
Neural and Synaptic modelling on bio-inspired
hardware

Master Thesis
submitted to the Faculty of the

Escola Tècnica d’Enginyeria de Telecomunicació de Barcelona
Universitat Politècnica de Catalunya

and to the Department of
Electronics and Telecommunication Engineering of

Politecnico di Torino
by

Geremia Muccioli

In partial fulfillment
of the requirements for the master in
ELECTRONIC ENGINEERING

Advisor: Jordi Madrenas
Advisor: Claudio Passerone

Barcelona, Date 25/10/2023

Abstract

The presented thesis proposes to explore the implementation of different neural appli-

cations, in particular, the Adaptive Exponential Integrate and Fire (aEIF) neural model

on a neuromorphic device called HEENS, and a simulation of a Spiking Neural Network

with a Reservoir topology, along with the comparison of the results with an analogue

neural counterpart, implemented in CMOS technology. For doing so, initially, some basic

concepts about neuron’s modeling and Spiking Neural Network are exposed, and then

HEENS multiprocessor is introduced, both in the architecture and its software support.

Afterwards, the focus is moved toward four different spiking neural models, explaining

some theory and their equations, and for one of them, also the HEENS implementation.

Lastly, a comparison between an analogue and a digital technologies implementing the

same model over a reservoir network topology is discussed, presenting similarities and

differences of the two approaches.

2

Contents

1 Introduction 5

1.1 Biological Neurons . 6

1.2 Artificial Neurons . 8

1.3 Neural Networks and Reservoir Computing 9

2 HEENS Architecture and Software Support 13

2.1 Architecture . 15

2.1.1 Control Unit . 15

2.1.2 Processing Element . 16

2.1.3 Communication system . 20

2.1.4 Operation phases . 20

2.2 Software support . 22

2.2.1 Instruction Set . 22

2.2.2 Network Netlist . 23

2.2.3 Neural Model . 25

2.2.4 Result Analysis . 26

3 Neural Models 28

3.1 Hodgkin-Huxley . 28

3.2 Leaky Integrate and Fire . 31

3.3 Izhikevich Model . 33

3.4 Adaptive Exponential Integrate and Fire 35

4 Implementation of the Adaptive Exponential Integrate and Fire model 38

4.1 General Information . 38

4.1.1 Expected Results . 38

4.1.2 Neural Constants . 39

4.1.3 Ranges and Measurement Units . 40

4.1.4 Differential Equations and Time Resolution 41

4.1.5 Multiplications and Divisions . 41

4.1.6 Code references . 41

4.2 Methods Involved . 43

4.2.1 Method for handling fixed point numbers 43

4.2.2 Method for controlling flow of execution 44

4.2.3 Method for the approximation the exponential function 44

4.3 MATLAB . 48

3

4.3.1 aEIF High Accuracy Simulation . 48

4.3.2 HEENS Emulation of the aEIF Model 49

4.3.3 MATLAB results . 52

4.4 HEENS . 54

4.4.1 Netlist file . 54

4.4.2 Neural Model . 57

4.4.3 HEENS Results . 63

5 Reservoir Network Simulation 65

5.1 Izhikevich Analogue Neuron . 67

5.2 Network Topology and Neural Models . 67

5.3 HEENS Files . 69

5.3.1 Netlist . 69

5.3.2 Neural Model . 70

5.4 Comparison of Results . 74

6 Conclusion and future work 76

References 78

A aEIF MATLAB Code 80

B aEIF HEENS Code 89

C Reservoir Network Code 97

D Python Code 107

4

1 Introduction

During the last few decades, technological progresses made possible the manufacturing

of sophisticated biologically inspired electronic devices, that propose to emulate the be-

haviour of the organical world and supported also by the mathematical models that have

been developed during the years. In particular, the human brain and its capabilities have

attracted lot of attention from the scientific world, and because of its wide amount of

unique capabilities, many efforts have been made in order to reproduce the behaviour of

brain cells.

In this domain, it can be found HEENS, acronym for Hardware Emulator of Evolved Neu-

ral System, a custom digital multi-processor device designed to simulate Spiking Neural

Networks, featuring high parallelism capabilities, a dedicated instruction set and a com-

munication systems that allows for the scaling to bigger networks.

Due to their biologically-inspired approach to information processing, Spiking Neural

Networks (SNNs) have emerged as a valid alternative to the traditional Artificial Neural

Networks (ANNs), because, unlike ANNs that rely on continuous activation functions,

SNNs emulate the behavior of biological neurons by transmitting information through

discrete spikes, that are SNNs fundamental units of computation, and that represent the

firing of a neuron.

The structure of the thesis, after a brief introduction of some minimal concepts, is to

present HEENS multi-processor, its main features and its software support, keeping the

focus on the aspects that have been more involved in developing the applications.

