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Summary

In the era of data-driven applications, time series data is prolific, particularly in
domains involving sensor-monitored systems. Such systems often produce a stream
of multivariate time series data that can be leveraged to predict malfunctions and
failures or, more broadly, anomalous events. Prediction of anomalies in time se-
ries data is a challenge that has been extensively pursued by researches, as failure
forecast could save crucial resources in most applications. In this thesis, classical
approaches to this problem will be discussed and a new approach that leverages
graph convolutional neural networks will be presented. Such approach enables a
much more in-depth analysis of multivariate time series since it allows to detect
not only temporal correlations but also correlations between features. Moreover,
cutting edge methodologies such as temporal convolutions and variational autoen-
coders will be exploited to build a powerful anomaly detection pipeline that is able
to rival state-of-the art algorithms.
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Chapter 1

Anomaly Detection and
Time Series

1.1 An introduction to Time series

In science and engineering, there are numerous cases where one deals with data
collected systematically over time. In general, we refer to Time Series whenever
we encounter data observed at different time points. The process of collecting data
over time, also known as sampling, can be done at regular or irregular time inter-
vals, and the collected data can be multidimensional or unidimensional numerical
values.

One of the most prominent examples of time series is the vast amount of data
related to the stock market. It is possible to consider the price of a financial in-
strument (e.g., stock of a publicly traded company, see Fig. 1.1) as a univariate
time series, i.e., a set of real data observed orderly over time. If we also consider
data related to a subset of the market (e.g., the price of a set of stocks), then we
are dealing with a set of time series that are not necessarily independent, and we
refer to them as multivariate time series.
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Figure 1.1: Johnson & Johnson Quarterly Earnings Per Share, 1960-1980

The main goal of time series analysis is to develop mathematical models that pro-
vide plausible descriptions of sampled data. For this reason, it is necessary to
build a statistical framework to define a general model useful for describing time
series effectively. One of the most commonly used statistical models for describing
a time series is that of Stochastic Processes. To define them, it is necessary to
introduce some basic probabilistic concepts.

Let (Ω,F ,P) be such that:

• Ω represents the set of events.

• F represents the σ-algebra defined there.

• P represents the probability measure defined on Ω and F .

Also, let (E, E) be a measurable space, also known as the State Space, where E
represents the σ-algebra defined on E.

Furthermore, let I be the Set of Indices, which, in real-world applications, rep-
resents the space in which times exist, and can therefore be discrete or continuous.
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1.1 – An introduction to Time series

Definition 1. A Stochastic Process (Xt)t∈I is defined as a family of random
variables such that, for a fixed t, the following holds:

Xt :Ω −→ E

ω −→ Xt(ω)

In other words, X−1
t (B) ∈ F , ∀B ∈ E.

Therefore, a time series is nothing more than a stochastic process, i.e., a set of
random variables ordered in time, and the observed data are nothing but the real-
ization of a stochastic process. The set of indices I can be discrete or continuous,
finite or infinite, and in the case of time series, it represents the sampling instants.

Theoretically, most processes described by a time series can be observed at any
continuous point in time, and conceptually it would be more correct to treat them
as continuous stochastic processes (i.e., with a continuous set of indices). The
theoretical framework that supports stochastic processes allows for the treatment
of continuous-time processes. However, for the purposes of this thesis, discrete-
time processes will be of interest, which, in applications, always have a finite time:
{Xt}t∈I = {X1, X2, . . . Xn}.

Example 1 (White Noise). One of the simplest models is that of white noise.
Simply put, it is assumed that all observations are identically distributed and
independent with a centered normal distribution:

Xt = Wt

Wt
iid∼ N (0, σ2).

In particular, if X = {Xt}t∈I , then X is a multivariate normal with a diagonal
variance-covariance matrix. Therefore, all observations are independent of
each other, and there is no correlation between past and future.

X ∼ N (0, σ2I)

11
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Figure 1.2: Realization of white noise with µ = 0 and σ2 = 1 (100 observations)

1.1.1 Stationarity and Autocorrelation
A complete description of a time series, observed as a collection of n random
variables, is provided by the multivariate cumulative distribution function of the
process:

F (x1, x2, . . . xn) = P(X1 ≤ x1, X2 ≤ x2, . . . Xn ≤ xn)
The functional form of the cumulative density is often unknown except in the case
where the process is jointly normal. It is therefore necessary to make assumptions
about the processes under consideration to obtain useful information for estimating
F .

Definition 2 (Strong Stationarity). A process {Xt}t∈I is said to be strongly
stationary if, for every n ∈ N, for every n-tuple (t1, t2, . . . tn) ∈ In and for
every choice of h such that ti + h ∈ I, the following holds:

P (Xt1 ≤ x1 . . . Xtn ≤ xn) = P (Xt1+h ≤ x1 . . . Xtn+h ≤ xn). (1.1)

Therefore, a process is strongly stationary if the joint cumulative density function
for subsets of variables is equal to the cumulative density of the same variables
shifted by a window h. From 1.1, with n = 1, it follows:

P(Xt ≤ c) = P(Xt+h ≤ c) ∀h s.t. t + h ∈ I (1.2)

This means that the same cumulative distribution must hold for every point in
time. An example of a strictly stationary process is given by white noise 1, where
it can be observed that this stationarity condition is very restrictive and limited
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1.1 – An introduction to Time series

to an uninformative set of models. Therefore, a variant of strong stationarity is
introduced, capable of encompassing more informative models:

Definition 3 (Weak Stationarity). A process {Xt}t∈I is said to be weakly
stationary of order s ∈ N if, for every n < s and every n-tuple (t1, t2, . . . tn) ∈
In and every choice of h such that ti + h ∈ I, the following holds:

E(Xt1Xt2 . . . Xtn) = E(Xt1+h
Xt2+h

. . . Xtn+h
) <∞ (1.3)

In particular, in the case of a weakly stationary process of order 2, the following
holds:

E(Xt) = E(Xt+l) (1.4)
E(XtXt+l) = E(Xt+hXt+l+h) (1.5)

assuming that t, t + l, and t + l + h are all in I. Therefore, from 1.4, it follows
that the expected value is constant, and from 1.5, it follows that the covariance
depends on the temporal lag that separates two observations. In fact:

Cov(Xti
, Xti+l) = E(Xti

Xti+l)− E(Xti
)E(Xti+l) = γ(l) (1.6)

Therefore, we define γ(·) as the autocovariance function, and from 1.6, it follows
that γ(0) = Var(Xti

), while γ(l) = γ(−l). At this point, it is possible to define an
important measure regarding time series:

Definition 4 (Autocorrelation). Let {Xt}t∈I be a weakly stationary time series
of order s ≥ 2. Then it is possible to define the autocorrelation function
(ACF) ρ(·) as:

ρ(l) = Cov(Xti
, Xti+l)

Var(Xti
) = γ(l)

γ(0) . (1.7)

Observation 1. The autocorrelation function is defined assuming weak sta-
tionarity of the process. It is also possible to define autocorrelation and cor-
relation for non-stationary processes, but it is necessary to indicate their de-
pendence on time since it is no longer possible to assume the result obtained
in 1.5:

γti
(l) = Cov(Xti

, Xti+l) (1.8)

ρti
(l) = Cov(Xti

, Xti+l)√
Var(Xti

)Var(Xti+l)
(1.9)

13



Anomaly Detection and Time Series

Given the definitions of these two quantities, it remains to introduce their re-
spective estimators. In the case of non-stationarity, an estimate of the autocor-
relation at different time instants should be calculated using multiple realizations
of the same time series {Xt}t∈I . In most cases, this is practically impossible since
there is often only one realization of the time series under consideration. In partic-
ular, let x = (x1, x2, . . . xn) be a realization of the process {Xt}t∈I . Then, assuming
at least weak stationarity of order 2, it is possible to estimate the autocovariance
and autocorrelation functions through:

γ̂(l) = 1
n

n∑
i=l+1

(xi − x̄)(xi−l − x̄) (1.10)

ρ̂(l) =

n∑
i=l+1

(xi − x̄)(xi−l − x̄)
n∑

i=1
(xi − x̄)2

(1.11)

The calculation of autocorrelation can be visualized in a plot called a "sample
autocorrelation function" that shows the autocorrelation value varying with the
lag. An example of a sample autocorrelation function can be seen in figure 1.3,
where the autocorrelation of the white noise introduced in example 1 is calculated.
In particular, it can be noted that the first value is equal to 1, while all others are
very close to 0. This is significant in that each observation of white noise has no
correlation with the past or future.
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Lag

0.2

0.0

0.2

0.4

0.6

0.8

1.0

AC
F

Figure 1.3: Sample autocorrelation function of white noise with µ = 0 and σ2 = 1
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1.1 – An introduction to Time series

Observation 2. The sample ACF can also be calculated for non-stationary
time series; however, in this case, the estimate loses its meaning. In the case of
non-stationary processes, what is actually calculated is the autocorrelation of
the process only after being purged of any trends that make it non-stationary,
as we will see later.

Example 2 (Air Passengers). Let’s analyze a time series related to the monthly
number of passengers of an airline (Fig. 1.4).
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Figure 1.4: Monthly airline passengers

As visually evident, there is a poorly defined increasing trend over the
years, which indicates that the series is not stationary, and the calculation
of autocorrelation would be uninformative. It is possible to eliminate this
trend component from the time series to obtain only the seasonal component
through the STL decomposition (Fig. 1.5).
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Figure 1.5: Monthly airline passengers (seasonal component)

At this point, having obtained a trend-free process, it is appropriate to
calculate the sample ACF, obtaining the result in Fig. 1.6, from which it is
possible to notice a positive correlation between observations with a lag l = 12,
i.e., one year apart.
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Figure 1.6: ACF of the seasonal component of the "Air Passengers" series

So far, the correlation analysis has focused on the study of an isolated time
series. However, it is of common interest when one wants to infer information
regarding multiple time series jointly. It might be necessary to discover if there
are correlations between pairs of time series to detect their dependence.

Definition 5 (Joint Stationarity). Two time series {Xt}t∈I and {Yt}t∈I are
called jointly stationary if both are stationary, and if the joint covariance
function:

γXY (h) = Cov(Xt+h, Yt) = E[(Xt+h − µX)(Yt+h − µY )] (1.12)

is a function that depends only on the lag h.

Therefore, we can define:

Definition 6. The Joint Correlation Function (CCF, Cross-Covariance
Function) of two jointly stationary time series {Xt}t∈I and {Yt}t∈I is defined
as:

ρXY (h) = γXY (h)√
γX(0)γY (0)

(1.13)

Similarly to what was done before, it is possible to define their respective esti-
mators of joint covariance and correlation as:
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1.1 – An introduction to Time series

γ̂XY (h) = 1
n

n−h∑
i=1

(xi+h − x̄)(yi+h − ȳ) (1.14)

ρ̂XY (h) = γ̂XY (h)√
γ̂X(0)γ̂Y (0)

(1.15)

1.1.2 Models for Time Series
Autoregressive Model (AR)

Definition 7. An autoregressive model of order 1 AR(1) is a time series
{Xt}t∈I of the form:

Xt = αXt−1 + ωt (1.16)

with |α|< 1 and ωt ∼ N (0, σ2).

By iteratively developing Eq. 1.16, assuming that I is of infinite dimension, we
obtain:

Xt = αkωt−k + · · · =
∞∑

i=0
αiωt−i (1.17)

It can be noticed that an autoregressive model is given by the infinite sum of i.i.d.
normal random variables. Furthermore, it is possible to calculate autocorrelation
by noting that:

Cov(Xt, Xt+k) = αkσ2

1− α2 = γ(k). (1.18)

As shown in 1.18, autocovariance does not depend on time; therefore, the pro-
cess is weakly stationary of order 2 or higher. Moreover, since the sum of normal
random variables is still normal, we obtain:

Xt ∼ N
Å

0,
σ2

1− α2

ã
Xt|Xt−1 ∼ N (αXi−1, σ2) (1.19)

To conclude, autocorrelation is calculated using 1.7, resulting in:

ρ(k) = αk (1.20)

Observation 3. The model just defined is a zero-mean autoregressive
model. In case one wants to switch to an AR(1) model with mean µ, a variable
change Yt = Xt − µ is sufficient.
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Definition 8. An autoregressive model of order p AR(p) is a time series
{Xt}t∈I of the form:

Xt = α1Xt−1 + α2Xt−2 + · · ·+ αpXt−p + ωt (1.21)

with ωt ∼ N (0, σ2).

