce dense, repeated event activity as the
camera moves. Over time, the synapses corresponding to these regions become strongly
depressed and largely cease to transmit spikes.

Because the model preserves the convolutional connectivity pattern, it retains both
spatial and temporal processing capabilities. The receptive field allows the filter to respond
to coherent spatial structure within moving objects, while synaptic depression modulates
responses based on temporal frequency. However, the behavior of the filter is sensitive
to the adaptation speed of the synapses. Incorrect settings can lead either to insufficient
background suppression or to excessive depression that removes relevant motion cues.

A more fundamental limitation appears when large static structures dominate the
scene. If a building or wall generates sustained event activity due to ego-motion, the
synapses in that region rapidly depress and remain inactive. When a moving object later
enters the same region, the filter may fail to detect it because the synapses have not
recovered. A similar effect occurs inside moving objects: as an object generates repeated
activations, its interior synapses gradually depress, causing the filter to detect mainly the
leading edge. This reduces the spatial extent of detections and often lowers loU, which
motivates evaluating these models with reduced IoU thresholds.

Figure 4.4: Depressing filter is good at surpassing the noise, struggling the detect rest
of the object. Left is input, middle is the raw output after filter, right is post processed
output
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Hybrid Filter The hybrid configuration combines a facilitating synapse at the center
of the receptive field with depressing synapses in the surround. In principle, this design
aims to preserve central object activity while suppressing background motion. In practice,
facilitation does not accumulate quickly enough to be effective. Moving objects often do
not generate the rapid repeated activations required to drive facilitation to useful levels.

Facilitation can also interact negatively with background events. After an object leaves
the region, the facilitating synapse may strengthen in response to background activity,
producing unwanted traces behind moving objects. Additionally, placing the facilitating
synapse directly at the input makes it sensitive to random background spikes, causing it to
remain active long after the object has passed. These effects limit the practical advantage
of adding facilitation and introduce additional inconsistencies.

Figure 4.5: Hybrid filters are very sensitive when they are activated. Most of the time,
they left a trace behind the moving object. Left is input, middle is the raw output after
filter, right is post processed output

4.3.3 Clustering

The clustering stage plays a crucial role in converting sparse spike activity into coher-
ent object level detections. This step becomes particularly important for the depressing
and hybrid filters, where the interior of moving objects may be partially suppressed due
to synaptic adaptation. In such cases, morphological operations provide valuable post
processing by reconnecting fragmented regions and restoring the spatial completeness of
the objects. These operations help compensate for the reduced activity inside the objects
and allow the clustering algorithm to operate on more structured event patterns.

DBSCAN is well suited to this setting because it does not require a predefined number
of clusters and can naturally handle variations in object size and spatial density. This is
especially relevant in event-based scenes where the number of moving objects can change
rapidly over time. However, the clustering pipeline is highly sensitive to parameter choices
such as neighborhood radius, minimum samples, and post processing thresholds. As a
result, extensive experimentation was required to identify stable configurations. This sen-
sitivity creates an inherent bottleneck, since the filtering stage is designed to be adaptive,
but the clustering stage requires careful manual tuning.

Another limitation arises from the fact that clustering is applied in the spatial domain
only. To use DBSCAN effectively, the temporal dimension of the spikes is collapsed into
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the chosen event window. This simplifies the problem but discards the temporal continuity
that is fundamental to neuromorphic processing. While this compromise is acceptable for
practical detection tasks, it prevents the algorithm from leveraging the rich temporal
structure that event cameras provide.

To address this, preliminary experiments attempted to incorporate time into the clus-
tering process by treating events as (x,y,t) points rather than only (z,y). The idea was
to preserve temporal relationships and allow DBSCAN to group events that are both spa-
tially and temporally coherent. However, the evaluated time windows were too short to
reveal meaningful temporal structure, while increasing the window duration weakened the
spatial consistency of the clusters. This trade off suggests that spatio temporal cluster-
ing remains a promising direction, but further investigation is needed to determine how
temporal information can be incorporated without degrading spatial accuracy.

4.4 Future Work

Several directions emerge from this work that could significantly enhance the perfor-
mance and applicability of event-based motion filtering.

A first direction concerns the event data itself. In this study, all events were treated as
having the same polarity, which constitutes a major simplification and leads to substantial
information loss. Real event cameras produce both positive and negative polarity events,
and these two channels often capture different aspects of object boundaries. Preliminary
experiments indicated that the leading and trailing edges of a moving object tend to pro-
duce opposite polarities, although the exact distribution depends strongly on illumination
conditions and the angle of the light source. While the incorporation of polarity did not
yield notable improvements in initial trials, a deeper investigation of polarity aware fil-
tering remains an important next step and may reveal new mechanisms for disentangling
motion from background activity.

A second direction involves model architecture. The current work evaluates only sin-
gle layer filtering configurations. Extending the system to multiple layers could allow the
extraction of more complex motion features and enable higher level spatial abstractions.
As observed, facilitating synapses directly connected to the input tend to produce uncon-
trolled activations, but facilitating mechanisms may become more effective when placed
in deeper layers or combined with other types of synaptic dynamics. Initial experiments
with stacked spatial, depressing, and facilitating layers did not yield stable improvements,
but the architectural space is large and remains largely unexplored. The NEST simulator
also offers a wide range of neuron and synapse models beyond the simple configuration
used here, providing further opportunities for refining temporal and spatial processing.

