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Abstract: This research aims to develop wind energy prediction models through 
machine learning techniques as part of a national-level Renewable Energy 
Community (REC) optimization planning platform. The study focuses on 
predicting wind energy production potential across urban districts by utilizing 
multi-source environmental variables, including regional topography, surface 
characteristics, and meteorological factors. Through the collection and 
preprocessing of relevant data, machine learning algorithms are applied to analyse 
the relationships between wind energy production, energy consumption, and input 
variables. Ultimately, the model will be integrated into the platform to generate 
detailed wind energy production forecasts, providing scientific evidence for 
planners to support optimal allocation of wind resources and energy management. 
This research provides technical support for the platform's wind energy module, 
contributing to the sustainable development of renewable energy communities. 
 
Key words: Renewable Energy Community; energy platform; machine learning; 
wind energy; GIS; regression; sustainable. 
 
 

1. Introduction 

 
In the context of growing global energy demands and intensifying climate 

change threats, renewable energy development has become a crucial component 
of national energy policies worldwide. Renewable Energy Communities (REC) 
represent a key solution for achieving energy transition and addressing climate 
change challenges. (Ahmed, 2024) As an innovative model of collective energy 
management, RECs not only promote shared energy production and optimized 
utilization but also help reduce energy poverty, foster social inclusion, and 
stimulate economic revitalization in inland and rural areas. 

The Italian government actively supports wind energy development through 
various policy measures. For instance, the National Energy Strategy (Strategia 
Energetica Nazionale) (Compagnucci, 2023) and the National Integrated Energy 
and Climate Plan (Piano Nazionale Integrato per l'Energia e il Clima) establish 
renewable energy development targets for 2030, providing corresponding 
financial incentives and technical support. These policies have encouraged 
participation from residents and local governments while promoting widespread 



adoption of technologies such as photovoltaic, wind energy, and biomass across 
different regions, particularly in areas facing energy poverty. (Tatti, 2023) 

This research presents an innovative methodology that integrates machine 
learning, Geographic Information Systems (GIS), and multi-source data fusion 
techniques to assess wind energy potential in Italy. The approach ingeniously 
combines wind speed data from the Global Wind Atlas, Aeolian database, and 
PVGIS model to construct a comprehensive dataset, providing high-quality 
training samples for subsequent machine learning models. The study further 
simulates the power generation efficiency of various wind turbine models (such 
as Vestas V52 and V80-2.0) under specific conditions, evaluating generation 
potential across typical days, hours, months, and years. Through the integration 
of data from different sources and spatiotemporal scales, this methodology 
enables a thorough characterization of wind energy resource characteristics in the 
study area. 

Furthermore, this paper thoroughly considers the influence of geographical 
elements, including terrain and surface characteristics, on wind energy resource 
distribution. By classifying different geographical regions of Italy (plains, hills, 
mountains, and coastal areas) and incorporating corresponding meteorological 
data, the methodology precisely describes variations in wind energy potential 
across different regions, reflecting the geographical concept of "regional 
differentiation." In the modeling process, this research employs advanced 
machine learning algorithms, such as deep neural networks and random forests, 
to establish complex non-linear relationships between geographical features and 
wind energy output. Compared to traditional physical models, machine learning 
models can automatically learn and extract key patterns hidden within massive 
datasets, demonstrating superior predictive capability and generalization 
performance. 

To apply the prediction results to RES, this research also employs machine 
learning to analyse electricity consumption patterns across Italian regions. By 
comprehensively considering data on population, building distribution, and 
industrial distribution, the methodology can grasp the electricity demand 
characteristics of different regions, identifying key information such as peak 
usage periods and load distribution, thereby supporting power system supply 
balance, intelligent dispatch, and new energy integration. 

The methodology developed in this research can be integrated into the national 
geographic portal platform and applied to nationwide REC planning, promoting 



optimal allocation of wind energy and other distributed energy resources, 
enhancing energy self-sufficiency and system resilience of RECs, and supporting 
Italy's energy transition and 2050 carbon neutrality goals. This research not only 
improves the accuracy of wind energy assessment but also provides robust 
technical support and decision-making basis for wind energy development in Italy 
and globally, advancing the construction of sustainable energy systems. 
 
 
2. Case Study 
 

Under the dual pressures of climate change and energy crisis, renewable energy 
development has become a crucial pathway for global energy transition. Italy 
actively responds to relevant international agreements and EU directives by 
formulating ambitious national energy transition plans. According to EU's "Fit for 
55" targets (Council, 2024), Italy plans to increase renewable energy share to 32% 
by 2030. Against this backdrop, Italy strives to improve its energy system, making 
new progress in three major objectives: ensuring energy security, achieving 
environmental sustainability, and promoting energy equity. 

Energy poverty refers to the phenomenon where low-income households 
struggle to afford basic energy services such as heating and cooling (González-
Eguino, 2015). Italy's energy poverty situation shows distinct regional differences, 
with southern regions like Calabria and Puglia experiencing energy poverty rates 
exceeding 12%, while northern regions generally remain below 6%. The main 
cause of this north-south disparity lies in industrial structure imbalance, where the 
agriculture-dominated south struggles to provide sufficient employment, while 
the north benefits from strong industrial foundations and higher per capita income. 
(Bardazzi, Energy Research & Social Science) 

 



 

Figure 1. (a) PM2.5 annual average of Italy in 2019, (b) Energy poverty of Italy 

in 2022 

Renewable energy promotion is viewed as one effective approach to mitigate 
energy poverty (Sovacool, 2012). First, distributed renewable energy systems 
(such as small-scale wind power and solar photovoltaic) can provide reliable 
energy supply to remote and impoverished areas, reducing dependence on 
traditional fossil fuels. Second, the construction and operation of renewable 
energy projects can create employment opportunities and promote local economic 
development. Furthermore, utilizing local renewable energy resources can reduce 
energy costs, improve energy affordability, and enhance community energy 
autonomy (REN21, 2021). 

Wind energy, as a clean and sustainable form of energy, plays a crucial role in 
global energy transition. Wind power generation technology is mature with strong 
cost competitiveness, produces no greenhouse gas emissions, and is 
environmentally friendly (Gwec, 2021). Wind energy resources are abundant and 
widely distributed, suitable for large-scale development and utilization. With 
technological advancement and industry scale expansion, wind power costs have 
decreased significantly, becoming an important component in many countries' 
energy structure. The global wind power industry has achieved rapid development 
over the past decades. By the end of 2020, global cumulative wind power installed 
capacity reached 743 GW, an increase of 93 GW compared to 2019 (Joyce Lee, 
2021). 



 
 
2.1 Review and Current Status of Wind Power Generation in Italy 
 

Italy possesses abundant wind energy resources owing to its long coastline and 
diverse topographical conditions. Since the first half of the 20th century, Italy 
began exploring wind energy resources for power generation. Due to 
technological limitations in materials and mechanical processing at the time, wind 
turbines were predominantly small-scale windmills, mainly distributed across 
southern islands and coastal regions for agricultural irrigation and civilian power 
supply. During this period, the Italian National Energy Agency initiated a series 
of wind power research and demonstration projects, some of which received EU 
funding. Modern commercial wind farms emerged from 1996. Benefiting from 
electricity price subsidies provided by the 1992 CIP6 decree, Italy's wind power 
installed capacity grew rapidly. In 1996, IVPC company constructed the first 
commercial wind farm near Benevento, with an installed capacity of 7.2MW 
(Pirazzi, 2005). By the end of 2022, the total number of wind turbines in Italy 
reaches about 7,450. The average installed wind turbine capacity is 3.3 MW and 
the average wind turbine capacity is 140 MW. (Greco, 2022) Compared to solar 
energy, wind power offers higher day-and-night generation stability, becoming 
the second-largest renewable energy source after solar power. 

 

 

Figure 2. (a) Mean onshore wind speed at 100 m a.s.l. height, (b) Installed wind 



generator power of Italy in 2021 

Despite rapid development in Italy's wind energy resources and technological 
applications, their regional distribution shows significant imbalance. As shown in 
Figure 2, southern Italy experiences higher wind speeds (5.0-6.5 m/s and above), 
particularly in regions like Sardinia, Calabria, and Sicily, which have become the 
main concentration areas for Italy's wind power installed capacity. In contrast, 
northern regions have limited wind power development due to factors such as 
terrain and wind speed conditions. However, this concentrated development has 
led to issues with transmission grid capacity constraints and local energy balance. 
Additionally, since wind power generation is significantly affected by natural 
condition fluctuations, Italy still faces certain challenges in improving wind 
power stability. Future solutions may involve combining wind energy with other 
renewable sources and strengthening inter-regional energy coordination. 
Particularly within the energy community framework, the integration of wind 
power with solar and other distributed energy sources is viewed as an important 
solution for achieving carbon neutrality goals. 
 
 
3. Methodology 
 

This research aims to develop an integrated prediction model based on machine 
learning for assessing wind energy production potential across different regions 
of Italy, while predicting the corresponding energy consumption demand. On one 
hand, the model predicts wind energy production data for Italian municipalities 
by analysing a series of geographic, meteorological, and socioeconomic variables, 
such as elevation, vegetation coverage, distance from coastlines, and solar 
radiation index. On the other hand, the model thoroughly explores the 
spatiotemporal distribution patterns contained in energy consumption data. 