If an operator called Backshift Operator B is introduced such that Bkxt = xt−k,
then 1.21 can be rewritten as:

Θp(B)Xt = ωt (1.22)

Xt = Θ−1
p (B)ωt (1.23)

Thus, the backshift polynomial Θp(B) is introduced as in 1.22, and considering
that B is a linear operator, it is possible to explicitly express Θ−1

p (B) by obtaining
from 1.23:

Xt =
Ç

1 +
∞∑

i=1
ciB

i

å
ωt (1.24)

Observation 4. The series
∞∑

i=1
ciB

i converges if and only if the polynomial
Θp(B) (intended as a polynomial of B) has all its roots with an absolute value
strictly less than 1.

Moving Average Model (MA)

Definition 9. A Moving Average model of order 1 MA(1) is a time series
{Xt}t∈I of the form:

Xt = ωt + βωt−1 = (1− βB)ωt (1.25)

where ωt ∼ N (0, σ2).

From the properties of expected value and variance, it is straightforward to
derive that:

E(Xt) = 0

γ(k) =


σ2(1 + β2) if k = 0
βσ2 if k = 1
0 otherwise

18



1.1 – An introduction to Time series

Observation 5. The MA(1) model can be expressed as an AR model of
infinite order. Indeed, from 1.25:

(1 + βB)−1Xt = ωtÇ
1 +

∞∑
i=1

ciB
i

å
Xt = ωt

Xt =
∞∑

i=1
ciB

iXt + ωt

Definition 10. A Moving Average model of order q MA(q) is a time series
{Xt}t∈I of the form:

Xt = ωt + β1ωt−1 + · · ·+ βqωt−q (1.26)

where ωt ∼ N (0, σ2).

Similarly to the autoregressive model, 1.26 can be expressed as:

Xt =
q∑

i=0
βiωt−i = Φq(B)ωt (1.27)

with β0 = 1. Using 1.27, we obtain:

E[Xt] = 0 (1.28)

γ(k) =



0 if k > q

σ2
q∑

i=0
β2

i if k = 0

σ2
q−k∑
i=0

βjβj+k if k ∈ [1, . . . q]

(1.29)
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ARMA Model

Definition 11. An Autoregressive Moving Average model of order (p, q) ARMA(p,
q) is a time series {Xt}t∈I of the form:

Xt = α1Xt−1 + · · ·+ αpXt−p︸ ︷︷ ︸
AR(p) part

+ ωt + β1ωt−1 + · · ·+ βqωt−q︸ ︷︷ ︸
MA(q) part

(1.30)

which, in compact form, can be written as:

Θp(B)Xt = Φq(B)ωt (1.31)

Integrated Models

The differencing of a process is the process of order 1 differences:

X∗
t = Xt −Xt−1

X∗
t = (1−B)Xt

Definition 12. A process is said to be Integrated of order d I(d) if differ-
encing it d times produces white noise:

(1−B)dXt = ωt (1.32)

Observation 6. Differencing d times does not mean considering differences
of order d; indeed:

X∗∗
t = X∗

t −X∗
t−1 (1.33)

The integration of a process is a useful operation in the case of non-stationary
processes that exhibit trends. For example, consider a process:

Xt = a + bt + ωt

which is clearly a non-stationary process with a linear trend over time. Differen-
tiating it, we get:

X∗
t = b + ωt − ωt−1 = b + (1−B)ωt

X∗
t is therefore a stationary MA(1) process. Integration allows us to study evi-

dently non-stationary processes using stationary models that are easier to handle.
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1.2 – An Overview of Anomaly Detection

ARIMA Models

Combining what has been expressed so far, it is possible to define an important
family of processes that represent the starting point for time series modeling.

Definition 13. An Autoregressive Integrated Moving Average model ARIMA
(p,q,d) is a time series Xtt∈I of the form:

Θp(B)(1−B)dXt = Φq(B)ωt (1.34)

ARIMA models can be further expanded in order to account for seasonality in
data (SARIMA models). These models are the foundational bricks for modeling
time series and, as we will see in the next chapter, can be used for anomaly
detection in time series data.

1.2 An Overview of Anomaly Detection
In today’s complex and dynamic digital landscape, the rapid growth of data has
become both a boon and a challenge for various industries. Among the vast sea
of information, identifying irregularities or anomalies is crucial for ensuring the
integrity, security, and efficiency of systems and processes. Anomaly detection, a
subset of machine learning and data analytics, has emerged as a powerful tool to
address this need.

Anomaly detection refers to the process of identifying patterns or instances that
deviate significantly from the norm within a dataset. These anomalies can man-
ifest in various forms, such as unusual behavior, unexpected events, or outliers
that diverge from the expected patterns. The objective of anomaly detection is to
discern these deviations and flag them for further investigation.

But how can we define an anomaly? Turns out that even coming out with a
precise description of anomalies is not an easy task. A broad and not very descrip-
tive definition for an anomaly can be the following:

Definition 14. An Anomaly (or outlier) is a substantial variation from the
norm Mehrotra et al. [2017]

The fact that no precise definiton of an anomaly can be formulated suggests that
a precise definition cannot exist unless the application field is specified. Still, some
common traits of anomalies across all applications can be outlined.
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First of all, anomaly detection approaches are based on models and prediction
from past data. Many scientific and engineering fields are based on the assumption
that processes exist in nature that follow certain rules, resulting in the state of a
system. We then formulate hypoteses about the process from data that describe
the normal behavior of a system. The primary assumption of normal behavior is
stationarity, i.e. the underlying processes, that led to the generation of the data,
are believed not to have changed significantly. Variations from the norm may oc-
cur in the processes, hence system may also exist in abnormal states. The task of
anomaly detection is to discover such variations from the norm.

At first glance, one could think that the problem we are facing is a classification
problem, i.e. separating data into two classes: anomalous and non-anomalous.
This classification task could then be tackled with well known machine learning
classification algorithms from simple support vector machines and decision tree
to heavy-duty deep learning architectures. The fact that anomalies are variations
from normal behavior is the very reason why the classification approach is of-
ten unsuccessful: anomalies are, for their nature, much rarer than non-anomalies,
hence there is a strong imbalance between the two classes in any dataset and that
is the main reason why classification algorithm may not work. Furthermore, we
could see much variance among anomalies themselves, making it difficult to even
put them under the same class.

1.2.1 Performance metrics
Similarly to classification tasks, to evaluate the performance of any anomaly detec-
tion algorithm we use metrics such as Precision, Recall, F1 score and AUC-ROC
score.

Precision and Recall

Let Ĉ the random variable that represents the prediction of the anomaly detection
algorithm and let C be the random variable that represents the actual class of the
observed datapoint x. Let P be the positive class meaning the class representing
anomalies (this is a class and not a random variable, both C and Ĉ could take P
as a possible value). Moreover, let:

True positive number (tp): the number of datapoints that are actually anoma-
lies and have correctly been marked by the model as anomalies ;

False positive number (fp): the number of datapoints that are not anomalies
but have been mistakenly marked by the model as anomalies ;
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False negative number (fn): the number of datapoints that are actually anoma-
lies but have been mistakenly marked by the model as non-anomalies

Definition 15 (Precision and Recall). Let D be the dataset, then Precision
(Pr) and Recall(Rc) can be defined and approximated as:

Pr = P(C = P |Ĉ = P ) = P(C = P, Ĉ = P )
P(Ĉ = P )

≃
tp
|D|

tp+fp
|D|

= tp

tp + fp
(1.35)

Rc = P(Ĉ = P |C = P ) = P(Ĉ = P, C = P )
P(C = P ) ≃

tp
|D|

tp+fn
|D|

= tp

tp + fn
(1.36)

As we can notice in 1.35, Precision (Pr) is the probability that a datapoint is
an anomaly, knowing that the model has classified it as an anomaly. Conversely,
Recall (Rc), is the probability that a datapoint has been (correctly) classified as
an anomaly, knowing that is an anomaly Roelleke [2013].

F1 Score

When we are dealing with imbalanced classes both Precision and Recall become
valuable metrics since:
Precision measures the accuracy of positive prediction and in imbalanced classes,

high precision is important because it indicates that when the classifier pre-
dicts the positive class, it is likely correct.

Recall measures the ability of the classifier to capture all relevant instances of
the positive class. In imbalanced classes, high recall is important because it
ensures that the classifier doesn’t miss many instances of the minority class.

The F1 Score combines precision and recall using their harmonic mean, providing
a single metric that balances these two aspects. This is useful since F1 score will
be high when both Precision and Recall are high, preventing situations where
Precision dominates recall or vice-versa.

Definition 16 (F Score). F1 score can be defined as the harmonic mean be-
tween the Precision and Recall metrics.

F1 = 2
1

Rc
+ 1

P r

= 2 Pr ·Rc

Pr + Rc
(1.37)

Moreover 1.37 can be seen as a particular case of a more general form. In fact,
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we can define the Fβ score as:

Fβ = (1 + β2) Pr ·Rc

β2Pr + Rc
(1.38)

Hence F1 is the case where β = 1.

AUC-ROC Score

AUC-ROC (Area Under the Receiver Operating Characteristic Curve) is another
performance metric used in binary classification problems to evaluate the ability
of the model to discriminate between anomalies and non anomalies. In order to
compute the Receiver Operating Characteristic Curve we first need to define two
quantities: True Positive Rate and and False Positive Rate.

True Positive Rate is just an alias for Recall in the field of information retrieval.
It can in fact be defined as in 1.36 and it represents the Probability of the model
of classifying correctly an anomaly knowing that the observed datapoint is an
anomaly.

On the other hand, False Positive Rate is the probability that the model classifies
a given datapoint as anomalous knowing that said datapoint is non-anomalous.
Similarly to 1.36, we can define the False Positive Rate as:

FPR = P(Ĉ = P |C = N) = P(Ĉ = P, C = N)
P(C = N) ≃ fp

fp + tn
(1.39)

where tn is the True Negative Number meaning the number of non-anomalies that
are correctly classified as such.

As we will see in the following chapters, anomaly detection algorithms work by
learning an Anomaly Score. This means that the output of the algorithm is not
just a 0-1 classification, instead is a score that reflects "how much a point can be
considered an anomaly". This means that in order to obtain a classifier a thresh-
old must be set on the anomaly score, above witch a point is considered anomalous.

With this knowledge on hand we can finally define the Receiver Operating Char-
acteristic Curve as the curve obtained plotting the False Positive Rate against the
True Positive Rate of the model at various threshold settings. A visual example
can be seen in Figure 1.7 where the better the classifier is, the more the curve is
squashed towards the (0, 1) point, that represent the perfect classifier in the ROC
space.
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Figure 1.7: Graphical example of AUC-ROCs of multiple models

Finally, the AUC-ROC, as the name suggests, is the Area under the Receiver
Operating Curve and is simply computed by integrating the ROC along the False
Positive Rate axis. AUC-ROC is a score in [0, 1] with 1 being the perfect classifier.

Observation 7. The AUC-ROC score is useful since it decouples the value of
the threshold from the quality of the predictions. This means that AUC-ROC
is a score that classifies a model regardless of the threshold setting, that can
be addressed after the model is trained and can be application dependent.

1.2.2 General Approaches to Anomaly Detection
In this section we will outline general concepts and approaches to anomaly de-
tection. For simplicity data D will be considered to exist in multidimensional
continuous space Rn, but the same concepts can be applied to data that lives in
discrete spaces.

Distance Based Anomaly Detection

One of the most intuitive ways to identify whether a data point is anomalous or
not is by evaluating its distance to other points in the dataset. Assuming that a
measure of distance exists in the space where data lives, we can then assume that
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a point is anomalous if its distance to other points is "high enough". In order to
classify whether a point is an anomaly or not, we need both an anomaly measure
α(·) and a threshold θ such that if a point p ∈ D is classified as an anomaly when
α(p) > θ.

