polito.it
Politecnico di Torino (logo)

Anomaly Detection in Multivariate Time Series using Graph Convolutional Networks

Giulio Nenna

Anomaly Detection in Multivariate Time Series using Graph Convolutional Networks.

Rel. Francesco Vaccarino. Politecnico di Torino, Corso di laurea magistrale in Ingegneria Matematica, 2024

[img]
Preview
PDF (Tesi_di_laurea) - Tesi
Licenza: Creative Commons Attribution Non-commercial No Derivatives.

Download (4MB) | Preview
Abstract:

In the era of data-driven applications, time series data is prolific, particularly in domains involving sensor-monitored systems. Such systems often produce a stream of multivariate time series data that can be leveraged to predict malfunctions and failures or, more broadly, anomalous events. Prediction of anomalies in time series data is a challenge that has been extensively pursued by researches, as failure forecast could save crucial resources in most applications. In this thesis, classical approaches to this problem will be discussed and a new approach that leverages graph convolutional neural networks will be presented. Such approach enables a much more in-depth analysis of multivariate time series since it allows to detect not only temporal correlations but also correlations between features. Moreover, cutting edge methodologies such as temporal convolutions and variational autoencoders will be exploited to build a powerful anomaly detection pipeline that is able to rival state-of-the art algorithms.

Relatori: Francesco Vaccarino
Anno accademico: 2023/24
Tipo di pubblicazione: Elettronica
Numero di pagine: 83
Soggetti:
Corso di laurea: Corso di laurea magistrale in Ingegneria Matematica
Classe di laurea: Nuovo ordinamento > Laurea magistrale > LM-44 - MODELLISTICA MATEMATICO-FISICA PER L'INGEGNERIA
Aziende collaboratrici: DATA Reply S.r.l. con Unico Socio
URI: http://webthesis.biblio.polito.it/id/eprint/30392
Modifica (riservato agli operatori) Modifica (riservato agli operatori)