To achieve this objective, this research adopts a data-driven modeling approach, 
using machine learning techniques to capture complex non-linear relationships, 
particularly in wind energy assessment. Unlike traditional physical models, the 
data-driven approach demonstrates greater flexibility in adapting to regional 
variations and improves prediction universality and accuracy by extracting useful 
features from large volumes of data. 

 



 

Figure 3. Methodological Flow Chart of This Research 
 

The Figure 3 illustrates the research methodology, which consists of four main 
phases: pre-modeling, energy modeling, calibration and error assessment, and 
results and representation. 
 Pre-modeling: 

The first phase encompasses data collection, preprocessing, and the 
creation of a geographic database. The data collection focuses on geometric 
data (such as technical maps, raster data, DTM) and non-geometric data 
(such as population distribution and wind turbine parameters). Subsequently, 
through data integration and spatial processing, geographic positioning and 
geographic simulation are integrated, and a unified spatial database is 
established using GIS technology. This phase emphasizes data cleaning, 
standardization, and the division of training and testing sets for cross-
validation, preparing the foundational data for model development. 

 Energy Modeling: 



Through feature engineering, variables that significantly influence wind 
energy production are extracted and categorized into three types: terrain 
characteristics (such as slope and elevation), surface characteristics (such as 
land use, vegetation coverage, and building density), and meteorological 
factors (such as solar radiation). Subsequently, machine learning algorithms 
are employed to construct models for predicting wind energy production 
across different temporal scales (hourly, daily, monthly, yearly) and 
geographic regions (municipal, provincial, regional levels). 

For energy consumption modeling, data primarily originates from 
ARERA. (ARERA, 2024) The baseline data consists of provincial energy 
consumption, which is mapped to the municipal level through multivariate 
linear correlation methods. Additionally, electricity consumption scenarios 
are determined for residential, primary, secondary, and tertiary sectors. 
(GSE, 2022) (Di Somma, 2018) 

 Calibration & Error Comparison: 
Model performance evaluation and calibration follow the generation of 

prediction results. Multiple error metrics (such as RMSE, and R²) compare 
model predictions to ensure high accuracy. When error metrics fall short of 
expected standards, the process returns to optimize the modeling phase until 
expected performance is achieved. 

 Results & Representation: 
The final phase focuses on result analysis and presentation through charts, 

geospatial analysis, and time series analysis (hourly, daily, monthly, annual). 
This research ultimately provides robust data support for Renewable Energy 
Communities (REC) platform construction, helping quantify regional 
distribution of wind energy production and its potential impacts. 

 
In the assessment of energy systems, the selection of quantification indicators 

directly impacts the accuracy and comprehensiveness of system performance 
evaluation. This research employs a comprehensive indicator system (Table 1) to 
evaluate the system across three dimensions: energy consumption, production, 
and economic performance. And it adopts a multi-level temporal scale assessment 
methodology, evaluating the energy system at hourly, daily, monthly, and annual 
levels. These indicators not only reflect the system's instantaneous operational 
status but also demonstrate its long-term operational effectiveness. (GSE, 2022) 
(Di Somma, 2018) (Mutani, 2021) 



 
 

Table 1. Data collection information 

Indicators  Calculation Method   Significance  

Self-
Consumption 
(SC)  

min(C,P), where C is 
consumption and P is 
production  

Reflects the actual efficiency 
of system energy utilization  

Uncovered 
Demand  

C-P (when C>P)  Characterizes the energy 
deficit in system supply  

Over-
Production  

P-C (when P>C)  Quantifies excess energy 
production in the system  

Self-
consumption 
Index (SCI)  

SC/P  Measures the effective 
utilization rate of energy 
production  

Self-
sufficiency 
Index (SSI)  

SC/C  Evaluates the degree of 
demand satisfaction  

Over-
Production 
Index (OPI)  

OP/P  Analyses the proportion of 
excess production  

Energy Poverty 
Index (EPI)  

Energy costs/Income  Assesses the economic 
feasibility of the system  

 
 

Wind resource assessment demands high-quality, comprehensive data. This 
study collected multidisciplinary data covering natural geography and 
meteorology across the study area. Data sources span government departments, 
research institutions, and companies (Table 2). 

To ensure data quality and consistency, this research implemented a 
standardized preprocessing workflow. This fundamental stage encompasses data 
cleaning, standardization, and spatial data alignment. Missing value imputation 
and spatial aggregation methods were employed to ensure compatibility and 
format uniformity across different data sources. For instance, wind speed and 
meteorological data were spatially aggregated by municipal boundaries to obtain 
median wind values, while population and building density data were averaged to 



reflect wind energy community potential across municipalities. 
 
 

Table 2. Data collection information 

 
 
 

3.1 Place-based Approach 

 
The place-based approach acts as the key methodology adopted in this research. 

This approach analyses from geographical and location-specific perspectives, 
fully considering multiple dimensions including environmental, social, economic, 
and policy factors, with specific locations at its core. In this research, this 
approach aims to explore complex relationships between wind energy potential 
and its influencing factors from a geographical perspective. Specifically, a 
location-specific model framework was established by analysing associations 
between geographical characteristics and wind energy production across different 
locations. Most notably, terrain significantly impacts wind resources. For instance, 
topographical features such as hills, valleys, cliffs, escarpments, and ridges affect 
wind patterns. Wind speeds accelerate near mountaintops and ridge peaks, while 

Source Data Scale Year

Copernicus Corine Land Cover Municipal 2018

Wind speed and direction data
wind energy production

Global Wind
Atlas

Wind variables - Wind Speed, Capacity
Factor Municipal 2019

Statistical Atlas of Municipalities Municipal 2020

Census of Population and Housing Municipal 2011-21

Census of Industry and Services Municipal 2011

General Census of Agriculture Municipal 2010

Solar irradiation, diffuse / global ratio,
irradiance, electricity production,

temperature

Meteotest Linke Turbidity Factor Municipal 2019

Tinitaly Digital Terrain Model - DTM 10 m Municipal 2022

Aeolian Municipal 2019

ISTAT

PVGIS Municipal 2020



typically decreasing near ridge bases and valleys. This research utilizes GIS 
spatial analysis and mapping capabilities to visually present and assess spatial 
distribution of various assessment factors. 

The research progresses from small to large scales, gradually revealing wind 
energy resource distribution characteristics and influencing factors across 
different spatial scales through comprehensive analysis at municipal, provincial, 
and regional levels. Municipalities serve as basic research units, with wind energy 
capacity calculations and predictions conducted at the municipal level. This 
bottom-up research approach requires collection of geographical characteristic 
data directly related to municipalities, including wind speed, air density, 
minimum and maximum elevation, forest coverage rates. 
 
 

3.2  Process-driven Approach. 

 

Process-driven methodology is a research and analysis approach based on 
explicit physical processes. In wind energy assessment, this traditional method 
primarily relies on meteorological, fluid dynamics, and statistical models, 
employing numerical simulation techniques to quantitatively evaluate wind 
resource potential. This approach uses core meteorological parameters such as 
wind speed and direction, utilizing long-term wind speed observational data (from 
weather stations or satellite data) to calculate average wind energy resource 
distribution in specific regions. 

To implement a process-driven machine learning method, the primary task is 
constructing prediction models that incorporate multidimensional environmental 
characteristics including terrain, land use, and population density. This approach 
requires baseline datasets of energy production outputs from typical regions, 
obtained through classical wind energy calculations. Compared to traditional 
methods, process-driven machine learning approaches not only reveal the 
physical mechanisms of wind energy production but also provide more precise 
assessments of key wind energy parameters through data-driven methods. By 
establishing mapping relationships between wind energy and geographical 
characteristics, the model can directly output wind energy production (P) for 
target regions while comprehensively considering various environmental factors' 
effects on wind energy conversion efficiency. 



Wind turbine power generation depends on several parameters, such as wind 
speed, wind direction, air density, and turbine characteristics: (Sohoni, 2016)  

𝑷𝑷 =
𝟏𝟏
𝟐𝟐
⋅ 𝝆𝝆 ⋅ 𝑨𝑨 ⋅ 𝑪𝑪𝑪𝑪(𝝀𝝀,𝜷𝜷) ⋅ 𝒗𝒗𝟑𝟑 

Where P is the wind power (W); 𝜌𝜌 is the air density; 𝐴𝐴 is the swept area; 𝐶𝐶𝐶𝐶 is 
the power coefficient, a function of the tip speed ratio 𝜆𝜆 and blade pitch angle 𝛽𝛽 
(considering Vestas V52 and Vestas V80-2.0); and v is the wind speed at hub 
height.  

In practical applications, process-driven methods can construct complete 
computational chains for wind energy resource assessment through precise 
modeling of each parameter combined with numerical simulation techniques. The 
advantage of this method lies in its explicit physical mechanisms and traceable 
computational processes, providing reliable theoretical support for wind energy 
resource assessment. However, traditional process-driven methods often face 
challenges in computational efficiency and accuracy when simulating wind fields 
under complex terrain conditions, which has prompted researchers to explore 
hybrid methods combining machine learning techniques with traditional physical 
models. 