In order to define an anomaly measure we first need to define a distance mea-
sure on the space of the data. One of the most common distance measures used
for data in RN is the lp distance with p = 1 or p = 2 (Euclidean Distance).

dlp(p, q) =
Ç

n∑
i=0
|pi − qi|p

å 1
p

(1.40)

A more statistically refined version of the euclidean distance can be found in
the Mahalanobis distance. Given a probability distribution Q on RN with mean
µ = (µ1, µ2, . . . µN)T and a positive-definite covariance matrix S, then the Maha-
lanobis distance between two points p, q ∈ RN with respect to Q is:

dM(p, q; Q) =
√

(p− q)T S−1(p− q) (1.41)

In practice S is the sample covariance matrix measuring correlations between di-
mensions for all points in the dataset D. This measure of distance is used instead
of the euclidean distance since dimensions are normalized by the covariance matrix
and takes into account the correlations between different variables in multivariate
data.

Once a distance measure has been defined, an anomaly score can be computed
based on various criterions. Some examples are:

• Distance to all points: α(p) = ∑
q∈D

d(p, q)

• Distance to nearest neighbor: α(p) = min
q∈D,q ̸=p

d(p, q)

• Average distance to k nearest neighbors: α(p) = 1
k

k∑
q∈Nk(p)

d(p, q) where Nk(p) is

the set of the k nearest neighbors to p.

• Median distance to k nearest neighbors.

Clustering Based Anomaly Detection

Clustering algorithms make the foundations of modern machine learning. They
are widely used in a myriad of applications, one above all: classification. Since
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Anomaly Detection can be thought as a particular kind of classification task, var-
ious clustering techniques can then be used in order to distinguish anomalies from
normal data.

Given a set of points {p1, p2, ...pn} ∈ D, clustering algorithms generally assign
each point (or most of the points) to a cluster Ci, i ∈ {1, . . . K} where K can be
a pre-defined hyperparameter or not, meaning that the number of clusters can be
a-priori defined based on the clustering algorithm used. The assignment of each
point is based on a distance measure or a similarity measure that must be chosen
according to the space in which the data lives in. Each cluster Ci generated can
be represented by their center points called centroids ci = ∑

p∈Ci

pj/|Ci|.

One of the most common clustering algorithm is the k-means clustering algorithm,
which minimizes the quantity: ∑

p∈D

∑
c∈C

∥pi − ci∥2 (1.42)

that represent the sum of all the euclidean distances between all points and all
centroids, given a fixed number k of clusters. A variation, the Fuzzy k-means
algorithm, introduces the concept of closeness to centroids to the minimization
function, arguing that points that are closer to a centroid should be given greater
weightage in the minimization process. Hence, if µi,j ∈ [0, 1] represents the degree
to witch pi belongs to cluster Cj then the quantity to minimize becomes:∑

p∈D

∑
c∈C

µi,j∥pi − ci∥2 (1.43)

Other clustering approaches are density based such as the DBSCAN clustering
algorithm what, conversely to nearest-neighbor clustering, does not require a pre-
defined number of clusters and will generate as many clusters as needed based on
other hyperparameters that refer to the sensitivity of the search to density. Since
this algorithm is density based then datasets with discrete or categorical data are
not usable unless other density concept are used.

Assuming that clusters have been identified, several approaches are available to
determine whether a point is anomalous or not. One of the simplest classification
criterion is checking whether a point has been assigned to a cluster or not, assum-
ing that the clustering algorithm used allows no cluster assignment for some of the
points.
This approach cannot be used if all points are assigned to a cluster, in this case
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another parameter can be used to assess the anomaly measure: proximity to other
points. We can in fact compute an anomaly measure as:

α(p) = min
j

d(p, cj) (1.44)

which is simply the distance of the point to the nearest centroid. It’s safe to
say that if this value exceeds a threshold θ then the point can be considered an
anomaly. This approach works well if the number of clusters k is correctly chosen:
if k is to high then the clustering "overfits" and anomalies themselves could become
a cluster, if k is too low the opposite occurs and normal points could be considered
anomalies.

1.3 Anomaly Detection in time series
The general approaches for anomaly detection can be applied to time series data.
Anomaly detection for time series data is a research area that is thriving since time
series data, characterized by its sequential and temporal nature, is ubiquitous in
various domains such as finance, healthcare, manufacturing, and telecommunica-
tions.

Anomaly detection in time series data is a crucial aspect of data analysis aimed
at identifying patterns that deviate significantly from the expected norm. These
anomalies can manifest as sudden spikes, dips, or irregularities in the data, often
indicative of abnormalities, errors, or even emerging trends. The ability to detect
anomalies promptly is vital for mitigating risks, ensuring data integrity, and en-
hancing overall system reliability.

Several factors contribute to the complexity of anomaly detection in time series
data. These include seasonality, trends, and various external factors that can in-
fluence the underlying patterns. Traditional statistical methods may fall short in
capturing the intricate dynamics of time series data, leading to the growing reliance
on advanced techniques, machine learning algorithms, and artificial intelligence.

In this context, modern anomaly detection approaches leverage a spectrum of
methodologies, including supervised and unsupervised machine learning, deep
learning, and ensemble methods. These techniques allow for the automated iden-
tification of anomalies by learning from historical data, adapting to evolving pat-
terns, and continuously improving the detection process.

Since detecting abnormalities in time series data can be very task-specific a tax-
onomy of the methods that can be used will now follow Blázquez-García et al.
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[2020]. Anomaly detection in time series data can be classified mainly based on
two factors: type of input data and outlier type.

Input data types can be univariate time series 1 or multivariate time series 22.
One can notice that univariate models can also deal with multivariate time series
data as long as each feature dimension is treated as a univariate time series. This
implies that correlation between dimension is not accounted hence the method is
not able to detect correlation anomalies between features.

A detection method can also be defined with respect to the outlier type that
it can detect. Possible type of outliers can be point outliers, subsequence outliers
and time series outliers.

1.3.1 Point Outliers
A point outlier is a datum that behaves unusually in a specific time instant when
compared either to the other values in the time series (global outlier) or to its
neighboring points (local outlier). Moreover point outliers can be univariate or
multivariate depending on whether they affect one or more time-dependant vari-
ables respectively (figure 1.8).

The most intuitive definition for point outlier is a point in time that significantly
deviates from its expected value. When a univariate time series is under scrutiny,
then each point xt with t ∈ {1, 2, ...T} can be defined as an outlier if the difference
from its expected value x̂t exceeds a given threshold τ

|xt − x̂t|> τ (1.45)

This concept may seem pretty simple, but it covers the difficult task of estimating
observations from time series data which constitutes its whole research area. Note
that we used the term estimating and not predicting since x̂t can be estimated
using only previous observations or neighbor observations including future obser-
vations. This distinction is crucial since methods that only rely on past data to
estimate new observation can be defined as online algorithms meaning that they
can be deployed in real-time application where future data is not available. On
the other hand, methods that leverage future data cannot be deployed in real-time
for obvious reasons, unless a certain delay is allowed.

Outlier detection that make use of point estimation are based on a model that
is adequately fitted to the data in order to infer the behavior of the stochastic pro-
cess underlying the data. For this reason these approaches are also called model
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(b) A point outlier in multivariate data

Figure 1.8: An example of point outliers

based and they differentiate one from another based on the model used to fit the
data and the methodologies used for estimation. One example of model that can
be used to estimate data is the ARIMA model seen in 13 from which one can
estimate future data and compute its variance to evaluate whether an observation
is anomalous or not.

Other point outlier detection algorithm can also be density based or histogram-
ming based. The first category relies on the concept that xt can be defined as an
outlier if less than τ observations lie within a distance R from xt, given a distance
measure d(·, ·)

xt outlier ⇐⇒ |{x ∈ X|d(x, xt) ≤ R}|< τ (1.46)

The second category is based on the concept of histogramming time series data
and the fact that a point can be considered anomalous if their removal from the
time series results in a histogram representation with lower error than the original.

When dealing with multivariate time series data for point outlier detection various
techniques can be adopted to overcome the dimensionality of the data. First of all,
multivariate data can be treated as multiple univariate time series hence univariate

30



1.3 – Anomaly Detection in time series

techniques can be adopted in an ensamble fashion to perform anomaly detection.
This approach unfortunately disregards any dependencies that may exist between
the variables.

Another approach to leverage well established univariate point outlier detection
algorithms with multivariate data is to use techniques to aggregate multiple fea-
tures into independent time series. This means to apply a preprocessing method
to the multivariate time series to find a new set of uncorrelated variables where
univariate techniques can be applied. This falls under the umbrella of dimension-
ality reduction.
In contrast to this, multivariate data can be analyzed using natively multivariate
techniques. As shown for univariate techniques, the most important category of
multivariate anomaly detection algorithm are model based. This means that a
model is fitted on multivariate time series data and is used to infer estimations
on observations that will be leveraged to classify whether if an observation is an
anomaly or not. Once an estimation x̂t has been computed, a simple anomaly
measure based on distance can be used as a decision rule:

∥xt − x̂t∥> τ (1.47)

The main approaches used to experiment with anomaly detection in this thesis are
model based point outlier detection algorithms and will be discussed later.

1.3.2 Subsequence outliers

A subsequence outlier is a set of consecutive points in time whose joint behavior is
unusual, although each observation individually is not necessarily a point outlier.
Similarly to point outliers, they can be both defined in univariate and multivariate
time series (figure 1.9)
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(a) A subsequence outlier in univariate data
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(b) A subsequence outlier in multivariate data

Figure 1.9: An example of subsequence outliers

One of the most successful techniques used for subsequence outliers detection
is the Discord detection approach, first developed in Keogh et al. [2005].

A discord detection algorithm: HOT-SAX

Keogh et al. [2005] addresses the problem of searching for discords within a time
series. The main goal is to find the subsequence of a time series that is the
"least similar" to the others; this subsequence is informally called a "discord."
This approach to anomaly detection in time series is particularly interesting as it
requires only one parameter to consider, which is the length of the subsequences
to examine.

Definition 17 (Subsequence). Let X = {Xt}t∈T be a discrete time series of
length m (i.e., T = {1, 2, . . . m}). Then, a subsequence of X of length n
starting from p is a time series X ′(n, p) defined as:

X ′ = {Xt}t∈T ′ where T ′ = {p, p + 1, . . . p + n− 1} (1.48)

In less formal terms, a subsequence X ′(n, p) is a "window" of length n extracted
from X starting at time p.
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Observation 8 (Sliding Window). Given a time series X of length m, all
subsequences of length n can be extracted using a "sliding window." Since the
length of subsequences is a globally fixed parameter n, it will be omitted from
the notation, considering only the starting point p: X ′(p).

Definition 18 (Non-Self Match). Given a time series X, let X ′(p) and X ′(q)
be two subsequences of length n. They are called Non-Self-Matching if
|p− q|≥ n, meaning the two subsequences do not overlap.

Definition 18 is justified by the fact that, if the goal is to compare subsequences
with each other, it makes little sense to compare two overlapping subsequences as
they would exhibit a high similarity simply due to their proximity.

Definition 19 (Discords). Given a time series X, the subsequence X ′(l) is a
Discord of X if X ′(l) has the largest distance from its nearest non-self match
compared to all other subsequences. Formally, it holds:

min(Dist(X ′(l), Ml)) > min(Dist(X ′(p), Mp)) ∀p ∈ {1, . . . m−n−1} (1.49)

where Ml and Mp represent the sets of non-self-matching subsequences with
X ′(l) and X ′(p), respectively.

Observation 9. The distance defined can be any type of distance between
time series. The required properties for the distance function are typical, par-
ticularly that it takes positive values and is symmetric. Also, before invoking
the concept of distance between time series, it is necessary to normalize all
the time series being compared to have zero mean and unit variance. For
the purposes of this work, comparing time series with different offsets and
amplitudes would make little sense.

