polito.it
Politecnico di Torino (logo)

Using Canonical Polyadic (CP) Decomposition of Neural Tensors to Explore the Existence of a Feature-Centric, Rather Than Stimulus-Specific, Learning Signal in the Visual Cortex

Lorenzo Martellone

Using Canonical Polyadic (CP) Decomposition of Neural Tensors to Explore the Existence of a Feature-Centric, Rather Than Stimulus-Specific, Learning Signal in the Visual Cortex.

Rel. Gianluca Mastrantonio, Pau Vilimelis Aceituno, Benjamin Grewe. Politecnico di Torino, Corso di laurea magistrale in Ingegneria Matematica, 2025

[img]
Preview
PDF (Tesi_di_laurea) - Tesi
Licenza: Creative Commons Attribution Non-commercial No Derivatives.

Download (11MB) | Preview
[img] Archive (ZIP) (Documenti_allegati) - Altro
Licenza: Creative Commons Attribution Non-commercial No Derivatives.

Download (20MB)
Abstract:

Neuroscience data is inherently multiway (neurons × time × trials), yet standard pipelines flatten them and discard separable structure. We adopt a tensor-native workflow for cortical population analysis that preserves this organization using Canonical Polyadic (CP/PARAFAC) decomposition and CP-structured regression. Applied to calcium-imaging recordings from mouse visual cortex, CP factorization yields interpretable neuron, time, and trial components without vectorization. We use this framework to investigate a feature-centric hypothesis of plasticity—namely, that the learning drive acts at the level of neuronal features (cells/components) rather than stimulus labels. It carries no stimulus identity; instead, it selects and strengthens neurons that best support the learned representation while weakening others. Concretely, we ask whether reactivations associated with distinct visual stimuli reflect a neuron-level learning signal that jointly drives potentiation and depotentiation across stimulus-specific pathways. Our findings highlight how CP decomposition methods, although still uncommon in practice, offer interpretability, enhance statistical efficiency, and enable hypothesis-driven analyses of neural populations.

Relatori: Gianluca Mastrantonio, Pau Vilimelis Aceituno, Benjamin Grewe
Anno accademico: 2025/26
Tipo di pubblicazione: Elettronica
Numero di pagine: 79
Soggetti:
Corso di laurea: Corso di laurea magistrale in Ingegneria Matematica
Classe di laurea: Nuovo ordinamento > Laurea magistrale > LM-44 - MODELLISTICA MATEMATICO-FISICA PER L'INGEGNERIA
Aziende collaboratrici: ETH Zurich
URI: http://webthesis.biblio.polito.it/id/eprint/38166
Modifica (riservato agli operatori) Modifica (riservato agli operatori)