Furthermore, process-driven methods provide a complete theoretical framework 
for wind energy prediction, giving model prediction results clear physical 
significance. This approach not only predicts wind energy production but also 
analyses various factors affecting wind energy conversion efficiency, providing 
scientific basis for wind farm site selection and operational optimization. By 
combining process-driven methods with modern data science techniques, model 
prediction accuracy and computational efficiency can be improved while 
maintaining physical mechanism correctness. 

Historically, process-driven methods have played a crucial role in traditional 
wind energy development. However, with advances in data acquisition and 
processing technologies, data-driven methods have begun to emerge. This 
approach breaks free from reliance on complex physical process modeling, 
directly learning relationships between wind energy and its influencing factors 
through massive data, providing an efficient and flexible assessment method. The 
next section will specifically explore data-driven methods. 
 
 



3.3  Data-Driven Approach 

 
In the big data era, data-driven approaches have emerged as a crucial paradigm 

in wind energy resource assessment and electricity demand forecasting. Unlike 
traditional physical models, data-driven methods do not rely on calculations of 
complex physical processes but instead directly extract knowledge from massive 
empirical or simulated datasets to construct relationship models between wind 
energy potential, electrical load, and various influencing factors. The core of this 
paradigm lies in utilizing machine learning algorithms to achieve intelligent 
feature identification and prediction through the mining and fusion of multi-
source heterogeneous data. 

The theoretical foundation of data-driven methods stems from statistical 
learning theory and computer science. The fundamental concept is that energy 
production and consumption patterns are embedded within various 
meteorological, geographical, and socioeconomic data, and through analysis and 
learning of these data, the inherent laws of energy distribution and consumption 
can be revealed. From a methodological perspective, the data-driven approach 
encompasses several key steps: 
 
 Data Collection and Preprocessing: On the production side, multi-source 

geospatial data including terrain, land use, and meteorological information are 
collected. On the demand side, socioeconomic indicators such as 
demographic data, building distribution data, household numbers, and 
industrial structure data are gathered. These raw data undergo cleaning, fusion, 
standardization, and other preprocessing operations to form structured 
training datasets. 

 Feature Engineering: On the production end, feature variables related to 
wind energy potential, such as terrain roughness and solar radiation 
coefficients, are extracted or constructed from raw data. On the demand end, 
indicators reflecting energy consumption characteristics, such as building area 
by sector, are constructed. This process transforms implicit energy supply-
demand patterns in the data into explicit, computable indicators. 
Simultaneously, features are screened to eliminate auto-correlated or strongly 
correlated features, avoiding data redundancy. 

 Model Training and Optimization: Appropriate machine learning 



algorithms are selected to construct both energy supply prediction models and 
demand prediction models. The supply model uses geographical and 
meteorological features as input to predict wind energy density and potential 
power generation; the demand model uses socioeconomic characteristics as 
input to predict energy consumption. Through techniques such as cross-
validation and parameter tuning, the model's generalization performance is 
continuously optimized to improve prediction accuracy. 

 Model Validation and Application: Independent test datasets are used to 
evaluate the predictive performance of both supply and demand models. The 
trained models, when applied to target municipalities, can generate not only 
high-resolution wind energy resource distribution maps but also energy 
demand forecasts. These bidirectional supply-demand prediction results 
provide more comprehensive decision support for regional energy planning. 

 
Data-driven methods also face certain challenges. A primary issue is that model 

prediction performance heavily depends on the quality and representativeness of 
training data. If sample data contains bias or is incomplete, the trained model may 
fail to accurately reflect actual wind energy distribution patterns. Additionally, 
since data-driven models are typically "black box" models, their internal logic is 
difficult to interpret directly, which to some extent limits the interpretability and 
credibility of model results. To overcome these limitations, this research explores 
a hybrid modeling paradigm combining data-driven and process-driven 
approaches, striving to maximize the advantages of data intelligence while 
maintaining physical mechanism rationality. 

 

 

3.3.1 Machine Learning Model Development 

 
Wind energy resource assessment and energy consumption are essentially 

complex nonlinear regression problems. Traditional physical or statistical models 
struggle to accurately characterize the spatiotemporal distribution patterns of 
energy production and consumption. To improve prediction accuracy and 
resolution, this research introduces machine learning methods. Considering the 
nonlinear complexity of energy supply-demand relationships, this study employs 



machine learning models for prediction. 
For wind energy resource assessment, we selected two ensemble learning 

algorithms based on Gradient Boosting Decision Trees (GBDT): LightGBM and 
XGBoost. The core concept of GBDT is to iteratively train a series of decision 
trees to gradually approximate the true mapping relationship. Each newly 
generated tree attempts to fit the prediction errors of previous trees, and through 
multiple iterations, the cumulative predictions continuously converge toward the 
true values. 

LightGBM is an algorithm based on gradient boosting, implementing ensemble 
learning through multiple weak classifiers. As shown in Figure 4, its training 
process involves continuously adding decision trees, with each tree attempting to 
fit the prediction errors of previous trees, ultimately summing all trees' predictions 
to produce the model's output (Korstanje, 2021)。 
 

 
Figure 4. LightGBM trees grow by leaf pattern 

 
At the algorithmic level, LightGBM employs histogram-based decision tree 

algorithms and a Leaf-wise tree growth strategy. While traditional GBDT 
algorithms require feature value pre-sorting when constructing decision trees, 
LightGBM discretizes continuous features into finite bins, significantly reducing 
time complexity. LightGBM's innovative Leaf-wise growth approach 
fundamentally differs from the Level-wise strategy used in traditional GBDT. The 
Leaf-wise strategy identifies and splits the leaf node with the maximum split gain 
during each iteration, theoretically converging to better accuracy faster than 
Level-wise approaches. However, it's worth noting that excessive growth may 
lead to overfitting, hence the algorithm introduces maximum depth limits as a 
regularization measure. Feature parallelism is another crucial characteristic of 
LightGBM, combining highly mutually exclusive features by calculating feature 
mutual exclusivity degrees, significantly reducing feature dimensionality without 



sacrificing accuracy. This optimization is particularly significant when handling 
multi-source heterogeneous data in wind energy prediction, such as Corine Land 
Cover land use data. During model training, LightGBM further enhances 
computational efficiency through Gradient One-Side Sampling (GOSS), retaining 
samples with large gradient absolute values while randomly sampling those with 
smaller gradients, reducing computation while maintaining accuracy. 

In wind energy prediction: its efficient computational framework can handle 
large-scale historical data; second, its histogram algorithm and feature parallel 
strategy efficiently process multidimensional environmental features; then, its 
unique tree growth strategy and regularization mechanism help capture complex 
nonlinear relationships between wind speed and environmental factors. Research 
has shown that LightGBM provides higher prediction accuracy in wind energy 
prediction tasks compared to traditional machine learning methods, effectively 
extracting local data features and temporal characteristics to achieve accurate 
wind power prediction (Ren, 2022). 

 

Figure 5. XGBoost model 
 

XGBoost (eXtreme Gradient Boosting), developed by Tianqi Chen in 2014 
(Chen, 2016), is another popular GBDT implementation. Compared to LightGBM. 



As shown in Figure 5 (SageMaker, 2024), XGBoost adds regularization terms to 
the objective function and supports parallel computing, handling multiple tasks 
simultaneously for greatly improved efficiency. Additionally, XGBoost 
automatically handles missing values by finding optimal missing value split 
directions for each feature. 

For energy consumption prediction, HuberRegressor and 
GradientBoostingRegressor algorithms were selected. Unlike classification trees, 
regression trees output continuous values rather than discrete class labels at leaf 
nodes. Regression trees determine each leaf node's output value by minimizing a 
loss function (such as mean squared error) to make sample predictions as close as 
possible to true values. 

HuberRegressor employs the Huber loss function, which balances mean squared 
error and absolute error. For smaller prediction deviations, Huber loss 
approximates mean squared error and is insensitive to outliers; for larger 
deviations, it approaches absolute error, reducing outlier impact. This 
characteristic is particularly useful in energy consumption prediction, as 
electricity usage data may contain abnormal peaks or valleys caused by 
measurement errors or temporary events that don't represent overall data trends. 
Huber loss adaptively adjusts error contributions, maintaining mean squared 
error's efficiency while incorporating absolute error's robustness. 

GradientBoostingRegressor represents the direct application of classical GBDT 
to regression tasks (scikit-learn, GradientBoostingRegressor, 2024). It follows 
Friedman's original formulation, using negative gradients as residual 
approximations, with each regression tree directly fitting previous trees' residuals. 
Compared to Newton method-based XGBoost, GradientBoostingRegressor's 
optimization process is more straightforward. It supports various loss functions, 
including Huber loss and quantile loss, and includes practical features like early 
stopping and feature importance evaluation, facilitating model tuning and feature 
selection. In energy consumption prediction, GradientBoostingRegressor has 
gained widespread application due to its concise efficiency and ease of parameter 
tuning. 
 
 
4. Pre-modelling 
 

Developing a machine learning model to accurately predict wind energy 



production across Italian municipalities first requires constructing high-quality 
training datasets. This dataset must contain two key components: wind energy 
production data from typical municipalities and their corresponding geographical 
feature data. Through this approach, it can enable machine learning models to 
understand the intrinsic relationships between geographical features and wind 
energy production. 