Starting from Definition 19, it is intuitive to imagine a brute-force algorithm
that returns the discord within a time series.
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Algorithm 1 Brute force Discord Discovery.
Require: n ∈ N+, X = {Xt}t∈T

1: max_dist← 0
2: loc← NaN
3: for p ∈ {1, 2, . . . |X|−n + 1} do ▷ Outer loop
4: nn_dist←∞
5: for q ∈ {1, . . . |X|−n + 1} do ▷ Inner loop
6: if |p− q|≥ n then ▷ Non-self match check
7: if Dist(X ′(p), X ′(q)) < nn_dist then
8: nn_dist← Dist(X ′(p), X ′(q))
9: end if

10: end if
11: end for
12: if nn_dist > max_dist then
13: max_dist← nn_dist
14: loc← p
15: end if
16: end for

Algorithm 1 has a computational complexity of O(|X|2), making it unscalable
for moderately large datasets. However, two fundamental observations can signif-
icantly improve its performance:

1. In the inner loop, it is not necessary to check all possible distances: if X ′(p)
has at least one neighbor at a distance less than max_dist, then X ′(p) is
definitely not the discord.

2. The order of checking subsequences in both the outer and inner loops influences
the algorithm’s performance.

The first improvement is easy to achieve: as soon as a distance smaller than
max_dist is encountered in the inner loop, move directly to the next iteration
of the outer loop. The second improvement is more complex to implement: a
perfect ordering would make the algorithm much more efficient, but the ordering
itself could be computationally expensive. Therefore, an heuristic is needed to
approximate the perfect ordering in an economical way.

The HOT-SAX Algorithm

The ordering heuristic is based on a representation of time series developed in Lin
et al. [2003] called SAX (Symbolic Aggregate ApproXimation).
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A m-dimensional time series X = {X1, . . . Xm} can be projected onto a w-
dimensional space (w < m) through:

X̄i = w

m

m
w

i∑
j= m

w
(i−1)+1

Xj i ∈ {1, . . . w} (1.50)

In practice, the original series is partitioned into w windows, and the average
value is assigned to each window.

Now, let k ∈ N, and define z =
Ä
z 1

k
, z 2

k
, . . . z k−1

k

ä
as a vector of quantiles of

N (0, 1). Thus, z partitions R into k equiprobable intervals under a standard
normal distribution. If each segment is associated with a "symbol" αi with i ∈
{1, 2, . . . k}, we can define a symbolic representation of the time series X as follows:

Definition 20. A series X can be defined as a word X̂ = {X̂1, X̂2, ...X̂w}
where:

X̂i = αj ⇐⇒ X̄i ∈
Ä
z j−1

k
, z j

k

ä
(1.51)

where z0 = −∞ and z1 = +∞

Definition 21. Let X be a time series of length m, and let X ′(p) be its sub-
sequences of length n with p ∈ {1, . . . m − n + 1}. Let X̂ ′(p) be the words
of length w generated from X ′(p). Then, the SAX representation of X is a
vector of words consisting of m− n + 1 words of length w generated from each
subsequence of X:

XSAX = {X̂ ′(1), . . . X̂ ′(m− n + 1)} (1.52)

Now we can define a sorting heuristic for the outer loop. Let CX = (c1, c2, . . . cm−n+1)
be a vector where ci is the count of occurrences of the word X̂ ′(i) within the se-
ries XSAX . The first subsequences to examine in the outer loop are those with
the lowest possible number of occurrences. For example, a partial ordering of the
subsequence vector might have at the beginning all subsequences that have an
occurrence count of 1. The intuition behind this heuristic is based on the fact that
it is more likely to find discords among rarer subsequences (i.e., those with fewer
occurrences).

Regarding the heuristic for the inner loop, the goal is, given a subsequence X ′(p)
under examination, to find its nearest neighbor at a smaller distance as soon as
possible in the loop. Starting from X ′(p), an approximation of this desired order-
ing is obtained by visiting first all subsequences whose word representation is the
same as X ′(p), hoping to find more similar subsequences.
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To make these heuristics efficient, multi-dimensional arrays, trees, and linked lists
data structures are used. For implementation details, refer to Keogh et al. [2005].

1.3.3 Outlier Time series
When the input data is multivariate then entire time series can also be outliers
when the behavior of the series significantly differs from the rest. (Figure 1.10)
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Figure 1.10: An example of a time series that can be considered an outlier (in red)
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Chapter 2

Anomaly Detection
Methodologies

In this chapter we will introduce the anomaly detection methodologies that have
been experimented with in this thesis. In particular a class of methods known as
Graph Neural Networks (GNN) has been implemented as the foundation of the
full pipeline that will be shown at the end.

Graph neural networks have shown to be very effective in tasks where model-
ing multidimensional dependencies is crucial for the task at hand. In our case, we
will show how the concept of Graph Convolution is used to model both temporal
and feature correlation in a multivariate time-series prediction problem. The aim
is to build a robust prediction model for multivariate time-series that will be used
to assess an anomaly score of each observation.

To further boost the performance of the main GNN pipeline, a Temporal Con-
volutional Network will be deployed. Temporal convolution is a common practice
in the Deep Learning realm and in this setting will be used as a translation layer
that aims to give to the input data a common representation across features. This
is needed since sensor data from real-world applications is very heterogeneous and
naive normalization techniques are not enough to guarantee an accurate input rep-
resentation of the data.

It is now necessary to expand the definition 1 of stochastic processes to introduce
the so-called multivariate stochastic processes, necessary for modeling multivariate
time series where, for each time instant, as many observations are recorded as there
are data sources (e.g., sensors simultaneously recording different measurements).
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Definition 22. A Multivariate Stochastic Process (Xt)t∈I is defined as
a family of multivariate random variables such that, for fixed t, the following
holds:

Xt :Ω −→ E

ω −→ Xt(ω)

That is, X−1
t (B) ∈ F , ∀B ∈ E. In particular, Xt, for t ∈ I, are multivariate

random variables, where Xt = (Xt,1, Xt,2, . . . , Xt,d).

Operationally, a multivariate time series with real values is represented by a
matrix X ∈ Rn×d, where n is the length of the time series, and d is the number of
features. What has been said so far about anomaly detection in univariate time
series can be directly applied to multivariate time series.

2.1 The MTAD-GAT Methodology for Anomaly
Detection

In Zhao et al. [2020], the problem of anomaly detection for multivariate time series
is addressed through convolutional neural networks. In particular, the concept of
graph convolution or graph convolution is used to model the interdependence of
observations both along the temporal and feature dimensions.

Let X ∈ RN×d be the matrix containing the multivariate time series under con-
sideration, where N is the total length of the time series, and d is the number of
features. As is common to all deep learning algorithms used in anomaly detection,
K instances of smaller multivariate time series windows are generated through
a sliding window procedure. These windows, denoted as x ∈ Rn×d, are used as
input to the model. In this work, the model’s performance is studied based on the
implementation by ML4ITS [2023]. The original model was subsequently modified
to improve its performance on the tested datasets.

A summary diagram of the original MTAD-GAT model is presented in Fig. 2.1
and analyzed in detail in the following paragraphs.
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Figure 2.1: Descriptive diagram of the MTAD-GAT architecture

2.1.1 Preprocessing
Firstly, the data matrix X is column-normalized. This process can be done either
through the classic MinMaxScaler 2.1 and StandardScaler 2.2 implemented in
scikit-learn, or by experimenting with the use of QuantileTransformer 2.3.

X̃:,i =
X:,i −min

(
Xtrain

:,i
)

max
(
Xtrain

:,i
)
−min

(
Xtrain

:,i
) i ∈ {1, 2 . . . d} (2.1)

X̃:,i = X:,i − µi

σi

i ∈ {1, 2 . . . d} (2.2)

X̃i,j = F −1
g (qi,j) i, j ∈ {1, 2 . . . d} (2.3)

Here, X:,i represents the i-th column of the matrix X, Xtrain is the portion of the
data used for training, µi and σi are the sample mean and variance of X:,i, and qi,j is
the sample quantile for the observation Xi,j relative to the column X:,i. Finally, Fg

is the cumulative distribution function of a distribution g, chosen between uniform
and standard normal.

Observation 10. All three scaling methodologies serve to make the features
comparable by performing a transformation that brings the data into the same
range of values. Unlike MinMaxScaler and StandardScaler, QuantileTransformer
is a less commonly used scaler. The reasons for the possible use of QuantileTransformer
can be found in the nature of the data used within the algorithm. Often, data
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from sensors have both high definition and a very large range of possible values
(see Figure 2.2, an excerpt from the SWaT dataset Goh et al. [2017]).
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Figure 2.2: Zoom view of one of the features in the SWaT dataset Goh et al.
[2017]

The QuantileTransformer mitigates this effect by distributing the data ac-
cording to a distribution g, chosen between a uniform U(0, 1) and a standard
normal N (0, 1) (Fig. 2.3). The choice of the scaler is dictated by the model’s
performance, and it is important to consider that the QuantileTransformer,
although mitigating the above-mentioned issues, naturally alters the distribu-
tion of the data.
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Figure 2.3: Effect of various scalers on raw data. For QuantileTransformer,
g = N (0, 1)

In addition to scaling, another preliminary data cleaning operation known as
Spectral Residual (SR) Ren et al. [2019] is performed. SR is a univariate algorithm
that cleans a time series based on spectral analysis of the data. Let x = X:,i be
the column to which SR is applied; then, define:
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F(x) = (r1e
θ1i, r2e

θ2i, . . . , rneθni) (2.4)
θ = (θ1, θ2, . . . , θn) (2.5)
l = (log(r1), log(r2) . . . , log(rn)) (2.6)

lsmooth = l ∗ hq (2.7)
δ = l − lsmooth (2.8)

SR = |F−1(eδ+iθ)| (2.9)

Here, F(x) is the discrete Fourier transform of the vector x, hq = 1/q ∈ Rq with q
fixed is used to calculate the moving average of l through convolution ∗. Ideally,
SR defines a map of salience of the data x, where a high value of SR(j) indicates
that x(j) is an anomaly in the frequency domain. Therefore, all points that exceed
a certain threshold τ are replaced with the mode of x.

Once preprocessing is complete, windows are generated through a simple sliding
window. Thus, each instance of data passed to the model is a window x ∈ Rn×d

extracted from the matrix X. Is worth noting that sliding windows are generated
in this case with a stride number of 1 meaning that each window overlaps the next
by n− 1 samples as shown in figure 2.4.

Figure 2.4: An example of a sliding window extraction with stride 1 and n = 3
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2.1.2 Graph Attention
Graph convolution, also known as Graph Attention (GAT), is the core of the
MTAD-GAT methodology. The graph concept is used to capture correlations
both temporally and across the features of the time series. In Deep Learning a
graph is often used to point out a structure that has a set of feature vectors that
are connected to each other by edges. With respect to the mathematical concept
of graph G = (V, E) where V is the set of vertices and E is the set of edges, in deep
learning vertices are vectors that have a predefined length and a weight matrix A
determines the weight of the connections between each vertex.

In its most general form, given (v1, v2, . . . vK) feature vectors vj ∈ Rm related
to each of the K nodes in a graph G, the output representation for each node is
expressed as:

hj = σ

Ç∑
j∈Ni

αijvj

å
(2.10)

Here, σ represents the sigmoid function1, and αij represents the attention score
measuring the contribution of node j to node i. Only the adjacent nodes to vi,
denoted as Ni, participate in the calculation, and αij is calculated as follows:

eij = LeakyReLU(wT · (vi ⊕ vj)) (2.11)

αij = exp(eij)∑
l∈Ni

exp(eil)
(2.12)

Here, ⊕ represents the concatenation operation, and w ∈ R2m is a column vector of
learnable parameters. The LeakyReLU function is a non-linear activation function.

Following the proposed scheme in Figure 2.1, each instance x of the temporal
window produced after preprocessing is passed through two different graph atten-
tion layers:

1. Feature-oriented Graph Attention Layer: Each node of the graph consists
of vi = {xt,i|t ∈ [0, n)}, representing a specific feature. Each edge of the graph
represents the correlation between features. There are a total of d nodes, each
of size n, so the output of the feature-oriented GAT is a matrix of size d× n.

