
Milena Yahya
One-Shot Image-Conditioned Object Detection Using Transformers.
Rel. Alessandro Rizzo. Politecnico di Torino, Corso di laurea magistrale in Ingegneria Informatica (Computer Engineering), 2025
|
PDF (Tesi_di_laurea)
- Tesi
Licenza: Creative Commons Attribution Non-commercial No Derivatives. Download (14MB) | Preview |
Abstract: |
Object detection is a critical task in today's world, with applications spanning many diverse fields, including, but not limited to autonomous vehicles, biometric and facial recognition, and industrial automation. Traditional object detection methods heavily rely on ample amounts of labeled training data and require extensive training time. This makes them resource-intensive and less adaptable to rapidly changing scenarios. In this thesis, we define a one-shot object detection framework that overcomes these limitations. Using state-of-the-art pretrained transformer networks, our approach enables real-time detection of novel objects from a single reference image, eliminating the need for a training phase. This results in a scalable and efficient solution for dynamic, data-scarce environments. |
---|---|
Relatori: | Alessandro Rizzo |
Anno accademico: | 2024/25 |
Tipo di pubblicazione: | Elettronica |
Numero di pagine: | 91 |
Soggetti: | |
Corso di laurea: | Corso di laurea magistrale in Ingegneria Informatica (Computer Engineering) |
Classe di laurea: | Nuovo ordinamento > Laurea magistrale > LM-32 - INGEGNERIA INFORMATICA |
Aziende collaboratrici: | COMAU SPA |
URI: | http://webthesis.biblio.polito.it/id/eprint/35402 |
![]() |
Modifica (riservato agli operatori) |