A third direction concerns the clustering stage. While DBSCAN is practical and flex-
ible, its reliance on spatial only clustering and its sensitivity to hyperparameters limit
its adaptability. Incorporating temporal information into the clustering process showed
potential, but the evaluated time windows were not long enough to reveal meaningful spa-
tio temporal structure, while increasing the window duration weakened spatial coherence.
Developing a clustering method that adheres more closely to neuromorphic principles and
operates directly on spatio temporal event streams could lead to substantial improvements.
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In addition to improving the clustering module itself, a further extension would be to
add a dedicated classification stage at the end of the pipeline. Such a module could learn
to distinguish between noise induced clusters and clusters corresponding to actual moving
objects. Although this addition would increase computational cost, it could significantly
strengthen the robustness of the overall framework by reducing false positives and refining
the quality of detections. This represents another promising direction that has yet to be
explored.

Finally, the most significant need lies in dataset development. Despite the growing
interest in neuromorphic vision, current event-based datasets lack ground truth annota-
tions that reflect the temporal and asynchronous nature of event data. Both bounding
boxes and segmentation masks are generated using frame based models that do not align
with the characteristics of event cameras. This mismatch creates a bottleneck for evalu-
ating algorithms designed for motion driven or event specific processing. Since manually
labeling individual events is infeasible, future datasets will require automated annotation
pipelines specifically designed for event data, potentially combining segmentation models,
geometric priors, and motion analysis to produce reliable ground truth.

Summary of Future Directions

o Polarity aware processing: Current experiments assume identical polarity for
all events, resulting in information loss. Incorporating both polarities remains an
important next step, especially since opposite polarities capture different motion
edges.

e Multi layer filtering architectures: Only single layer filters were evaluated.
Stacked spatial, depressing, and facilitating layers may capture richer motion fea-
tures. More advanced neuron and synapse models available in NEST remain unex-
plored.

o Improved spatio temporal clustering: DBSCAN is effective but sensitive to
parameters and collapses temporal information. Neuromorphic inspired clustering
that operates directly on (x,y,t) events is a promising direction.

o Post clustering classification module: A lightweight classifier could distinguish
noise induced clusters from true objects, improving robustness at the cost of addi-
tional computation.

o Need for better event-based datasets: Current datasets rely on frame based
detectors for ground truth, which does not align with the nature of event cameras.
Automated event aware annotation pipelines are essential for future progress.
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Chapter 5

Conclusion

This thesis investigated a biologically inspired approach to event-based motion seg-
mentation using SNNs and STP. The goal was to separate independently moving objects
from background activity generated by ego-motion without relying on supervised learn-
ing, frame reconstruction, or heavy computational models. To achieve this, the work
introduced a filtering framework that combines spatial convolutional connections with
TM synapses. These synapses adapt their efficacy based on recent presynaptic activity,
allowing the system to suppress repetitive background events while preserving transient,
motion related ones.

The proposed framework was evaluated on two large and widely used event-based
datasets: the Prophesee 1 Megapixel Automotive Dataset and the MVSEC dataset. Since
these datasets do not provide event level segmentation ground truth, a dedicated post
processing and clustering pipeline was designed to convert filtered spikes into bounding
box predictions. The clustering relied on DBSCAN, which is well suited for event-based
motion patterns because it does not require specifying the number of objects in advance.

Across all experiments, depressing synapses governed by STD dynamics emerged as
the most effective mechanism for suppressing ego-motion induced background activity.
Compared to static spatial filters, depressing synapses produced far fewer false positives
while still preserving coherent detections of moving objects. Their adaptive behavior
allowed them to downregulate sustained background activity while maintaining sensitivity
to meaningful motion patterns. Hybrid filters that combined STF and STD did not
provide consistent improvements, indicating that facilitation is not optimal at the first
filtering layer in the current configuration. Overall, single layer filters with depressing
TM synapses produced the most reliable performance across scenarios.

The interpretation of standard detection metrics required caution because ground truth
bounding boxes in both datasets were generated with frame based detectors operating
on APS or grayscale imagery. These annotations do not align well with the temporal
resolution of event streams produced by sensors such as the DVS. As a result, precision and
recall were not always reliable indicators of filtering effectiveness. The most informative
metric was the number of false positives, which directly reflected how well each filter
suppressed background events. From this perspective, models using depressing synapses
showed the strongest robustness.
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Overall, the results demonstrate that STP provides a biologically grounded and com-
putationally efficient mechanism for event driven motion segmentation. The framework
operates continuously on the event stream, does not require training, and relies entirely
on local synaptic interactions. These characteristics make it suitable for future deploy-
ment on neuromorphic hardware and promising for low latency perception in autonomous
systems.

Several research directions arise from this work. Polarity aware filtering could enhance
motion edge discrimination. Multi layer filtering architectures may capture more complex
spatial and temporal patterns. Improved spatio temporal clustering methods that operate
directly on event coordinates could better exploit temporal continuity. Finally, there is
a clear need for new event-based datasets with accurate ground truth that reflects the
asynchronous nature of event data, since current datasets rely on frame based annotation
pipelines.

In conclusion, this thesis shows that depressing TM synapses offer a principled and
efficient solution for filtering event streams in motion segmentation tasks. By leveraging
the adaptive dynamics of STP, the proposed framework provides a strong foundation for
fully neuromorphic vision systems operating in dynamic environments.
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