1The sigmoid function in Deep Learning is a function that introduces nonlinearity in the data
and "normalizes" data inside the [0, 1] interval. A common sigmoid function to use is the logistic
function: σ(x) = 1

1+e−x
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2. Time-oriented Graph Attention Layer: Each node of the graph consists
of vi = {xi,j|j ∈ [0, d]}, representing a specific timestamp. Each edge of the
graph represents the correlation between timestamps. This concept is similar
to that of a Transformer Vaswani et al. [2023], where a similar attention
concept is applied along the temporal dimension. There are n nodes of size
d, so the output of the time-oriented GAT is a matrix of size n× d.

Once passed through the two GAT layers, the output is concatenated with the
input along the feature dimension, resulting in a matrix xGAT ∈ Rn×3d.

2.1.3 Gated Recurrent Unit
Following the two Graph Attention layers, the output xGAT is passed to a Recurrent
Neural Network (RNN). In particular, the model uses a Gated Recurrent Unit
(GRU) Chung et al. [2014]. In detail, the main concept behind a GRU is its
ability to accept sequential input, updating a hidden state ht over time, preserving
a "memory" of the sequence. Given a sequence of input x = (x1, x2, ...xT ), the
hidden state ht is calculated as:

ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t (2.13)

Here, ⊙ denotes element-wise multiplication, zt is called the update gate, and
h̃t is the candidate hidden state. Basically the current hidden state is a convex
combination of the last hidden state and a new candidate hidden state. In partic-
ular:

zt = σ(Wzxt + Uzht−1) (2.14)
h̃t = tanh(Wxt + U(rt ⊙ ht−1)) (2.15)

rt = σ(Wrxt + Urht−1) (2.16)

Here, σ(·) and tanh(·) are element-wise operations. All learnable parameters are
assumed to have the appropriate dimensions to accept input elements xt ∈ R3d

and return, after processing xt for t ∈ {1, ...n}, a final hidden state hGRU ∈ Rk.
Ideally, hGRU contains the "memory" of the time window and act as sort of a em-
bedding vector of the time series. This information is passed through the two final
modules: the Forecasting model and Recostruction Model. They both take part in
the calculation of the final loss.
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2.1.4 Forecasting Model
The Forecasting model is the module that, given the input of the last hidden state
of the GRU hGRU, returns a value x̂ ∈ Rd representing the prediction for the
timestamp succeeding the last timestamp in the input time window to the model
x = (x1, . . . , xn).

The module consists of a stack of three fully connected layers with dimension
d2, as described in Figure 2.5.

Figure 2.5: Descriptive diagram of the fully connected layer within the Forecasting
Model

The output x̂ of the module is then used for calculating the loss formulated as
the Root Mean Square Error (RMSE) of the prediction with respect to the actual
data:

Lfor =
√

(xn − x̂)T (xn − x̂) (2.17)

2.1.5 Reconstruction Model
The goal of the Reconstruction Model is to learn a marginal distribution of the
data through a latent representation z. The objective is, given a representation
z ∈ Rd3 of x in a latent space, to compute pθ(x|z). To achieve this, the method
outlined in Kingma and Welling [2022] is employed the Variational Autoencoder,
leveraging a probabilistically justified latent representation.
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A simplified yet effective summary of a Variational Autoencoder is the following:
a variational autoencoder can be defined as being an autoencoder whose training
is regularised to avoid overfitting and ensure that the latent space has good prop-
erties that enable generative process.

Let’s start by first defining what an autoencoder is. Given a data point x ∈ Rd

we can define an encoder e(·) ∈ E as a function that returns a representation of
x in a latent space Rk that is dimensionally smaller than Rd. Hence an encoder
is a function that performs a reduction in the dimensionality of the data. On the
contrary, a decoder d(·) ∈ D is a function that, given an input from the latent
space z ∈ Rk returns a point in the starting space Rd. An Autoencoder is a
encoder-decoder pair such that the loss of information is minimised:

(e∗, d∗) = arg min
(e,d)∈E×D

ϵ(x, d(e(x))) (2.18)

In classical machine learning, Principal Component Analysis is for all intents and
purposes an autoencoder since its main objective is to find a suitable subspace
S ⊂ V such that the projection onto S from V minimize the loss of information.
In a deep learning setting, the simplest form of autoencoder is a stack of two fully
connected layers such that the dimension of the hidden layer is smaller than the
starting dimension (figure 2.6):

Figure 2.6: Descriptive diagram of a simple autoencoder

A simple autoencoder could easily be trained to minimize the reconstruction
loss, such autoencoder would be very effective if the only purpose of our training
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is to reduce the dimensionality of the data while retaining most of the information
without any loss during the encoding-decoding pipeline. However this approach
could easily lead to overfitting and, most importantly, to severe irregularity of the
latent space preventing us from using it as a sample space for generative purposes.
What would be preferable instead is a regularized latent space that is, to some
extent, even interpretable.

For example imagine we are trying to fit an autoencoder on images of faces. It
would be of great use if each face is encoded in two interpretable parameters (smile
value and pose value) instead of two meaningless parameters. This is useful since
once the autoencoder is trained we obtain both an interpretable encoding and a
decoder that, given two interpretable parameters, is able to generate new data
according to the given specifications.

This is solved in the variational autoencoder approach by encoding each input
not as point in a latent space but instead as a probability distribution (as is in its
parameters) from which we could then sample from and obtain a latent sample
that can be then feeded through the decoder function.

In this particular setting the encoder returns the mean and the variance µx, σx

of a multivariate normal distribution from which we then sample z ∼ N (µx, σxI)
that we use as input of the decoding space:

Figure 2.7: Descriptive (simplified) diagram of the Variational Autoencoder

To enforce the above mentioned regularity of the latent space, a regularization
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term is used. In practice the regularisation is done by enforcing distribution to be
close to a standar normal distribution. This way, we require the covariance matri-
ces to be close to the identity, preventing punctual distributions, and the mean to
be close to 0, preventing encoded distribution to be too far apart from each others.

We will now provide a mathematical framework to justify the use of the varia-
tional autoencoder and its implemantation in this work.

Given a sequence of input x = {x(i)}n
i=1, it is assumed to be a stochastic pro-

cess involving an unobserved continuous random variable z (the latent variable).
Specifically:

• z(i) is generated from pθ∗(z), the prior distribution on the latent variable.

• x(i) is generated from pθ∗(x|z), the likelihood of x given the observation of the
latent variable z.

The aim is to maximize the likelihood of the data:

pθ(x) =
∫

pθ(z)pθ(x|z)dz. (2.19)

The problem is that 2.19 is intractable because we can’t reliably evaluate the in-
tegral for all possible values of z. Let’s now show a workaround that will enable
us to maximize 2.19.

Let qθ(z|x) be the approximation of pθ(z|x), i.e., the true posterior distribution
of z. In terms of deep learning architecture, qθ(z|x) is an Encoder: given x, it
produces a distribution over possible values of z from which x could have been
generated. On the other hand, pθ(x|z) is a Decoder since, given the encoded z, it
computes a distribution of x.

Let the marginal likelihood computed as:

log pθ(x(1), x(2) . . . x(n)) =
N∑

i=1
log pθ(x(i)) (2.20)

The main objective is to maximize 2.20. To do so we leverage the definition of the
Kullback-Leibler Divergence Kullback and Leibler [1951].
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Let:

DKL(qϕ(z|x(i))∥pθ(z|x(i))) :=
∑

z

qϕ(z|x(i)) log qϕ(z|x(i))
pθ(z|x(i)) = (2.21)

∑
z

qϕ(z|x(i))
Ç

log qϕ(z|x(i))
pθ(z, x(i)) + log pθ(x(i))

å
= (2.22)

∑
z

qϕ(z|x(i))(log qϕ(z|x(i))− log pθ(z, x(i))) + log pθ(x(i))
∑

z

qϕ(z|x(i))︸ ︷︷ ︸
=1

(2.23)

from which:

DKL(qϕ(z|x(i))∥pθ(z|x(i))) =
−Eqϕ(z|x(i))[− log q(z|x(i)) + log pθ(z, x(i))]︸ ︷︷ ︸

L(θ,ϕ;x(i))

+ log p(x(i)) (2.24)

hence:

log pθ(x(i)) = DKL(qϕ(z|x(i))∥pθ(z|x(i))) + L(θ, ϕ; x(i)). (2.25)

Since log pθ(x(i)) does not depend on q, maximizing L(θ, ϕ; x(i)) is the same as
minimizing DKL. To effectively maximize L(θ, ϕ, x(i)) a reparametrization trick is
used as follows: let gϕ(·, ·) a differenciable transformation (e.g. MLP) then the
latent variable is assumed to be a reparametrization of a noise variable ϵ:

z̃ = gϕ(ϵ, x) with ϵ ∼ p(ϵ). (2.26)

If p(ϵ) is accurately choosen then, using Monte-Carlo estimation, we can compute:

Eqϕ(z|x(i))[f(z)] = Eqϕ(z|x(i))[f(gϕ(ϵ, x(i)))] ≃ 1
L

L∑
l=1

f(gϕ(ϵ(l), x(i))) (2.27)

with ϵ(l) ∼ p(ϵ) and L is the number of samples used for Monte-Carlo estimation.
Referring to 2.24 we obtain:

L̃A(θ, ϕ; x(i)) = 1
L

L∑
l=1

log pθ(x(i), z(i,l))− log qϕ(z(i,l)|x(i)) (2.28)

where z(i,l) = gϕ(ϵ(l), x(i)). Hence if pθ and qϕ are known distribuition then it’s
possible to calculate ∇θ,ϕL̃A(θ, ϕ; x(i)) in order to maximize L̃A.

In this particular case we use the Variational Auto-Encoder and set the prior
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distribution of the latent variable as pθ(z) = N (z; 0, I). We also assume that
pθ(x|z) is a multivariate normal distribution whose parameters are the output of
a MLP with z as input. Let:

log qϕ(z|x(i)) = logN (z; µ(i), σ2(i)I) (2.29)

where µ(i) and σ2(i) are the output of a MLP with x(i) and ϕ as inputs. Then if
we define:

z(i,l) = gϕ(x(i), ϵ(l)) = µ(i) + σ(i) ⊙ ϵ(l) ϵ(l) ∼ N (0, I) (2.30)

we obtain:

L(θ, ϕ; x(i)) ≃ 1
2

J∑
j=1

(1 + log(σ(i)
j )2 − µ

(i)2
j − σ

(i)2
j ) + 1

L

L∑
l=1

log pθ(x(i)|z(i,l)) (2.31)

which is the loss of our reconstruction module used for training the model.

2.2 Temporal Convolution Networks (TCN)
In 2.1 we have seen how the concept of graph convolution can be applied to time
series modeling both feature-wise and temporal-wise correlations. Although this
method can be very effective to our means, in this section we will discuss how
temporal convolutions can be added to the architecture to improve the overall
performance of the anomaly detection algorithm.

Temporal convolutions for time series modeling first appeared in Bai et al. [2018]
where, similarly to the autoencoder concept shown in 2.1.5, dilated convolutions
are used to encode-decode the original time series in order to obtain a richer rep-
resentation. The concept of dilated convolution is used for anomaly detection in
Thill [2022] with good quality results. In this work dilated temporal convolutions
will be implemented in the architecture seen in 2.1 trying to improve performance.

2.2.1 Classical Convolution
Convolution, in the machine learning context, operates as a transformative oper-
ation that captures spatial hierarchies and dependencies within data. Stemming
from its roots in signal processing and linear algebra, convolution first appeared
in machine learning application in Lecun et al. [1998] giving birth to Convolu-
tional Neural Networks (CNNs), a branch of deep learning that saw an exponential
growth in research due to the efficacy of convolution in image-based tasks.
To comprehend the essence of convolution in machine learning, it is imperative
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to first grasp its mathematical underpinnings. Convolutional layers in neural net-
works leverage convolutional kernels, small filters that slide over input data to
extract local patterns and features. The mathematical convolution operation be-
tween these filters and input data is pivotal in learning hierarchical representations,
allowing the network to discern intricate structures and patterns in the data.

Definition 23 (Convolution in finite space). Let x ∈ RT (input signal) and
h ∈ Rk (convolution kernel) be two real-valued vectors. Then the convolution
operation (∗) between x and h results in a vector (signal) y defined as follows:

yn = (x ∗ h)n =
k−1∑
i=0

hixn−i (2.32)

The output vector y has dimension T − k + 1, hence, to obtain an output vector
that has the same dimension of the input vector, the zero-padding technique2 is
used accordingly. The convolution operation can be thought of as sliding a win-
dow of lenght k, which contains the filter weights h, over the input sequence x and
computing a weighted average of x with the weights h in each time step.