Calculating wind energy production based on physical models is a complex 
process requiring consideration of multiple factors, including wind speed, air 
density, turbine characteristics, and terrain effects. Considering computational 
costs and data accessibility, this research adopted an approach based on typical 
municipalities. These typical municipalities were selected as representative 
samples based on terrain characteristics (plains, hills, mountains, and coastal 
areas). Through detailed wind energy calculations for these typical municipalities, 
we could obtain reliable training data without conducting time-consuming 
physical modeling for all municipalities. 

Based on the physical model (as described in Section 3.2 process-driven 
approach), wind energy production calculations were performed for these typical 
municipalities across different time scales, including hourly, daily, monthly, and 
annual scales. These calculations fully considered turbine performance 
characteristics, terrain effects, and meteorological condition variations. This 
approach yielded a comprehensive training dataset incorporating temporal 
sequence features, providing rich data for subsequent machine learning models. 
It significantly reduced computational costs by focusing limited computational 
resources on representative samples. Additionally, this method allowed for more 
detailed analysis and validation of selected samples, ensuring training data quality. 
Finally, by ensuring typical municipalities covered the main geographical feature 
types of the study area, we could enhance the model's generalization capability. 

This "typical sample calculation - machine learning generalization" strategy 
allows us to maintain prediction accuracy while dramatically improving 
computational efficiency. Through machine learning models, we can extend 
knowledge gained from typical municipalities to other regions without conducting 
tedious physical calculations. This approach not only improves wind energy 
assessment efficiency but also provides a feasible technical pathway for large-
scale regional wind energy potential assessment. 

 
 



4.1 Wind Turbine Technology 
 
Before conducting wind energy production calculations, appropriate wind 

turbine models must be selected. According to the actual situation in the Italian 
wind power market, Vestas turbines hold the largest market share, with Vestas 
V52 (rated power 850 kW) and Vestas V90 (rated power 2,000 kW) accounting 
for 25.1% and 25.6% of installed capacity, respectively. 

The Vestas V52 wind turbine features a 52-meter rotor diameter and maximum 
hub height of 86 meters. This medium-scale turbine is particularly suitable for 
deployment in areas with lower wind speeds or space constraints. Its cut-in wind 
speed is 4 m/s, with a cut-out wind speed of 25 m/s. The Vestas V90 represents a 
larger power class turbine, with a rotor diameter reaching 90 meters and maximum 
hub height of 105 meters. Despite its larger power capacity, this model maintains 
the same cut-in (4 m/s) and cut-out (25 m/s) wind speeds as the V52. 

 
Calculation of Key Parameters 
 
a. Wind Speed Time Series Construction: 
The energy output of wind turbines primarily depends on wind speed. This 

research utilizes high-resolution wind speed data from the Global Wind Atlas as 
the foundational data source. This dataset employs advanced numerical 
simulation methods, combining terrain and surface characteristics to provide 
annual average wind speed data at 100 meters height. To improve temporal 
resolution, a time index method based on historical observational data was 
introduced. This method can be expressed as: 

𝑽𝑽𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉 = 𝑽𝑽𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂 ⋅ 𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰 

Where V_hourly represents hourly wind speed, V_annual is the annual average 
wind speed, and Index is a correction coefficient reflecting temporal variation 
characteristics. 



 
Figure 6. Annual average wind speed at 100 m above sea level in Italian 

municipalities 
 

Analysis of typical municipalities' wind speeds revealed significant variations 
in wind patterns even within the same terrain classification. These differences 
manifest not only in absolute wind speed values but also in their temporal 
variation patterns. Through detailed analysis of eight representative 
municipalities, we discovered that spatiotemporal wind speed characteristics are 
far more complex than traditional classification methods would suggest. 
 

 
Figure 7. Wind speed trends in different regions 

 
Taking plains regions as an example, despite both being in flat terrain areas, 

Torino and Roma display markedly different daily wind speed patterns. Turin 
exhibits stronger afternoon wind speed fluctuations during spring, with 
coefficients reaching 1.4-1.5, while Rome shows more moderate daily variations 



with generally smaller wind speed coefficient fluctuations. 
The differences are even more pronounced in hilly regions. Cossogno's wind 

speeds can reach more than twice the annual average during spring afternoons, 
demonstrating strong seasonal and daily variation characteristics. In contrast, 
Racalmuto, though also located in a hilly region, shows relatively moderate wind 
speed variations, rarely exhibiting such significant peaks. These differences 
highlight the profound impact of local terrain features on wind speed patterns. 
Mountain regions' Malesco and Belmonte in Sabina similarly display distinct 
variation characteristics, while coastal areas' Olbia and Genoa are both influenced 
by sea-land breeze systems. 

This indicates that simple terrain classification methods may not fully capture 
complex wind speed variation characteristics, emphasizing the need to consider 
more local factors when establishing prediction models. Traditional deterministic 
models might struggle to accurately describe such complex wind speed variation 
patterns, while data-driven machine learning methods show promise in providing 
more accurate predictions through learning these complex patterns. 
 

b. Analysis of Air Density Spatiotemporal Characteristics: 

In wind energy assessment, precise calculation of air density is crucial for result 
accuracy. High-resolution annual average air density distribution data at 100 
meters height for the Italian region was obtained through the Global Wind Atlas. 
 

 
Figure 8. Air density at 100 m 



 
However, for more precise modeling, monthly typical daily air density data is 

needed. To address this temporal scale conversion issue, we adopted a 
temperature correction method based on the ideal gas state equation. 

The ideal gas state equation indicates that under relatively stable pressure 
conditions, air density is inversely proportional to temperature: 

𝛒𝛒[𝐤𝐤𝐤𝐤 ⋅ 𝐦𝐦−𝟑𝟑] =
𝝆𝝆ref ⋅ 𝑻𝑻K,ref

𝑻𝑻K
 

Where ρref =1.29kg/m3 is the reference air density; TK,ref=273.15 is the 
reference temperature; and TK is the actual temperature.  

 

 
Figure 9. Air density trend 

 
This theoretical relationship provides the foundation for converting annual 

average air density to monthly data. By analysing temperature observation records 
from 2016-2020 provided by the PVGIS system, we could determine monthly 
temperature variation characteristics relative to annual averages, deriving 
monthly air density variation patterns. Multiplying annual average air density 
values by monthly variation coefficients obtained in the first step yields estimated 
monthly air density values for each municipality. 
 

c. Swept Area 
The swept area 𝐴𝐴 depends on the wind turbine diameter and is calculated as:： 

𝐀𝐀 = 𝜫𝜫 ⋅ �
𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅

𝟐𝟐
�
𝟐𝟐

 

 

d. Power Coefficient 𝐶𝐶𝐶𝐶 and Power Curve 
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The power coefficient (Cₚ) of wind turbines serves as a crucial indicator of wind 
energy conversion efficiency, exhibiting significant nonlinear characteristics that 
vary with wind speed. To accurately capture this nonlinear relationship, we 
implemented a machine learning-based power curve fitting method. This 
approach first uses gradient boosting regression to establish the mapping 
relationship between wind speed and power coefficient, followed by Savitzky-
Golay filtering to smooth the fitted results and eliminate data noise. 

 

 
Figure 10. Typical power curve of a pitch-controlled wind turbine 

 

The model achieved remarkably high precision levels for both Vestas V52 and 
V90 turbine models. The Vestas V52 showed excellent performance metrics with 
a mean square error (MSE) of 0.00005 and a coefficient of determination (R²) of 
0.9969. The Vestas V90 demonstrated even more impressive results, with an MSE 
of 0.00003 and R² reaching 0.9976. These metrics strongly validate the method's 
superiority in characterizing power curve features. When comparing the fitted 
curves with measured data, we found that the model accurately captures power 
coefficient variation trends, particularly in the critical range between cut-in and 
rated wind speeds, maintaining prediction errors within acceptable limits. 

 



 

Figure 11. 𝐶𝐶𝐶𝐶 and 𝑃𝑃 prediction results and trends of V52 

 

Figure 12. 𝐶𝐶𝐶𝐶 and 𝑃𝑃 prediction results and trends of V80 

 
Figure 13. Comparison of predicted power curves and theoretical power curves 

for V52 and V80 
 
Multi-scale Wind Energy Production Calculation 
 
Based on the above parameter calculations, we established a multi-scale wind 

energy production calculation framework that spans from hourly to annual 
timescales. This framework employs a hierarchical calculation strategy to ensure 
consistency and reliability of results across different temporal scales. Using wind 
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turbine power curves (wind speed 𝑣𝑣 vs. power output 𝑃𝑃), the model can directly 
calculate hourly production. The calculation of wind energy output begins with 
the energy output of a single wind turbine. Starting from hourly outputs, it extends 
to daily output within 24 hours, then to typical monthly output. Monthly output is 
obtained by multiplying by the number of days in each month, and annual totals 
are calculated by summing all 12 months. 

This hierarchical approach ensures that calculations at each time scale build 
upon and remain consistent with those at shorter time scales, providing a 
comprehensive view of wind energy production patterns. The method's strength 
lies in its ability to capture both short-term variations and long-term trends, 
making it particularly valuable for both operational planning and strategic 
decision-making in wind energy development. 

Hourly power output  

𝑷𝑷𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉 = 𝒇𝒇(𝑽𝑽𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉) 

f is the function derived from fitting the power curve, representing the 
relationship between wind speed and power output. 