Once exposed the device, some neural models are reviewed, as an introduction for the

implementation of one of them, the Adaptive Exponential Integrate and Fire (aEIF).

Lastly, a 16 neurons Spiking Neural Network is simulated on HEENS, and the results

are compared with an analogue device made in CMOS technology, also able to reproduce

neural models.

5

1.1 Biological Neurons

Figure 1: Neuron Structure [2]

A biological neuron, or nerve cell,

is an electrically excitable cell

able to receive and transmit elec-

tric signals toward other cells

by means of various components,

among which there are dendrites,

axons and synapses.

Dendrites are extensions of the

neuron that receive incoming elec-

trochemical signals from other

neurons or the external environ-

ment. These incoming signals are

then transported toward the cell

body where they can be processed

and integrated.

In contrast, axons are extensions of the neuron that serve as electrical conductors for

outgoing signals, but while many dendrites can be found in a cell, only a single axon can

be present. As the axon extends, it may branch into multiple terminal regions, each of

which ends with a synapse, that is the actual joint between a cell and the dendrites of

the successive ones.

Inside the synapses can be found voltage-gated channels, that through complex biochem-

ical reactions are able to be opened or closed depending on the concentration of some

chemicals called neurotransmitters, in particular Sodium and Potassium ions.

The concentration of these elements in the neuron creates a voltage difference across the

cell’s membrane, which, in turn, regulates the generation of the electrical pulses: indeed,

when this difference overcomes a biological threshold, a flow of ions is allowed to pass

6

through the channels in the synapses, that are also able to modulate the strength of the

signal, and effectively transmitting the pulses to the connected cells.

The variation over time of the voltage difference in the cell’s membrane, referred to as

membrane potential, has a deeply non-linear behaviour, which is a key requirement for

providing functional capabilities, and an example of that behaviour can be seen in figure

2.

In absence of stimuli, the value of the voltage difference across the cell tries to reach its

resting state, or resting potential. When incoming spikes are received by the neuron, the

membrane potential is increased or decreased, depending on the reactions happening in

the synapses, and when the value overcomes a voltage threshold, a spike is generated by

the cell: for this reason, a neuron fires only when stimulated enough, otherwise the mem-

brane potential return to its resting state, as indicated in figure 2 as ”failed initiations”.

Figure 2: Membrane voltage of a neuron over time [16]

After the firing, the neuron enters in a refractory period, during which, due to other bi-

ological processes, it is harder for the cell to generate a subsequent spike and thus the

activity of the cell is limited. Finally, after some time, the neuron returns to its resting

state.

7

Furthermore, the amount of increment or decrement in the membrane potential associated

to a received spike is dynamically controlled through the synapses, and this phenomenon,

referred as synaptic plasticity, is directly associated to the learning process of the networks

and their ability to recognize input patterns. [1]

1.2 Artificial Neurons

Artificial neurons aim to replicate the behaviour of biological neurons through the evalu-

ation of non-linear mathematical functions applied to a variable known as the membrane

potential, which is the parameter that reproduces the electrical charge difference across

the cell’s membrane. The non-linear function is also referred to as activation function, re-

minding to the ability to generate an output signal only if its variable, i.e. the membrane

potential, exceeds a certain threshold. [1]

For traditional neural network applications, some common activation functions are, for

Figure 3: Sigmoid and Relu functions

example, the Sigmoid or the Relu (figure 3), both non-linear, and that are very effective

when applied to solve tasks such as pattern recognition or classification, but lacking the

actual mimicry of biological neural processes, and indeed, the output of such neurons does

not generate a sequence of spikes, but it’s associated to a continuous value.

8

On the contrary, neural models for SNNs applications have been developed in order to

produce firing pattern outputs, but the complexity of their implementation scales with

the biological accuracy desired.

Differently from the activation functions cited before, the output of spiking neuron is a

sequence of pulses in which every vertical line is a generated spike. [2]

Figure 4: Example of a spiking output pattern

On the other side, synapses are modeled as weighted connections between two neurons,

both for ANNs and SNNs applications, and the learning process is performed by adjusting

these weights.

Even tough some models exist for modifying these values, such as Spike-timing-dependent

plasticity, but since they are not strictly related to the scope of this work, they won’t be

treated.

1.3 Neural Networks and Reservoir Computing

A neural network can be defined as a graph in which the nodes are the neurons and the

weighted interconnections are the synapses. The key feature of a neural network is to

output a value that can be associated to a specific input, allowing the network to perceive

relationships within data.

This ability to recognize patterns is achieved through the tuning of the synaptic weights,

and by adjusting them during a learning process, the neural network can accurately map

9

inputs to outputs. This mechanism enables the network to generalize from examples and

recognize input patterns, making it capable of solve tasks like classification, image recog-

nition, language processing and others.