Often times input signals such as images or multivariate time series are repre-
sented as multivariate signals: x = (x0, x1, . . . xT −1) with xi ∈ Rd where d is often
referred to the number of channels of the signal. In this case the kernel h should
also be multivariate with the same number of channels of the input signal.

Definition 24 (Multivariate convolution). Let x = (x0, x1, . . . xT −1) with xi ∈
Rd be the input signal and h = (h1, h2, . . . hk) with hi ∈ Rd then the convolution
operation results in a vector defined as:

yn = (x ∗ h)n =
k∑

i=0
hT

i xn−i (2.33)

Multivariate convolution results in a single-channel output that can be seen as the
sum of the convolutions across all input channels:

(x ∗ h)n =
k∑

i=0
hT

i xn−i =
k−1∑
i=0

d∑
j=0

hi,jxn−i,j =
d∑

j=0

k−1∑
i=0

hi,jxn−i,j =
d∑

j=0
(h:,j ∗ x:,j)n

(2.34)

2The Zero Padding technique consists in adding zeros to the beginning and the end of the
input vector in order to obtain an output vector of the desired dimension
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2.2.2 Dilated convolutions
When dealing with convolutions of signals one trick we can use is to perform an
oversampling of the convolution kernel h. Oversampling h by q is as simple as
adding zeros between each element:

h(q) = (h0, 0, 0, . . . 0︸ ︷︷ ︸
q times

, h1, 0, 0 . . . 0, h2, 0, 0, . . . , 0 hk, 0, 0, . . . 0︸ ︷︷ ︸
q times

). (2.35)

The resulting convolution operation between the signal x and the oversampled
kernel h results in:

(x ∗ h(q))n =
d∑

j=0

qk−1∑
i=0

h
(q)
i,j xn−i,j =

d∑
j=0

k−1∑
i=0

hi,jxn−qi,j. (2.36)

Hence the following definition:

Definition 25 (Dilated Convolution). Let x = (x0, x1, . . . xT −1) with xi ∈ Rd

be the input signal and h = (h1, h2, . . . hk) with hi ∈ Rd. Then the dilated
convolution with dilation factor q can be defined as:

yn = (x ∗q h)n =
k−1∑
i=0

hT
i xn−qi (2.37)

In practice, what we are doing in 2.37 is "skipping" elements of the input signal
x during the convolution operation. In deep learning applications this allows the
convolution operation to effectively capture information from a larger receptive
field while using a smaller filter. This is particularly beneficial for tasks that re-
quire modeling long-range dependencies in the input data.

From a signal processing standpoint, oversampling the convolution kernel effec-
tively "sharpens" its frequency response making it more sensitive to small changes
in the frequency:

H(q)(e−jω) =
k−1∑
n=0

h(q)
n e−jωn =

k−1∑
n=0

hne−nqω = H(e−jqω). (2.38)

2.2.3 Dilated Convolutional Layer and the TCN block
In Deep learning application a convolutional layer is typically comprised of many
discrete filters, and the individual outputs are stacked into a so-called feature map.
If a signal x of length T is passed through a convolutional layer with nfilters fil-
ters, the resulting feature map has the dimension T × nfilters. The weights h of
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each filter are learnable parameters, trained using the back-propagation algorithm.

The main idea behind the Temporal Convolutional Network (TCN) block is to
build a stack of dilated convolutional layers, where the dilation rate increases with
each added layer. A common choice is to start with a dilation rate of q = 1 for
the first layer of the network and double q with every new layer. This way the
receptive field of the model increases exponencially, as shown in figure 2.8.

Figure 2.8: A simplified view of a dilated convolution layer

More implementation details are in Bai et al. [2018], for our purpose we consider
a TCN block as a block that takes as input a signal x of dimensions n × T and
outputs a signal with the same dimensions after performing a bunch of dilated con-
volutions. The idea behind this particular usage of the TCN block is that using
dilated convolutions we can obtain a more informative representation of the time
series given in input. The intuition behind this is the fact that each dimension
of the time series has to be processed with different level of detail since often, in
real data, signals among dimensions can have very different spectral characteris-
tics. Hence, with the use of dilated temporal convolution we obtain a cohesive and
uniform representation across all features.

The TCN block has been implemented in our architecture both in input and output
of the model as shown in figure 2.9
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Figure 2.9: Descriptive diagram of the final MTAD-GAT architecture
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Chapter 3

Experimental methodology

In this chapter we will explore the implementation aspects of this work. We will
give a brief overview of the datasets used for training and explore the technical
details behind the implementation of the methods shown in the previous chapter.
Code snippets will be presented in this chapter but they have to be considered
as a proof of concept because the code presented has been trimmed in order to
improve readability. Finally, experimental results will be presented evaluating the
performance of the methods used and possible use cases that can be deployed.

3.1 Datasets used
Experimenting with anomaly detection algorithms exposes one key problem: in
order to evaluate the performance of any given algorithm, data must be "labeled"
meaning that, if we are dealing with time series, each timestamp must be labeled
as anomalous or not in order to check if the model performed well.

The most important thing to keep in mind however is that labeled data is only
needed during the evaluation of the model and not during its training. This is
because training is conducted in an "unsupervised" manner: loss in the models
studied in this thesis is never computed using labels, instead only using intrinsic
information from within the model as seen in the previous chapter.

Time series data that is both good quality and labeled is very difficult to ob-
tain: data must be labeled in a supervised manner meaning that some timestamps
have to be labeled as "anomalies" which is inherently difficult since anomalies are
events that one does rarely see.

Hence most of the available datasets used for Time Series Anomaly Detection
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are synthetic or are gathered from sensors that monitor a system that is artifi-
cially attacked to generate anomalies.

In the following sections we will introduce all the datasets used for our analy-
sis.

3.1.1 The SWaT Dataset
The Secure Water Treatment (SWaT) is a water treatment testbed for research in
cybersecurity. SWaT consists of a modern six-stage process. The process begins
by taking in raw water, adding necessary chemicals to it, filtering it via an Ultra-
filtration (UF) system, de-chlorinating it using UV lamps, and then feeding it to
a Reverse Osmosis (RO) system. A picture of the actual water treatment testbed
is depicted in figure 3.1 A multivariate time series dataset is obtained from the

Figure 3.1: A picture of the SWaT testbed

testbed by collecting data from the various sensors that monitor all the different
components of the dataset. In table 3.1 we list the first 10 features of the sensor,
for more information and the full list of the 51 sensors refer to Goh et al. [2017]
Data has been sampled with a frequency of one second for 11 days of continuous
operation. For the first 7 days the system is monitored under normal conditions
and during the remaining 4 days the testbed a series of cyber attacks have been
conducted to the testbed that ultimately resulted in anomalies in sensor data.
Data is provided with a list of all attacks and is conveniently labeled. After some
preprocessing data is feeded to the model as a matrix X ∈ RT ×N where T is the
number of timestamps and N is the number of features. Labels are represented
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No. Name Type Description
1 FIT-101 Sensor Flow meter; Measures inflow into raw wa-

ter tank
2 LIT-101 Sensor Level Transmitter; Raw water tank level
3 MV-101 Actuator Motorized valve; Controls water flow to

the raw water tank
4 P-101 Actuator Pump; Pumps water from raw water tank

to second stage
5 P-102 (backup) Actuator Pump; Pumps water from raw water tank

to second stage
6 AIT-201 Sensor Conductivity analyser; Measures NaCl

level
7 AIT-202 Sensor pH analyser; Measures HCl level
8 AIT-203 Sensor ORP analyser; Measures NaOCl level
9 FIT-201 Sensor Flow Transmitter; Control dosing pumps
10 MV-201 Actuator Motorized valve; Controls water flow to

the UF feed water tank

Table 3.1: List of the first 10 features of the SWaT Dataset

as a binary vector y ∈ RT where 0 corresponds to normal behavior while 1 corre-
sponds to anomalous behavior.

A graphical example of the SWaT dataset is depicted in figure 3.2.
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Figure 3.2: A portion of the SWaT where a labeled anomaly is depicted as the
portion in red

3.1.2 The WADI Dataset
WADI is a natural extension of SWaT, comprising two elevated reservoir tanks, six
consumer tanks, two raw water tanks and a return tank. It also comes equipped
with chemical dosing systems, booster pumps and valves, instrumentation and
analysers. WADI takes in a portion of SWaT’s reverse osmosis permeate and raw
water, thus forming a complete and realistic water treatment, storage and distri-
bution network.
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WADI has the capabilities to simulate the effects of physical attacks such as water
leakage and malicious chemical injections. Together with SWaT, WADI provides
opportunities for researchers to work on a full spectrum of possible cyber and
physical attacks on a water treatment and distribution plant.

WADI has more features than the SWaT dataset (∼ 130 features) and is composed
of 14 days of continuos normal operation and 2 days where attacks were conducted.

Figure 3.3 shows a portion of the dataset with an highlited anomaly in red.
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Figure 3.3: A portion of the WADI where a labeled anomaly is depicted as the
portion in red
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As is the case with the SWaT dataset, WADI dataset comes with a list of
attacks that have been conducted on the system and each timestamp is labeled
(anomaly or not).

3.1.3 Human Activity Dataset

The Smartphone-Based Recognition of Human Activities and Postural Transitions
DataSet (ACT in short) Reyes-Ortiz et al. [2014] is a collection of signal recordings
from smartphone sensors. The dataset contains readings from various sensors and
each timestamp is labeled with the corresponding position (e.g. sitting position,
standing position).

The experiments were carried out with a group of 30 volunteers within an age
bracket of 19-48 years. They performed a protocol of activities composed of six
basic activities: three static postures (standing, sitting, lying) and three dynamic
activities (walking, walking downstairs and walking upstairs). The experiment also
included postural transitions that occurred between the static postures. These are:
stand-to-sit, sit-to-stand, sit-to-lie, lie-to-sit, stand-to-lie, and lie-to-stand. All the
participants were wearing a smartphone (Samsung Galaxy S II) on the waist dur-
ing the experiment execution.

The sensor signals (accelerometer and gyroscope) were pre-processed by apply-
ing noise filters and then sampled in fixed-width sliding windows of 2.56 sec and
50% overlap (128 readings/window). The sensor acceleration signal, which has
gravitational and body motion components, was separated using a Butterworth
low-pass filter into body acceleration and gravity. The gravitational force is as-
sumed to have only low frequency components, therefore a filter with 0.3 Hz cutoff
frequency was used. From each window, a vector of 561 features was obtained by
calculating variables from the time and frequency domain.

An anomaly detection algorithm can be deployed in this context to detect the
transitions from one position to another. The transitioning labels (sit-to-stand,
stand-to-sit...) can be labeled as anomalies and the algorithm can be evaluated on
its ability to detect transitions.
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Figure 3.4: A portion of the ACT dataset where a labeled anomaly is depicted as
the portion in red

3.1.4 Metro Dataset

The MetroPT Dataset Veloso et al. [2022] is the result of a Predictive Maintenance
project with the metro transportation service in Porto, Portugal. The objective of
the dataset is to help build anomaly detection methods for failure prediction.

The dataset is composed of 15 features collected from a system of sensors in-
stalled on an operating train. It contains data from January to June 2022 and the
train performs on average 26 trips per day.

Failures are manually labeled, an example of a labeled failure on the system is
depicted in Figure 3.5.
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Figure 3.5: A portion of the METRO dataset where a labeled anomaly is depicted
as the portion in red

3.1.5 Automotive Dataset
During the development of this thesis it has been possible to experiment with data
from a reputable automotive company. Two datasets were provided to experiment
with. The first is composed of aggregated data from 7 vehicles gathered every 15
minutes while the second is composed of data sampled every second.

Nature of the data is unsupervised, meaning that no labels were provided with
this data and the aim of the analysis is to gain insights about faults on vehicles
that have been claimed during operations.

The full datasets are composed of many features > 1000 but, due both to compu-
tational feasibility and interpretability, only a subset of feature has been selected
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for the analysis.