Hourly production： 

𝐄𝐄𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡_𝐰𝐰𝐰𝐰 = 𝑷𝑷𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉 ⋅ 𝒕𝒕 = 𝑷𝑷𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉  ⋅ 𝟏𝟏 = 𝑷𝑷𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉 

𝐄𝐄𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡_𝐤𝐤𝐤𝐤𝐤𝐤 = 𝐄𝐄𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐲𝐲𝐰𝐰
𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏

 

Daily production: 

𝐄𝐄𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝_𝐤𝐤𝐤𝐤𝐤𝐤 = ∑ 𝑬𝑬𝒊𝒊𝟐𝟐𝟒𝟒
𝒊𝒊=𝟏𝟏  = 𝑬𝑬𝟏𝟏 +  𝑬𝑬𝟐𝟐 + 𝑬𝑬𝟑𝟑 + 𝑬𝑬𝟒𝟒 + 𝑬𝑬𝟓𝟓 … … + 𝑬𝑬𝟐𝟐𝟐𝟐 

Monthly production: 

𝐄𝐄𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐲𝐲𝐤𝐤𝐤𝐤𝐤𝐤 = 𝐄𝐄𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐲𝐲𝐤𝐤𝐤𝐤𝐤𝐤  ⋅ 𝑵𝑵𝒅𝒅𝒅𝒅𝒅𝒅_𝒐𝒐𝒐𝒐 _𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎 

Annual production: 

𝐄𝐄𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚_𝐤𝐤𝐤𝐤𝐤𝐤 = �𝑬𝑬𝒊𝒊

𝟏𝟏𝟐𝟐

𝒊𝒊=𝟏𝟏

 

 
 



4.2  Wind Turbine Layout and Losses 

 
Determining the number of wind turbines to be installed in each municipality is 

essential. The layout design of wind turbines is crucial in wind farm planning, 
significantly affecting overall power generation efficiency and economic benefits. 
The installation of wind turbines is constrained by factors such as world heritage 
sites, cultural heritage, nature reserves, Natura 2000 network, wetlands, bird areas, 
volcanic regions, lakes, rivers, woodlands, buildings, hazardous areas, and 
residential zones. These areas are identified using data from the Corine Land 
Cover, Natura 2000, and OpenStreetMap databases. These constraints determine 
the permissible locations for wind turbine installations (McKenna, 2022). In Italy, 
wind energy technology faces important constraints. On average, only 5% of the 
territory is suitable for wind energy technology, with a higher percentage in 
southern regions and islands. 

 

 

Figure 14. Areas in Italy where wind turbines can be installed 

 
For individual turbines, only areas larger than 15 meters in length and width are 

considered. Given the V52 and V80 turbine models, the turbine tower is fixed on 
a concrete base approximately 15 meters in diameter, typically level with the 
surrounding ground. (Government, 2014) (Brian Tri, 2023) 

 



 

Figure 15. Required base diameters for wind turbines of different powers 

 
For wind farms with multiple turbines, wake losses must be a key consideration. 

Wake losses refer to the impact of the wake generated by upstream turbine blades 
on downstream turbines, reducing the effective wind speed received and thereby 
decreasing power generation. The magnitude of wake losses depends on turbine 
spacing, arrangement, wind speed, and direction. Turbine spacing should be 5-8 
rotor diameters in the main wind direction and 2-4 rotor diameters in the 
secondary wind direction (Gunecha, 2023) (Enewables, 2023)。In this project, a 
spacing of 7 rotor diameters in the main direction and 3 in the secondary direction 
is adopted. 

 

 

Figure 16. Wind generator layout distance 

 
To accurately calculate the maximum number of turbines that can be installed 

in each municipality, a multi-constraint optimization model was developed. This 
model considers geographical constraints such as area, length, and width, while 



ensuring that the turbine layout meets spacing requirements. 
Firstly, the maximum number of turbines based on area constraints is calculated. 

Given that each turbine occupies an area equivalent to 21 rotor diameters squared 
(21D²), the total area of the region is divided by this unit area, rounding up to 
obtain the theoretical maximum number of turbines based on area. This step 
provides an area-based maximum turbine count without considering other 
constraints. 

Secondly, length and width constraints are considered individually. For the 
length constraint, the height of the area is divided by 7 rotor diameters, rounding 
up to determine the maximum number of turbines that can be installed in the 
length direction. Similarly, for the width constraint, the width of the area is 
divided by 3 rotor diameters, rounding up to determine the maximum number of 
turbines that can be installed in the width direction. The product of the maximum 
turbine numbers in the length and width directions yields a matrix value 
representing the maximum number of turbines that can be arranged considering 
both length and width constraints. 

Finally, the model compares the matrix constraint with the area constraint, 
selecting the smaller value as the final maximum number of turbines that can be 
installed. This step ensures that all constraint conditions are met. Once the number 
of wind turbines that can be installed in each municipality is determined, the 
annual, monthly, daily, and hourly wind power generation can be calculated 
accordingly.  

 
So far, the number of wind turbines that can be installed in each municipality 

has been determined, and from this its annual, monthly, daily and hourly wind 
power production has been calculated. 

 
 
5. Energy model 
 
5.1 Feature Selection 
 

This research integrates multi-source heterogeneous data to construct wind 
energy production and energy consumption models. Feature variables are divided 
into two main categories: wind energy production-related factors and energy 
consumption-related factors. We selected multiple environmental elements from 



terrain, land cover, meteorological, and socioeconomic data to establish a 
comprehensive wind power potential assessment indicator system. 
 
Table 3. Factors Related to Wind Energy Production and Energy Consumption 

Energy 
Model 

Class Feature Source Data Scale Time Year 

Wind 
Producti
on 

Topogra
phy 

DEM TINItaly 10 m-resolution Digital 
Elevation Models  

Municipal fixed 2022 

Slope TINItaly Slope map Municipal fixed 2022 

Hillshade TINItaly Shaded relief map  Municipal fixed 2022 

Surface 
character

istics 

Distance to 
Coastline 

OpenStreet
Map 

Distance to coastline 
(km) 

Municipal fixed 2024 

Building 
Density 

OpenStreet
Map 

Municipal building 
area and density 

Municipal fixed 2024 

Agriculture 
Coverage 

Copernicus Corine Land Cover  - 
Land Use 

Municipal fixed 2018 

Forest 
Coverage 

Copernicus Corine Land Cover  - 
Land Use 

Municipal fixed 2018 

Coast 
proportion 

- Proportion of coastal 
municipalities in the 
province 

Provincial fixed 2022 

Plain 
proportion 

- Proportion of plain 
municipalities in the 
province 

Provincial fixed 2022 

Meteorol
ogical 
factors 

Temperature 
(Solar 
irradiation 
index) 

PVGIS Hourly solar radiation 
for typical days of the 
month for 
municipalities 

Municipal hourl
y 

2019 

Air density Global 
Wind Atlas 

Annual average air 
density 

Municipal daily unko
wn 

Energy  
Consump
tion 

Socioeco
nomic 
data 

Population ISTAT Statistical Atlas of 
Municipalities 
Census of Population 

Municipal fixed 2021 

Industry and 
Services 

ISTAT Number of local units 
in each industry 

Municipal fixed 2011 

Agriculture 
Area 

Copernicus Corine Land Cover  - 
Land Use 

Municipal fixed 2018 

 
 
5.1.1 Wind Energy Production-Related Factors 
 

To assess a region's wind energy production potential, it is necessary to analyse 
its wind energy endowment from multiple perspectives, including terrain, climate, 
and resources. As shown in Table 3, the feature variables selected to reflect wind 
energy production potential include terrain characteristics, surface characteristics, 
and meteorological factors. 



 
 

Figure 17. Altitude, slope, hill shade of Italy 
 
 
Terrain Characteristics: 

 Digital Elevation Model (DEM) Data: 10-meter resolution DEM data 
provided by TINITALY. Elevation is a crucial factor affecting wind speed - 
generally, higher elevations have lower surface roughness and often 
experience higher wind speeds. 

 Slope: Terrain slope influences near-surface wind speed distribution. Gentle 
slopes facilitate stable wind direction and speed, while steep slopes tend to 
cause turbulent airflow. 

 Hillshade: Terrain shadows characterize topographic relief from the 
perspective of slope aspect and gradient. 
 
Surface Characteristics: 

 Distance to Coastline: Sea-land thermal differences drive sea-land breezes, 
with coastal areas often possessing abundant wind energy resources. Using 
OpenStreetMap's coastline vector data, we calculated the distance from each 
municipal boundary to the coastline. 

 Land Use/Land Cover: Different underlying surfaces have vastly different 
roughness, directly affecting near-surface wind speeds. This study focused on 
analysing CORINE land cover data from Copernicus, calculating Agriculture 
Coverage and Forest Coverage. Generally, open areas like farmland favor 
increased wind speeds, while forests tend to reduce surface wind speeds. 

 Percent_coast%/Percent_plain%: To quantitatively analyse municipal terrain 
characteristics, we proposed a method using administrative division 



information to characterize provincial terrain features. These indicators 
employ municipal-level geographical classification results, calculating the 
proportion of coastal and plain municipalities within each province. By 
analysing the proportion of different terrain types within each province, we 
can determine the surrounding topographic conditions of each municipality. 
 
