polito.it
Politecnico di Torino (logo)

Machine Learning to Optimize Energy Management in Energy Communities: Prediction and Scheduling of Energy Consumption and Renewable Energy Production.

Xuan Zhou

Machine Learning to Optimize Energy Management in Energy Communities: Prediction and Scheduling of Energy Consumption and Renewable Energy Production.

Rel. Guglielmina Mutani. Politecnico di Torino, Corso di laurea magistrale in Digital Skills For Sustainable Societal Transitions, 2024

[img]
Preview
PDF (Tesi_di_laurea) - Tesi
Licenza: Creative Commons Attribution Non-commercial No Derivatives.

Download (4MB) | Preview
Abstract:

This study aims to develop wind energy prediction models using machine learning techniques as part of a national-level Renewable Energy Communities (REC) optimization planning platform. The study focuses on predicting wind energy production potential across municipalities by utilizing multi-source environmental variables, including regional topography, surface characteristics, and meteorological factors. Through data collection, preprocessing, and the application of machine learning algorithms, we analyze the relationship between wind energy production and input variables. The resulting model will be integrated into the platform to generate detailed wind energy production forecasts, providing scientific evidence for planners to support optimal wind resource allocation and energy management. This research provides technical support for the platform's wind energy module, facilitating sustainable development of renewable energy communities.

Relatori: Guglielmina Mutani
Anno accademico: 2024/25
Tipo di pubblicazione: Elettronica
Numero di pagine: 57
Soggetti:
Corso di laurea: Corso di laurea magistrale in Digital Skills For Sustainable Societal Transitions
Classe di laurea: Nuovo ordinamento > Laurea magistrale > LM-91 - TECNICHE E METODI PER LA SOCIETÀ DELL'INFORMAZIONE
Aziende collaboratrici: Politecnico di Torino
URI: http://webthesis.biblio.polito.it/id/eprint/33862
Modifica (riservato agli operatori) Modifica (riservato agli operatori)