3.2 Technical implementation, the PyTorch li-
brary

The implementation of the deep learning algorithms seen in 2.1 has been carried
out in Python code, leveraging the famous PyTorch library when necessary.

In order to easily manage file sizes of ∼ 500Mb per dataset the preprocessing
is executed offline meaning that a script preprocessing.py has been created to
take care of all the preprocessing procedures specific for each dataset. The pre-
processed datasets are then stored in a .pkl file and later used for training.

During preprocessing we’ve carried out experiments regarding dataset size and
sample rate. All datasets used have been sampled with a frequency of 1s hence in
order to reduce the dimension of the dataset and ease the computation on some
datasets we have tried downsampling the data picking observations with a fre-
quency of 2s or 3s. This drastically reduces the dimension of the dataset and in
some cases lead to the same accuracy results. Moreover, data that has a strong
periodicity can be truncated without loss of accuracy.

Preprocessing also accounted for scaling the datasets as seen in 2.1.1 and han-
dling missing values. Missing values handling varies from dataset to dataset and
will be explored in the following section. Optionally the dataset can be cleaned of
spikes and simple univariate outliers using the spectral residual algorithm seen in
2.1.1.

3.2.1 The Optimization algorithm: ADAM
Training has been carried out using the typical framework of deep learning models.
Each weight in the model is considered as a trainable parameter so let θ be the
vector containing all the model parameters. The objective of the training is tying
to minimize a loss function f(θ) by adjusting the parameters accordingly.

The most common algorithm used to achieve the minimization of the loss function
is the ADAM algorithm Kingma and Ba [2017].

Evaluating the loss function f(θ) of the model on a given dataset would mean
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to evaluate the model on all the datapoints of such dataset. This would mean to
perform a forward pass of all the data for each evaluation and most of the times this
procedure is computationally unfeasible. Hence we assume that f(θ) is a random
variable and its realizations f1(θ), f2(θ), . . . fT (θ) are computed by evaluating the
loss only on a small portion of the dataset called batch. The goal of the algorithm
then becomes to minimize the expected value of such random variable E[f(θ)].
Assuming that f(θ) is differentiable w.r.t. θ then gt = ∇θft(θ). The most simple
form of a stochastic descent algorithm would be the following: given an initialized
parameter vector θ0, then the update rule for θt at the t-th training step would be
the following:

θt = θt−1 − η∇θft(θt−1) (3.1)

Where η represents the stepsize of the update rule. If f(·) is a convex function
then the update rule 3.1 guarantees the convergence of θ to a value that minimizes
f(·).

The ADAM algorithm extends the idea of the simple stochastic gradient descent
update rule by updating the exponential moving averages of the gradient (mt)
and the squared gradient (vt) where hyper-parameters β1, β2 ∈ [0, 1) control the
exponential decay rates of these moving averages. From this concept the name
ADAM: Adaptive Moment estimation.

A pseudo-code version of the ADAM algorithm is depicted in algorithm 2. Proof
of convergence and implementation details are out of the scope of this thesis and
can be found in Kingma and Ba [2017].

The code snippet 3.1 shows how training is performed using the PyTorch library.
The function fit has a torch.model defined inside and cycles through epochs.
In the context of deep learning, an epoch refers to one complete pass through the
entire training dataset during the training phase of a neural network. In other
words, it’s a single iteration over the entire dataset to update the weights of the
neural network.

During an epoch batches of sliding windows are extracted from the dataset us-
ing a Data Loader and for each batch the losses are computed. Then a backward
propagation is computed and an optimization step is performed, as is the case with
every deep learning model.
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Algorithm 2 The ADAM algorithm.
Require: α ▷ Step size
Require: β1, β2 ∈ [0, 1) ▷ Exponential decay rates for the moment estimates
Require: f(θ) ▷ Stochastic objective function with parameters θ
Require: θ0 ▷ Initial parameter vector

1: m0 ← 0
2: v0 ← 0
3: t← 0
4: while θt not converged do
5: t← t + 1
6: gt ← ∇θft(θt−1) ▷ Get gradients w.r.t. stochastic objective at timestep t
7: mt ← β1 ·mt−1 + (1− β1) · gt ▷ Update biased first moment estimate
8: vt ← β2 · vt−1 + (1− β2) · g2

t ▷ Update biased second raw moment estimate
9: m̂t ← mt/(1− βt

1) ▷ Compute bias-corrected first moment estimate
10: v̂t ← vt/(1− βt

2) ▷ Compute bias-corrected second raw moment estimate
11: θt ← θt−1 − α · m̂t/(

√
v̂t + ϵ) ▷ Update Parameters

12: end while
13: return θt
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1 def fit(self , train_loader , val_loader =None):
2

3 for epoch in range(self. n_epochs ):
4 self.model. train ()
5 forecast_b_losses = []
6 recon_b_losses = []
7

8 for x, y in train_loader :#for each sliding window
9 x = x.to(self. device )

10 y = y.to(self. device )
11 self. optimizer . zero_grad ()
12

13 preds , recons , mean , log_var = self.model(x) #
outputs the predictions and the reconstructions

14

15 forecast_loss = torch.sqrt(self. forecast_criterion
(y, preds)) #loss from prediction

16 recon_loss = torch.sqrt(self. recon_criterion (x,
recons )) #loss from reconstruction

17 loss = forecast_loss + recon_loss
18

19 loss. backward () # computes the backward step
20 self. optimizer .step () # compute the optimizer

update step
21

22 forecast_b_losses . append ( forecast_loss .item ())
23 recon_b_losses . append ( recon_loss .item ())
24

25 # Evaluate on validation set
26 forecast_val_loss , recon_val_loss , total_val_loss = "

NA", "NA", "NA"
27 if val_loader is not None:
28 forecast_val_loss , recon_val_loss , total_val_loss

= self. evaluate ( val_loader )
29 self. losses [" val_forecast "]. append (

forecast_val_loss )
30 self. losses [" val_recon "]. append ( recon_val_loss )
31 self. losses [" val_total "]. append ( total_val_loss )
32

33 if total_val_loss <= self. losses [" val_total "][ -1]:
34 self.save(f"model.pt")
35 if val_loader is None:
36 self.save(f"model.pt")

Listing 3.1: Training Framework of the model
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3.3 Threshold setting methods
As discussed in the previous chapters, the output of anomaly detection algorithms
is mainly an anomaly score for each timestamp encountered. This means that the
focus is not on directly classifying whether a sampled record is an anomaly or not,
instead providing a score that assesses how much the said sample is anomalous
with respect to the ones used in training data. This is why an important anomaly
measure used for evaluating our methods is the AUC-ROC score seen in 1.2.1: it
decouples the classification task from the anomaly measure, providing a score that
is not dependent on the threshold setting.

While this is extremely convenient from a method evaluation standpoint, a thresh-
old on the anomaly score is still needed to deploy the model in a real setting: a
limit on the anomaly score must be set to decide when to signal that the system
monitored is showing anomalous behavior.

To this end, various methods can be deployed. The following sections will include
a brief overview of the methods studied in this thesis.

3.3.1 Peaks-Over-Threshold (POT) approach
The Peaks-over-Threshold Siffer et al. [2017] approach for finding a threshold to
use in the anomaly score evaluations leverages Extreme Value Theory. For the full
details refer to Siffer et al. [2017].

Let X be a random variable, we denote as zq its quantile at level 1 − q mean-
ing that zq is the smallest value s.t. P(X ≤ zq) ≥ 1− q. An important result from
extreme value theory comes from Balkema and de Haan [1974], and it states that,
under general assumptions, there exist γ, σ ∈ R such that:

F̄t(x) = P(X − t > x|X > t) ∼t→τ

(
1 + γ

σ
x
)− 1

γ (3.2)

Where t is a set threshold, τ is the upper limit of the cumulative density function
F (x). In 3.2 F̄t(x) is the probability of X exceeding t by x given that X is already
exceeding t. The aim of the method is to get estimates γ̂ and σ̂ since from 3.2 it
can be computed:

zq ≃ t + σ̂

γ̂

ÇÅ
qn

Nt

ã−γ̂

− 1
å

(3.3)

where q is the desired probability, n the total number of observation and Nt is the
number of peaks i.e. the number of Xi s.t. Xi > t.
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Estimates are computed through the maximum likelihood estimation of 3.2, having
to maximize:

logL(γ, σ) = −Nt log σ −
Å

1 + 1
γ

ã Nt∑
i=1

log
(

1 + γ

σ
Yi

)
(3.4)

Where Yi > 0 are the excesses of Xi over t. The optimization is done numerically.

The key takeaway of this method is the fact that we are able to compute a quan-
tile zq of the observed random variable X without making assumption on its
distribution, and this is possible thanks to Extreme value theory.

Operationally the quantile value zq is initialized with the first n observation of
the data. Then, for each exceedance of X over t, γ̂ and σ̂ can be adjusted accord-
ingly as depicted in algorithm 3:

Algorithm 3 The SPOT algorithm (Streaming POT).
Require: (Xi)i>0, n ∈ N, q ∈ (0, 1)

1: A← ∅ ▷ The set of anomalies
2: t←SetInitialThreshold(X1, . . . Xn)
3: γ̂, σ̂ ← MLE(X1, ...Xn) ▷ Maximum likelihood estimation
4: zq ← ComputeQuantile(q, n, Nt, t, γ̂, σ̂)
5: k ← n
6: for i > n do
7: if Xi > zq then
8: Add (i, Xi) in A
9: else if Xi > t then

10: Nt ← Nt + 1
11: k ← k + 1
12: γ̂, σ̂ ← MLE(X1, ...Xi+n)
13: zq ← ComputeQuantile(q, n, Nt, t, γ̂, σ̂)
14: else
15: k ← k + 1
16: end if
17: end for

The implementation of this algorithm sets the initial threshold t as an High
enough quantile meaning an empirical quantile with a q level that is lower than
the POT q argument.

68

https://github.com/NetManAIOps/OmniAnomaly


3.4 – Experimental results

3.3.2 Epsilon approach
The Epsilon method Hundman et al. [2018] is an alternative approach to finding
the best threshold for the anomaly score. Let ŷ(t) be the prediction/reconstruc-
tion output of the anomaly detection algorithm, let e(t) be the corresponding error
(evaluated in l2 norm in this thesis). Each e(t) is appended to a vector of er-
rors e that is smoothed using exponentially-weighted average (es). The problem
of finding the best threshold ϵ can be formulated as the following optimization
problem:

max
z∈[lz ,uz ]

∆µ(es)
µ(es) + ∆σ(es)

σ(es)

|ea|+|Eseq|2
(3.5)

s.t. ϵ = µ(es) + zσ(es) (3.6)
∆µ(es) = µ(es)− µ({es ∈ es|es < ϵ}) (3.7)
∆σ(es) = σ(es)− σ({es ∈ es|es < ϵ}) (3.8)
ea = {es ∈ es|es > ϵ} (3.9)
Eseq = continuous sequences of ea ∈ ea (3.10)

In much simpler terms, the problem 3.5 aims to find a threshold ϵ defined as 3.6
that, if all values above are removed, would cause the greatest decrease in the
mean 3.7 and the standard deviation 3.8 of the smoothed errors es. We also want
to penalize for having larger number of anomalous values 3.9 and sequences 3.10
to prevent overly greedy behavior.

Since values of z ranging from 2 to 10 were found to be optimal for most of
the use cases, the optimization can be easily brute-forced without requiring any
particular optimization solving strategy.

3.3.3 Best-F1 search approach
The Best-F1 score search approach is a much more naive method compared to
the others. This method is a brute force approach for finding a threshold that
produces the best F1 result in the test dataset. Hence in can only be used in a
supervised context and it’s a valuable metric since it shows the capability of the
anomaly detection algorithm when the optimal threshold is computed.

3.4 Experimental results
Experimental results will be evaluated in this section. As previously discussed, the
result of the anomaly detection pipeline is an anomaly score for each encountered
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timestamp. Anomalies are typically classified by inferring them from the anomaly
score and this is necessary when deploying the anomaly detector. For our evalu-
ation purposes we will try to decouple the threshold selection problem from the
model evaluation since it can be very application dependant.