Meteorological Factors: 

 Solar Irradiation Index: Solar radiation influences thermal wind circulation 
formation by altering ground-air temperature differences, affecting regional 
wind energy resource spatial distribution. We used hourly solar radiation data 
for typical days each month simulated by the PVGIS model. 

 Air Density: Directly proportional to wind energy density, this is one of the 
parameters measuring wind energy resource abundance. 

 
 
5.1.2 Wind Energy Consumption-Related Factors 
 

Beyond wind energy resource endowment, wind power planning must consider 
local electricity demand and power consumption capacity. To analyse regional 
wind energy consumption potential, this research introduced socioeconomic 
indicators reflecting energy demand, such as population, industrial and 
commercial distribution, and agricultural scale, as shown in Table X. Industrial 
structure, in particular, directly impacts the scale and structure of regional 
industrial electricity demand. Through comprehensive analysis of population and 
the development scale of primary, secondary, and tertiary industries, we can 
quantitatively assess the foundation for regional wind power consumption. 
 Population: Population size directly influences regional electricity demand 

and serves as an important reference for determining wind power 
development scale. This study used Municipal data from ISTAT 2021. 

 Industry and Services: The secondary sector, especially electricity-intensive 
industrial sectors, constitutes the main body of power consumption. The 
thriving tertiary sector also brings substantial commercial and public service 
electricity demands. Analysing the number of industrial and commercial 
enterprises in each municipality helps estimate regional power load levels. 

 Agriculture Area: To comprehensively assess the impact of industrial 
structure on regional electricity use, this study also included agricultural land 



area indicators reflecting the primary sector's scale. Agricultural land area can, 
to some extent, reflect the agricultural sector's electricity demand. 
 

 
5.2 Feature Data Preparation 
 

The research uses data spanning multiple spatial and temporal scales, 
necessitating standardized integration through various spatial data processing 
methods. Spatially, the data ranges across multiple scales: from 10-meter 
resolution raster data to municipal-level statistics to provincial-scale data. 
Temporally, the data spans multiple years, including 2011 industrial and 
commercial data, 2018 land use data, and more. 

Spatial interpolation methods primarily address administrative boundary 
changes over time. Italy's number of municipalities decreased from 8,092 in 2011 
to 7,901 in 2023 due to administrative mergers and adjustments. When historical 
administrative regions (2011 municipalities) were merged or reorganized into 
new regions (2023 municipalities), we employed an area-based weight allocation 
method. Specifically, new municipalities received indicator values proportional 
to the area inherited from original municipalities. This method assumes that 
socioeconomic indicators (like number of business units) correlate with 
administrative area proportions. 

Spatial aggregation methods handle scale conversions between different spatial 
resolutions. For high-resolution spatial data (like 10-meter resolution digital 
elevation models), we applied zonal statistics to calculate statistical characteristics 
within each 2023 municipality boundary. This approach preserved microscale 
terrain features while enabling integration with municipal-scale data. 

Area-weighted methods process land use data. For 2018 agricultural land and 
forest cover data, we first identified land use type distributions within each 2023 
municipal boundary, then calculated area proportions for each type. 

For regional geographic characteristics, we employed a proxy indicator method 
based on administrative hierarchies. Each region's coastal and plain characteristics 
were represented through the proportion of municipality types within each 
province. Specifically, we calculated the ratio of municipalities classified as 
coastal cities and plain cities to the total number of municipalities in that province. 
This method effectively captures dominant regional geographic features, 
transforming municipal-scale classification information into quantitative 



indicators reflecting overall regional characteristics. 
This data preprocessing methodology system achieved uniformity of multi-

source heterogeneous data within the 2023 administrative framework, providing 
a standardized data foundation for subsequent energy modeling. Through 
appropriate spatial data processing methods, we maintained original spatial 
characteristics while ensuring comparability across different spatiotemporal 
scales. 
 
5.3 Feature Engineering 
 

Feature engineering, fundamental to machine learning, involves creating new 
features from existing data during the machine learning process. These new 
features help models better capture data patterns, thereby improving model 
performance. 

Common feature engineering methods include: standardization and 
normalization of numerical features, encoding of categorical features, feature 
creation (such as calculating new features like means and standard deviations), 
and feature selection and elimination. Using the V80 wind turbine as an example, 
to optimize model input variables, this research evaluated relationships between 
these variables through correlation matrix analysis (Figure 18) to screen and 
reduce redundant features and decrease model complexity. The study conducted 
correlation analysis of wind energy production feature factors, retaining only 
information crucial for wind energy potential prediction. Below, we analyse and 
screen correlations for three types of variables: regional terrain, surface 
characteristics, and meteorological factors. 



 
Figure 18. Correlation Matrix Between Features 

 
Correlation Analysis of Terrain Features 
 

This research calculated and analysed statistical characteristics of several key 
terrain indicators, including the minimum, maximum, median, and range (Gap) 
values for elevation (Altitude), slope, and terrain shadow index (Hillshade). These 
variables reflect both overall terrain trends and local relief characteristics. 

Through correlation matrix analysis, we excluded redundant maximum and 
minimum variables, retaining median and range variables that separately reflect 
overall trends and local variations. This decision was made because the range (gap) 
and maximum/minimum values essentially describe the same extreme variation 
information. For example, Altitude_gap shows correlations approaching 1 with 
both Altitude_min and Altitude_max. 

For elevation features, Altitude_median and Altitude_gap show high correlation, 
indicating that the median value sufficiently reflects regional relief amplitude. 
This correlation emerges from the clear continuity in elevation changes at regional 



scales. In complex terrain regions (such as the Alps and Apennines), Altitude_gap 
tends to be large and correlates with Altitude_median trends—higher median 
elevations typically correspond to larger elevation ranges. Conversely, in plains 
and lowlands (like the Po Valley), elevation variations are minimal, resulting in 
Altitude_gap values near zero that closely match median values. 

In contrast, terrain shadow (Hillshade) and slope statistical values show lower 
correlations. Hillshade_median represents the median value of surface 
illumination conditions, influenced not only by slope but also by aspect, solar 
elevation angle, and azimuth. Hillshade_gap reflects extreme differences in 
regional illumination conditions, often caused by steep valleys or gentle plateaus. 
This complexity prevents linear correlation between Hillshade_median and 
Hillshade_gap. 

Similarly, Slope_median and Slope_gap describe overall slope distribution 
trends and local relief intensity, respectively. While both are influenced by terrain 
changes, Italy's complex topography (including mountains, hills, and plains) 
means that slope medians and ranges don't necessarily correlate spatially. For 
instance, hilly regions might have low median slopes but high slope ranges due to 
contrasts between gullies and hillsides, while mountainous regions with steep but 
uniform slopes might show high medians but lower ranges. 
 
Correlation Analysis of Surface Features 
 

Surface features encompass land use characteristics (forest coverage, 
agricultural land proportion, and building density), regional spatial characteristics 
(distance to sea, coastal proportion, and plain proportion), and spatial constraints 
related to wind energy development (available area and number of turbines). 
Correlation matrix analysis reveals low correlations between most variables, 
indicating their ability to independently reflect different important dimensions in 
wind energy assessment. However, high correlation exists between available area 
(Area_Available_m2) and turbine numbers (N_V80/N_V52). 

Land use features show strong independence. For example, forest coverage 
(Density_Forest%), agricultural land proportion (Density_Agriculture%), and 
building density (Density_Building%) show near-zero correlations, indicating 
they describe different dimensions of municipal land use characteristics. Different 
land use features have distinct surface roughness coefficients that affect wind 
speed distribution and turbulence characteristics. The surface roughness 



coefficient is a dimensionless parameter quantifying surface roughness effects on 
wind speed reduction. It's a function of roughness length (z₀), which represents 
the theoretical height where wind speed approaches zero under ideal conditions 
(measured in meters). The following table presents surface classification 
standards from European regulations (Eurocode, 2024): 

 

Table 4. Terrain categories and terrain parameters 

 
 

According to surface classification standards, forests are classified as Type III 
terrain with a z₀ of approximately 0.3 meters. This significant roughness length 
indicates that forests substantially reduce wind speeds while increasing turbulence 
intensity (Port é -Agel, 2020). Areas with higher forest coverage experience 
stronger surface friction, resulting in more complex wind speed distributions. 

Agricultural land typically falls under Type II terrain, with a z₀ of approximately 
0.05 meters. Generally concentrated in plain regions, agricultural lands' lower 
roughness coefficient helps maintain higher wind speeds while producing weaker 
turbulent effects. Building density, a core characteristic of urbanized regions, is 
classified as Type IV terrain with a z₀ reaching 1.0 meters. Areas with high 
building density significantly enhance surface friction, producing the strongest 
wind speed reduction effects. 

Regional spatial characteristics also demonstrate low correlations. Distance to 
sea (D_from_sea_km), coastal proportion (Percen_coast%), and plain proportion 
(Percen_plain%) each represent distinct aspects: regional geographic location, 
coastal characteristics, and terrain type distribution. Coastal regions, directly 



influenced by sea breezes, typically offer higher wind speed potential. Plain 
regions, with their gentle topography, feature more uniform wind speed 
distributions and help reduce turbulent effects. 

