polito.it
Politecnico di Torino (logo)

Neural and Synaptic modelling on bio-inspired hardware

Geremia Muccioli

Neural and Synaptic modelling on bio-inspired hardware.

Rel. Claudio Passerone. Politecnico di Torino, Corso di laurea magistrale in Ingegneria Elettronica (Electronic Engineering), 2023

[img]
Preview
PDF (Tesi_di_laurea) - Tesi
Licenza: Creative Commons Attribution Non-commercial No Derivatives.

Download (8MB) | Preview
Abstract:

The presented thesis proposes to explore the implementation of different neural appli- cations, in particular, the Adaptive Exponential Integrate and Fire (aEIF) neural model on a neuromorphic device called HEENS, and a simulation of a Spiking Neural Network with a Reservoir topology, along with the comparison of the results with an analogue neural counterpart, implemented in CMOS technology. For doing so, initially, some basic concepts about neuron’s modeling and Spiking Neural Network are exposed, and then HEENS multiprocessor is introduced, both in the architecture and its software support. Afterwards, the focus is moved toward four different spiking neural models, explaining some theory and their equations, and for one of them, also the HEENS implementation. Lastly, a comparison between an analogue and a digital technologies implementing the same model over a reservoir network topology is discussed, presenting similarities and differences of the two approaches.

Relatori: Claudio Passerone
Anno accademico: 2023/24
Tipo di pubblicazione: Elettronica
Numero di pagine: 109
Soggetti:
Corso di laurea: Corso di laurea magistrale in Ingegneria Elettronica (Electronic Engineering)
Classe di laurea: Nuovo ordinamento > Laurea magistrale > LM-29 - INGEGNERIA ELETTRONICA
Ente in cotutela: UNIVERSIDAD POLITECNICA DE CATALUNYA - ETSET BARCELONA (SPAGNA)
Aziende collaboratrici: Universitat Politècnica de Catalunya
URI: http://webthesis.biblio.polito.it/id/eprint/28553
Modifica (riservato agli operatori) Modifica (riservato agli operatori)