Our method produces a loss that is the combination of the loss from the recon-
struction model and the forecast model. Such loss is computed on a per-feature
basis and can be used as an anomaly score. At our disposal we both have the
"global anomaly score" (the mean of the anomaly score from each feature) and the
anomaly score from each feature. Threshold setting algorithms previously seen
work on the global anomaly score but it is also interesting to analyze individual
anomaly score for each feature.

3.4.1 PCA analysis of the anomaly score
At our disposal for analysis from the anomaly detection algorithm we have an
anomaly matrix A ∈ RNt×Nf where Nt is the length of the test multivariate time-
series and Nf is the number of features of the time-series. Hence Ai,j is the anomaly
score of the i-th timestamp for the j-th feature. From the anomaly matrix A we
can compute the global anomaly vector a:

a ∈ RNt ai =
Nf∑
j=0

Ai,j for i ∈ [0, 1, ...Nt]. (3.11)

Evaluating the mean of the anomaly score from each feature is the standard pro-
cedure for anomaly detection algorithms. The problem with the mean along the
features is the fact that some information can be lost when the number of features
is high enough, even if the aim of the algorithm is to condense all the information
in one anomaly score measure.

What has been observed through experimentation in this thesis is that applying
a feature reduction algorithm to the anomaly score matrix and analyzing the re-
duced set of features can give some insights about anomalous behavior of data. In
particular Principal Component Analysis has been applied to the anomaly matrix
to reduce the number of anomaly features to ∼ 5 and a moving average smoothing
has been applied in order to point out spikes in the anomaly scores from various
features.

Moreover, Principal Component Analysis can be used to infer the loadings of the
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original features from each principal component, providing us with information
about what features concurred to spikes in anomaly scores.

Observation 11. PCA stands for Principal Component Analysis and is a
technique used to reduce the dimensionality of the data (number of columns)
while retaining as much information as possible.

Let X ∈ Rn×p be our feature matrix and let

Σ = 1
N − 1X̄T X̄ ∈ Rp×p (3.12)

Be the Covariance matrix of X, where X̄ is the centered data matrix i.e.
X̄ = [x1 − x̄1, . . . xp − x̄p] (all the columns of X are centered w.r.t. their
sample mean).
Since the covariance matrix Σ of our centered data is a symmetric semi-definite
positive matrix, we can compute its eigendecomposition:

Σ = V ΛV T (3.13)

with:

V = [v1, v2, . . . , vp] ∈ Rp×p, Λ =

λ1 . . . 0
... . . . 0
0 . . . λn

 , λ1 ≥ λ2 ≥ . . . ≥ 0.

(3.14)
Then it can be shown that the columns of V describe the directions of
greater variance of data, depending on the eigenvalues magnitude. This
means that V is a new basis for Rp and can be seen as a rotation matrix. Let
x(i) ∈ Rp, then y(i) = V T x(i) is the same vector but represented with basis V .
By this token we could compute the rotation of each point in our original data
X obtaining the matrix Y = X̄V ∈ Rn×p. The resulting covariance matrix
ΣY would be:

ΣY = 1
N − 1Y T Y = V T X̄T X̄V = V T ΣV = Λ (3.15)

This means that data written w.r.t. the new basis V has a diagonal covari-
ance matrix Λ and the variance of Y w.r.t. the axis vi is λi. We call v1, . . . , vp

principal components and λi is the Explained variance of the principal
component vi.
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Since eigenvalues are computed in descreasing order, the first components of
the data written in the basis V are the one with the most explained variance.
Hence, truncating the rotated data matrix to the first k columns (Yk), causes a
loss of explained variance that is quantified by the remaining λk+1 . . . λp eigen-
values. The percentage of explained variance by the first k components
is hence computed as:

ev_ratio =

k∑
i=1

λi

p∑
i=1

λi

. (3.16)

3.4.2 Results on supervised datasets
Quantitative and qualitative results will be shown in this section for each of the
supervised datasets. Supervised datasets are the ones that are provided with
timestamps labels that indicates whether a timestamp is anomalous or not hence
providing a way to objectively measure the performance of an algorithm.

The SWAT dataset

The SWAT dataset, when provided by the authors, is already split in train set and
test set. The train set is composed of ∼ 500K observation of 51 features while the
test set is composed of ∼ 450K observations with the same number of features.
Data is sampled with a 1s frequency and empirical results suggest that performing
a downsampling of one every 10 observations not only left the results unchanged
but sped the training process (as expected) by 10 times. Results for the SWAT
dataset are the following:

F1 score Precision Recall AUC-ROC Dim. Red. TCN
0.91 0.97 0.85 0.90 Yes Yes
0.89 0.99 0.81 0.91 No Yes
0.89 0.95 0.84 0.89 No No

Table 3.2: Experimental Results for the SWAT dataset.

The WADI dataset

Like the SWAT dataset, the WADI dataset is provided already split in training
set and test set from the authors. The length of the time series provided are
comparable to the ones seen for the SWAT dataset. Unlike the SWAT dataset,
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the number of features is much higher. We do have in fact 123 features, hence the
dataset is much bigger than SWAT. A downsampling has been performed to keep
dimensions under control.

F1 score Precision Recall AUC-ROC Dim. Red. TCN
0.83 0.80 0.90 0.73 Yes Yes
0.86 0.74 0.99 0.75 Yes No

- - - - No No

Table 3.3: Experimental Results for the Wadi dataset.

Results in table 3.3 are not shown for the run with no dimensionality reduction
since the high dimensionality of the dataset requires some sort of dimensionality
reduction to complete training in a reasonable time.

The METRO dataset

The metro dataset is provided with a range of dates during which attacks were
conducted on the system. The dataset has been split such that all attacks are
featured in the test dataset resulting in a 60/40 split (approximately). In this case
the number of features is much smaller than the other datasets with 15 features.
A downsampling of one every 5 observation has been performed to keep the length
of the time series under control (∼ 170K).

F1 score Precision Recall AUC-ROC Dim. Red. TCN
0.77 0.70 0.86 0.86 Yes Yes
0.87 0.77 0.99 0.93 No Yes
0.56 0.38 0.99 0.81 No No

Table 3.4: Experimental Results for the METRO dataset.

The ACT dataset

The ACT dataset is provided with the greatest number of features among all
datasets exhamined. In particular 561 are available for this dataset. Training
the network on the full 561 features is prohibitive both from a training time and
memory point of view. Hence depiceted results are shown with the dimensionality
reduction in place.
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F1 score Precision Recall AUC-ROC Dim. Red. TCN
0.91 0.85 0.99 0.99 Yes Yes
0.91 0.86 0.98 0.99 Yes No

- - - - No No

Table 3.5: Experimental Results for the ACT dataset.

3.4.3 Automotive Dataset
As presented in 3.1.5 two datasets for the analysis were provided by the company.
The first dataset is composed of data sampled every 15 minutes. For this reason
the length of the time series is limited (∼ 1600 samples) and it is very difficult
to find correlations along the time axis since aggregation techniques have been
performed. This led to inconclusive results since the model is not able to fit on
such high level aggregated data.

On the contrary, the second dataset is composed of readings from vehicle sen-
sors sampled at a frequency of one second. This is more than enough to properly
fit the model and train a network that is able to recognize patterns across mul-
tivariate time series data. Since data is unlabeled it’s not possible to objectively
score a performance of the model. Moreover, the dataset has been provided with
the aim to gain insights about some specific mechanical parts of some vehicles
and this can only be assessed by qualitatively analyze data with the aid of skilled
technicians.

What can be shown is how well test data is reconstructed by the model and
the efficacy of the PCA method of analyzing the anomaly score in finding "visual
anomalies" in the data. As it is clearly visible in Figure 3.9 the model is able to
fit data under normal behavior and when anomalies arise, it causes some of the
principal components of the anomaly score to spike. Investigating the loadings of
the spiked principal component is then possible to pinpoint what features causes
the spike to further investigate the anomaly.
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3.4 – Experimental results
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Figure 3.6: A visual plot of the reconstruction performed by the model and the
first principal component of the anomaly score for the SWAT dataset.

75



Experimental methodology

0

0.5

1

0

0.5

1

1

2

3

0 1000 2000 3000 4000 5000 6000

0

10

Original (feature 122)
Reconstruction (feature 122)
Original (feature 34)
Reconstruction (feature 34)
Original (feature 0)
Reconstruction (feature 0)
Moving Average

Feature 122

Feature 34

Feature 0

Anomaly principal component 0 (moving average)

Figure 3.7: A visual plot of the reconstruction performed by the model and the
first principal component of the anomaly score for the WADI dataset.
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Figure 3.8: A visual plot of the reconstruction performed by the model and the
first principal component of the anomaly score for the ACT dataset.
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Figure 3.9: A visual plot of the reconstruction performed by the model and the
first principal component of the anomaly score for the Automotive dataset.
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Chapter 4

Conclusion

In this thesis, we have delved into the intricate realm of anomaly detection within
multivariate time series. Our focus revolves around the analysis of time series de-
rived from sensor data, which often exhibits inherent noise and heterogeneity.

The challenge inherent in anomaly detection lies in precisely defining what con-
stitutes an anomaly. Given that anomalies are infrequent occurrences, inherently
eluding observation in training data, conventional model training becomes an im-
practical endeavor. In response to this predicament, our approach in this study
gravitates towards the utilization of model-based anomaly detection methods. This
methodology entails identifying anomalies when observed data diverges from pre-
dicted data. The predictions, in turn, emanate from a model fine-tuned with
normal behavioral data. This strategic shift enables a more effective and practical
means of detecting anomalies in complex and dynamic multivariate time series.
In Chapter 1 we delved into the details of time series, time series modeling, and
how models can be used to detect anomalies in time series data listing some model
examples.

In Chapter 2, we introduced a cutting-edge methodology centered around graph
neural networks for modeling time series. Leveraging Graph Convolution Layers,
this approach proves instrumental in capturing correlations within multivariate
time series, encompassing both feature interdependencies and historical observa-
tions. The synergy of Graph Convolution is harnessed alongside two pivotal com-
ponents: a fully connected predictor and a variational autoencoder, employed for
forecasting future observations.

The incorporation of variational autoencoders stands out for their remarkable ef-
ficacy in mitigating overfitting concerns, concurrently demonstrating exceptional
accuracy in predictions. This prowess is attributed to the inherent regularization
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techniques embedded in their core formulation, making them a robust choice for
enhancing predictive performance within the intricate landscape of multivariate
time series analysis.

In tandem with graph convolutions and the variational autoencoder, we integrated
a powerful methodology known as Temporal Convolution to tackle the inherent
heterogeneity within the data. Temporal Convolution networks execute dilated
convolutions along the temporal axis for each feature within the time series. This
strategic implementation is designed to yield a cohesive and uniform representa-
tion across all features, both in the input and output of the model. By employing
dilated convolutions, we aim to enhance the model’s ability to discern temporal
patterns and nuances, fostering a more comprehensive and effective analysis of the
diverse data characteristics present in the multivariate time series.

These methodologies have been implemented utilizing the robust PyTorch library.
The models underwent training on both publicly accessible labeled benchmark
datasets and a proprietary dataset tailored to a specific use case, generously pro-
vided by a reputable automotive company. Accuracy assessments are exclusively
feasible on supervised benchmark datasets, where the model has exhibited excep-
tional prowess in discerning anomalies within multivariate time series data.

For the automotive use case, a dedicated visualization tool was crafted to enhance
the interpretability of the model output. A PCA-based approach was applied to
anomaly score metrics, streamlining the identification of features manifesting the
most anomalies. This innovative technique not only automates the process but
also furnishes a clear visualization of anomaly peaks, facilitating the visual pin-
pointing of anomalies.

Looking ahead, future endeavors will hone in on improving the model’s inter-
pretability. Acknowledging the inherent interpretational challenges of deep learn-
ing models, a prospective study may delve into leveraging the adjacency matrices
generated in the graph convolution layers to unravel dependencies between fea-
tures. Additionally, the automation of the PCA-based approach for anomaly peak
detection aims to transform the algorithm from a diagnostic tool into a production-
ready, real-time anomaly detector, ushering in heightened efficiency and practical
utility.
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