Spatial constraint variables related to wind energy development include 
available area (Area_Available_m2) and number of turbines (N_V80/N_V52). 
The correlation matrix reveals high correlation between these variables, as 
mentioned in the process-driven approach - the number of turbines is a direct 
function of available area, determined by both available space and turbine spacing 
design. Retaining available area comprehensively reflects how regional terrain, 
land use, and environmental restrictions constrain wind energy development, 
making it more influential in wind energy assessment than turbine numbers. 
 
Correlation Analysis of Meteorological Factors 
 

This study selected Air Density, temporal features (Hour_sin, Hour_cos, 
Month_sin, Month_cos), and Solar Index as meteorological variables. Correlation 
matrix analysis reveals low correlations between these meteorological variables. 

Air density directly determines the mass of air per unit volume, serving as a 
crucial parameter in calculating wind energy density. Higher air density typically 
corresponds to greater wind energy potential. Temporal features capture daily 
variations (hours) and seasonal patterns (months) through sine and cosine forms. 
Solar Index directly reflects local solar energy reception. While Solar Index 
doesn't directly represent temperature, it closely relates to surface heating 
processes, indirectly influencing changes in local thermal conditions and wind 
speed characteristics. 

 



 
Figure 19. Correlation Matrix Between Features After Selection 

 
Through systematic correlation matrix analysis, our study retained the following 

indicators that significantly contribute to wind energy assessment: 
Altitude_median, Altitude_gap, Slope_median, Slope_gap, Hillshade_median, 
Hillshade_gap, Density_Forest%, Density_Agriculture%, Density_Building%, 
D_from_sea_km, Percen_coast%, Percen_plain%, Area_Available_m2, 
Air_Density, Hour_sin, Hour_cos, Month_sin, Month_cos, and Solar Index. 
These filtered variables cover terrain, surface, and meteorological dimensions, 
optimizing model input features while preserving core information essential for 
wind energy assessment. 
 
 
 
 
 
 



6. Results and Discussion 
 
6.1 Energy Consumption: 
 

Italy's energy consumption patterns demonstrate significant regional differences 
and industrial characteristics. In 2022, Italy's total national electricity 
consumption reached approximately 290 TWh, reflecting its energy demands as 
an industrialized nation. Looking at the industrial electricity consumption 
structure reveals several important patterns that help us understand Italy's 
economic landscape. 

 

 

Figure 20. Proportion of energy consumption by sector in Italy 
 

The secondary sector (industry) emerges as the largest electricity consumer, 
accounting for 45% of total consumption. This prominence underscores 
manufacturing's crucial role in supporting Italy's economy. The tertiary sector 
(commercial services) follows at 29%, while residential consumption represents 
24%. The primary sector (agriculture) accounts for just 2% of total electricity 
consumption, indicating its relatively low energy intensity despite its cultural and 
economic importance. 

 



 
Figure 21. Agricultural area and secondary and tertiary industry distribution 

 
According to industrial activity statistics (ISTAT 2011), analysis of 7,901 

municipalities reveals Italy's highly diversified economic structure. Examining 
the first set of maps in Figure 21 shows distinct regional patterns in industrial 
distribution: Agricultural land distribution indicates that central and southern 
Italian plains possess the largest agricultural areas, where primary sector activities 
are most abundant. The northern regions and Lazio region show the highest 
density of secondary sector enterprises, forming distinct industrial clusters. 
Tertiary sector enterprises follow a similar distribution pattern, primarily 
concentrating in northern urban agglomerations. 

The data reveals fascinating patterns of industrial participation across 
municipalities: 99.6% engage in secondary sector activities, and all municipalities 
have tertiary sector presence. Notably, 0.4% of municipalities rely entirely on the 
tertiary sector. However, industrial activity concentration varies significantly by 
terrain conditions:  
 Coastal regions, though comprising only 648 municipalities, demonstrate the 

strongest industrial agglomeration effects. Each coastal municipality averages 
319.5 secondary sector enterprises and 1,518.4 tertiary sector enterprises. This 
high-density distribution benefits from maritime logistics advantages and 
market opportunities provided by sea access.  

 Plain regions, covering 44.3% of municipalities, serve as vital economic 
activity carriers. These areas show moderate enterprise density with an 
average of 192.5 secondary sector and 684.5 tertiary sector enterprises per 
municipality, reflecting how favorable plain topography supports industrial 
development.  

 Mountainous areas, constrained by terrain, show relatively weak industrial 
activity with the lowest enterprise density, highlighting how geographical 



limitations can impact economic development. 
Regarding enterprise scale, Italy's industrial structure exhibits characteristics 

typical of small and medium-sized enterprise dominance. Secondary sector 
enterprises average 5.1 employees, while tertiary sector enterprises average 3.4 
employees, indicating a granular economic fabric dominated by smaller business 
units. 
 

 
Figure 22. Energy consumption model performance 

 
Based on socioeconomic characteristics, through running electricity demand 



prediction models for different user types, the research findings revealed the 
following patterns, as shown in Figure 22. The prediction models for residential 
and commercial electricity consumption demonstrated exceptional performance, 
with R² values exceeding 0.99, which can be attributed to the high correlation 
between the selected features and electricity consumption behaviors. 

The residential electricity prediction primarily relies on population size, number 
of households, and building density. These indicators effectively capture the 
fundamental drivers of residential power usage. Meanwhile, commercial 
electricity prediction is based on commercial building area, number of business 
establishments, and employee count. These metrics effectively reflect the scale of 
commercial activities, as commercial electricity consumption patterns remain 
relatively stable, mainly centered around lighting, air conditioning, and electrical 
appliances. 

In contrast, the industrial electricity prediction model showed less satisfactory 
results, with an R² value of only around 0.75. This model solely depends on 
industrial land area (A_B2_m2), number of enterprises (2_NUM_UNIT), and 
employee count (2_ADDETTI). This lower performance suggests that industrial 
electricity consumption patterns are more complex and would benefit from 
incorporating additional dimensional features such as industry type, production 
scale, and equipment energy consumption. 

Regarding the primary sector, agricultural electricity prediction faces 
limitations in data collection. Currently, only two indicators are available: 
agricultural land area and agricultural building coverage. These metrics alone are 
insufficient to adequately reflect crucial factors in agricultural production, such 
as irrigation demands and mechanization levels. Due to this lack of essential 
feature data, it is presently not feasible to construct a reliable prediction model for 
agricultural electricity consumption. 
 

Table 5. Energy consumption model performance 
Sector Model MAPE (%) R² 

Domestic HuberRegressor 8.17 0.9952 

GradientBoostingRegressor 12.59 0.9928 

Secondary HuberRegressor - 0.6982 

GradientBoostingRegressor - 0.7586 



Tertiary HuberRegressor 28.82 0.938 

GradientBoostingRegressor 450.39 0.9293 

 

 
Figure 23. Feature importance of energy consumption 

 
The importance distribution reveals that employment figures across sectors and 

population metrics consistently demonstrate the highest influence, reflecting 
several fundamental economic phenomena: 

A comparative analysis of household units (FAM21) and population count 
(POP21) indicates that households emerge as more significant economic decision-
making units. This pattern suggests that regional economic activity is 
predominantly driven by household-level consumption decisions rather than 
individual consumer behavior. 

Within the secondary sector, the workforce indicator (2_ADDETTI) exhibits 
paramount importance (approximately 0.7). This high significance of industrial 
employment suggests that the region likely occupies a crucial position in the 
industrial value chain, potentially indicating a manufacturing-intensive zone. 
Conversely, the relatively lower importance of industrial establishment count 
(2_NUM_UNIT) suggests larger individual industrial enterprise scales, pointing 
toward high industrial concentration and the possible presence of major 
manufacturing entities. 

The tertiary sector indicators display more balanced influence patterns: both 
service sector employment (3_ADDETTI) and establishment counts 
(3_NUM_UNIT) show similarly high importance levels. This balanced pattern 
reflects the characteristic diversification and dispersion within the service sector, 



where both the number of establishments and employment levels jointly influence 
sector development. This aligns with typical service sector characteristics: 
compared to industry, service establishments tend to be more numerous but 
smaller in scale. 

An intriguing observation emerges from the consistently low importance of 
built-up area across all three sectors. This phenomenon illuminates a significant 
trend in modern economics: the weakening relationship between physical space 
requirements and economic output. This is particularly noteworthy in the 
secondary sector, potentially indicating the region's industrial evolution toward 
higher efficiency and technological sophistication, reducing dependence on 
physical space expansion. 

 

 
Figure 24. Electricity consumption by region and national average (2022) 

 
From a regional distribution perspective, energy consumption exhibits distinct 

north-south disparities. The northern industrial zone, represented by the 
Lombardy region, consumes 64.3 TWh of electricity, accounting for 22.1% of the 
national total electricity consumption, with the secondary industry comprising a 
substantial 53.1% of this usage. These figures validate the northern region's status 
as Italy's industrial heartland. In contrast, economically less developed regions 
such as Valle d'Aosta and Molise consume merely 0.9 TWh and 1.3 TWh 
respectively, highlighting the imbalance in regional development. 

 



 
Figure 25. Distribution of Electricity Consumption Across Different Industries 

 
Figure 25 shows the distinctive spatial distribution patterns of energy 

consumption across Italy, demonstrating unique geographical differentiation 
characteristics. Residential electricity consumption forms notable high-value 
centers in densely populated urban areas, particularly in metropolitan regions like 
Milan and Rome, reflecting the strong correlation between urbanization levels and 
residential power usage. 

