Lorenzo Martellone
Using Canonical Polyadic (CP) Decomposition of Neural Tensors to Explore the Existence of a Feature-Centric, Rather Than Stimulus-Specific, Learning Signal in the Visual Cortex.
Rel. Gianluca Mastrantonio, Pau Vilimelis Aceituno, Benjamin Grewe. Politecnico di Torino, Corso di laurea magistrale in Ingegneria Matematica, 2025
|
PDF (Tesi_di_laurea)
- Tesi
Licenza: Creative Commons Attribution Non-commercial No Derivatives. Download (11MB) | Preview |
|
|
|
Archive (ZIP) (Documenti_allegati)
- Altro
Licenza: Creative Commons Attribution Non-commercial No Derivatives. Download (20MB) |
| Abstract: |
Neuroscience data is inherently multiway (neurons × time × trials), yet standard pipelines flatten them and discard separable structure. We adopt a tensor-native workflow for cortical population analysis that preserves this organization using Canonical Polyadic (CP/PARAFAC) decomposition and CP-structured regression. Applied to calcium-imaging recordings from mouse visual cortex, CP factorization yields interpretable neuron, time, and trial components without vectorization. We use this framework to investigate a feature-centric hypothesis of plasticity—namely, that the learning drive acts at the level of neuronal features (cells/components) rather than stimulus labels. It carries no stimulus identity; instead, it selects and strengthens neurons that best support the learned representation while weakening others. Concretely, we ask whether reactivations associated with distinct visual stimuli reflect a neuron-level learning signal that jointly drives potentiation and depotentiation across stimulus-specific pathways. Our findings highlight how CP decomposition methods, although still uncommon in practice, offer interpretability, enhance statistical efficiency, and enable hypothesis-driven analyses of neural populations. |
|---|---|
| Relatori: | Gianluca Mastrantonio, Pau Vilimelis Aceituno, Benjamin Grewe |
| Anno accademico: | 2025/26 |
| Tipo di pubblicazione: | Elettronica |
| Numero di pagine: | 79 |
| Soggetti: | |
| Corso di laurea: | Corso di laurea magistrale in Ingegneria Matematica |
| Classe di laurea: | Nuovo ordinamento > Laurea magistrale > LM-44 - MODELLISTICA MATEMATICO-FISICA PER L'INGEGNERIA |
| Aziende collaboratrici: | ETH Zurich |
| URI: | http://webthesis.biblio.polito.it/id/eprint/38166 |
![]() |
Modifica (riservato agli operatori) |



Licenza Creative Commons - Attribuzione 3.0 Italia