Industrial electricity consumption exhibits the most pronounced spatial 
concentration pattern. The northern industrial zones consistently record 
consumption levels overtaking 50 GWh, a highly concentrated distribution that 
closely aligns with the spatial clustering pattern of manufacturing enterprises, 
emphasizing the energy-intensive nature of industrial production. 

The service sector's electricity consumption pattern displays spatial 
characteristics similar to the industrial sector, forming distinct high-value zones 
in major economic centers such as Rome, Milan, Turin, and Bari. It's particularly 
noteworthy that Puglia emerges as a heterogeneous region within the southern 
territory - due to its unique industrial structure and population distribution, it 
demonstrates relatively high levels across all electricity consumption indicators. 

This spatial analysis effectively illustrates how economic activity, population 
density, and industrial development interact to shape regional energy 
consumption patterns across Italy. The clear north-south divide and the emergence 
of urban centers as major consumption hubs provide valuable insights into the 
relationship between economic development and energy usage patterns. 
 
 
6.2 Wind Production 
 

Figure 26 illustrates the daily wind power generation patterns across 24 hours 



during winter (January) and summer (July), revealing distinct seasonal variations 
in wind energy production. 

 
Figure 26. Wind energy on a typical day in winter andsummer 

 
The winter pattern (blue line) demonstrates higher overall power generation but 

with notable fluctuations. During the early morning hours, wind power maintains 
elevated levels, providing substantial energy during the pre-dawn and early 
morning periods. However, a significant decline occurs around midday, creating 
a notable trough in power generation. This pattern suggests that winter winds are 
generally stronger but less stable throughout the day. 

In contrast, the summer pattern (orange line) exhibits lower overall power 
generation but with more gradual variations throughout the day. The summer 
wind power reaches its peak during the afternoon hours, creating a gentle curve 
rather than the sharp fluctuations seen in winter. This smoother pattern indicates 
more consistent, though less powerful, wind conditions during summer days. 

When analysing these patterns against typical electricity demand curves, several 
significant relationships emerge: 

During winter months, wind power generation aligns favorably with morning 
(7-9 AM) and evening (6-10 PM) peak demand periods, helping meet increased 
energy needs for heating and lighting. However, the substantial midday decrease 
in wind power generation creates a potential supply gap that may require 
supplementation from other energy sources to maintain consistent power delivery. 

The summer pattern shows an advantageous correlation between peak wind 
power generation (2-4 PM) and maximum air conditioning demand during the 
hottest part of the day. This natural synchronization helps meet increased cooling 
needs during peak temperature hours. However, the relatively lower wind power 
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generation during morning and evening hours may necessitate additional energy 
sources to maintain stable power supply during these periods. 
 

 
Figure 27. Wind production model performance 

 
Table 6. Wind production model performance 

Wind Prediction Model R² 

Vestas V80 XGBoost 0.9508 

LightGBM 0.9679 

Vestas V52 XGBoost 0.9277 

LightGBM 0.9613 



 
The wind production model results demonstrate high accuracy, with R² values 

higher than 0.95 for both the Vestas V52 and V80 turbine scenarios using 
LightGBM, confirming the model's effectiveness in predicting wind energy 
production. These outcomes highlight the reliability of machine learning 
techniques, such as LightGBM and XGBoost, in modeling complex wind energy 
generation patterns. 
 

 

Figure 28.Feature importance of wind production 
 

Figure 28 illustrates the relative importance ranking of various features in 
predicting wind energy production potential. The analysis reveals that 



Air_Density emerges as the most significant predictor. This prominence aligns 
with physical principles, as air density directly influences wind turbine generation 
efficiency - higher density air carries more kinetic energy at the same wind speed, 
resulting in greater power generation. Air density varies with temperature, 
humidity, and altitude, making its spatiotemporal distribution crucial for accurate 
regional wind energy potential forecasts. 

The next most significant features are Hour_sin and Hour_cos, which capture 
diurnal wind speed patterns. Wind speeds typically follow cyclical daily patterns, 
and these trigonometric transformations effectively model these non-linear 
relationships. These daily variations directly impact wind farm power output. 

The temporal features Hour_sin, Hour_cos, Month_sin, and Month_cos 
collectively demonstrate high importance, reflecting both daily and annual wind 
speed periodicities. These cyclical patterns likely correlate with variations in solar 
radiation intensity and monsoon transitions. Notably, the model's feature ranking 
suggests that daily wind cycles carry more predictive weight than annual cycles, 
possibly because daily wind speed fluctuations tend to be more pronounced and 
have more immediate effects on short-term wind energy forecasts. 

Solar radiation intensity also emerges as a significant feature, as its variations 
influence atmospheric thermal structure and consequently affect wind field 
distribution patterns. 

Geographic features also play substantial roles. Variables such as 
Available_Area_m2, AREA_m2, and Altitude_median demonstrate meaningful 
impact on wind energy potential. Generally, larger available land area correlates 
with higher potential turbine capacity installation and overall wind resource 
abundance. Altitude influences local climate conditions and topographical effects, 
which in turn affect vertical wind speed distribution patterns. 

Topographical factors such as distance from sea (D_from_sea) and terrain 
characteristics (Hillshade_median, Slope_median) show moderate importance. 
Near-surface wind speed gradients vary significantly, with slope affecting vertical 
wind distributions. Proximity to sea influences sea-land breeze circulation 
intensity. 

Land use variables, including agricultural coverage (Density_Agriculture) and 
building density (Density_Building), rank lower in importance but remain 
relevant. These factors affect surface roughness, which influences near-surface 
wind speed distributions, justifying their inclusion in the model features. 

In conclusion, this feature importance analysis provides valuable insights into 



wind energy potential determinants. The ranking aligns with physical mechanisms, 
where wind speed patterns - including their spatiotemporal distribution - emerge 
as primary factors. These patterns are primarily governed by meteorological 
conditions and topographical characteristics, while land cover types demonstrate 
relatively minor influence. 

 

  

Figure 29. Potential number of Vestas V52 and V80 

 

  

Figure 30. Future wind energy production of Vestas V52 and V80 
 
Based on simulation analyses of different wind turbine models including Vestas 

V52, V80, and V90, research reveals significant geographical heterogeneity in 
Italy's wind energy resources. Data indicates that southern regions (Sardinia, 
Sicily) and certain central areas possess the highest wind power generation 



potential, with annual electricity generation reaching 366-532 TWh. The Puglia 
region along the Adriatic coast demonstrates exceptional generation potential, 
providing guidance for onshore wind farm development while highlighting 
offshore wind development prospects. 

In contrast, northern regions show relatively lower wind potential due to Alpine 
terrain influence. This uneven resource distribution presents challenges for grid 
infrastructure, particularly regarding north-south power transmission. Research 
indicates only approximately 5% of national territory is suitable for wind facility 
deployment, predominantly concentrated in southern regions and islands. 

In future scenario, wind energy production patterns demonstrate distinct 
regional variations between northern and southern regions. Compared to potential 
overcapacity issues associated with photovoltaic power generation, wind energy 
technology demonstrates superior alignment with actual user electricity demand 
patterns. Research data reveals significant regional variations in wind energy 
potential distribution. Specifically, southern regions exhibit high energy self-
sufficiency rates but relatively low self-consumption rates due to their abundant 
wind resources, primarily attributed to excess local power generation. In contrast, 
northern regions demonstrate high self-consumption rates but lower energy self-
sufficiency rates. Comprehensive data analysis shows that the Vestas V52 turbine 
model achieves an energy self-consumption rate of 90%, while the Vestas V80 
reaches 80%. Regarding energy self-sufficiency rates, the Vestas V52 achieves 
34%, while the Vestas V80 performs slightly better at 39%. 
 

 
Figure 31. (a) Self-Consumption (SCI) and (b) Self-Sufficiency (SSI) indexes 



for Scenario Vestas V52 (850 kW) 
 

To fully utilize this resource endowment, the recommended strategies include 
strengthening north-south grid infrastructure, implementing targeted support 
policies in high-potential areas, and advancing diversified renewable energy 
development strategies in northern regions. These findings carry significant 
policy implications for Italy's energy structure transition. 

 
 

7. Conclusions 
 
This research provides an in-depth analysis of the spatial and temporal 

characteristics of wind energy production in Italy, revealing significant seasonal 
and regional disparities. Wind energy output is higher in winter but exhibits 
greater volatility. In contrast, summer wind energy production is generally lower 
but shows more gradual daily variations. Southern regions such as Sardinia and 
Sicily, as well as certain central areas, have the highest wind energy potential, 
while northern regions have relatively lower potential due to the influence of 
Alpine terrain. 

Through simulation analyses of wind turbine models like the Vestas V52 and 
V80, it found significant differences in energy self-sufficiency and self-
consumption rates across different regions. Southern regions exhibit high energy 
self-sufficiency but low self-consumption rates due to excess local wind resources. 
Northern regions show high self-consumption but lower self-sufficiency rates. 

To fully harness wind energy resources, strengthening north-south grid 
infrastructure is recommended, particularly by optimizing northward transmission 
capacity. Additionally, targeted support policies should be implemented in high-
potential areas, and diversified renewable energy development strategies should 
be advanced in northern regions. These measures have significant policy 
implications for facilitating Italy's energy transition.\. 
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