In fact, before testing a neural network for a specific task, it first needs to be trained with

known sets of data, in order to correctly adjust the weights for the particular application.

One common way of implementing a neural network is to arrange neurons in a multi-

layered structure, forming what is referred to as a Feedforward Neural Network. This

configuration comprehends an input layer, one or more hidden layers, and an output

layer. Neurons within each layer are interconnected, with connections typically unidirec-

tional, flowing from the input to the output layer. [2]

Figure 5: Traditional multi-layered network topology

This architecture facilitates the propagation of information through successive layers,

where each neuron processes input data and contributes to the network’s overall compu-

tation.

Among the different techniques for implementing a neural network, the one used for the

simulation in chapter 5 belongs to the family of Reservoir Computing.

This particular class of networks can be seen as a multi-layer network, in which, the hidden

layer, is a complete Spiking Neural Network with fixed synapses and synaptic weights. In

10

this way, the training phase involves less neurons and requires less computational efforts,

and the task to be solved can be easily changed rearranging only the output weights.

Whereas in a traditional network the focus lies in training the synapses to accurately

produce the solution for a given problem, Reservoir Computing takes a distinct approach,

for that the network is free to produce an unsupervised output, that is then interpreted

by a fully interconnected output layer, which is the only layer with trained connections,

that, if correctly tuned, allows to whole system to perform tasks.

Figure 6: Comparison of different network’s structure [3]

Usually, the neurons for the output layer are modeled differently with respect to the

network’s ones, with the purpose of linearizing the firing pattern in order to get more

meaningful results.[3] This linearization can be performed in multiple ways, for example

counting the total received spikes by an output neuron in a certain amount of time and

use it as a probability for classification or activate only the output neuron that received

the highest number of spikes.

For example, in figure 7, three different input patterns (black, orange and green) are fed

to three neurons in the reservoir, and if the output weights are correctly tuned, after some

time (3ms in this specific case), only one of the three output neurons will be active.

11

Figure 7: Example of a reservoir network

12

2 HEENS Architecture and Software Support

HEENS, acronym for Hardware Emulator of Evolved Neural System, is an electronic multi-

processor chip with biological inspired features, able to simulate Spiking Neural Networks

for real time applications.

The device is implemented on a FPGA, in order to be easily reprogrammed and to allow

for the connection with a computer or even more boards.

One of its main characteristics is the high parallelism capability, achieved through a Sin-

gle Instruction Multiple Data architecture, for that, a single sequencer sends the same

instruction to an array of processing elements (PEs), and each of them, provided with its

own memory and arithmetical unit, executes the algorithm at the same time. [4]

Figure 8: Virtualization mechanism for the PE’s
array [4]

Moreover, a single PE, by means of a vir-

tualization mechanism, can represent and

simulate more neurons within the same

network, reducing the actual physical units

and allowing for a larger topology. The idea

behind this mechanism is to retrieve the

state of a network’s neuron, i.e. the mem-

brane potential, compute the variables for

the current time step, save back the new

state, and jump to the next layer until all

virtual layers have been evaluated. Usually,

a single PE can simulate up to 8 different

neurons, while maintaining an overall real-time behaviour, but this number can be scaled

together with the hardware.

For example, an array of 4 PEs with 4 virtualization layers, can simulate an SNN of 16

neurons, where the first processing element holds the state for the neurons number 1, 5,

13

9, 13.

Furthermore, HEENS is provided with a serial communication system for spike distribu-

tion, Address Event Representation over Synchronous Serial Ring, or AER-SRT, which

allows to connect all the neurons within a single board, but also more HEENS devices

into a ring topology, in order to enlarge the neural network’s size without real time func-

tionality losses. In this configuration, one of the boards assumes the role of Master Chip

(MC), controlling the traffic of the data over the communication bus, while the other

boards are configured as Slave Chips or Neuromorphic Chips (NCs). These roles apply

only to the communication system, and do not affect the behaviour or the simulation of

the network. [4]

Figure 9: HEENS’s ring topology [4]

Despite the existence of other neuromorphic architectures with larger sizes and higher

computational capacities, HEENS ’s strength lies in its flexibility and in the possibility

to program the neuron freed from physical implementations, making it suitable for small

topologies or for verification of networks and neural models.

14

2.1 Architecture

As can be seen in figure 10, HEENS is composed of three macro blocks, the control unit,

an array of processing elements and the controller for the communication system.

The parallelism of the architecture is 16 bits, excepts for the machine instructions that

are encoded with 32 bits.

The number are represented as integers or in fixed point numbers, and a floating point

unit is not present in the processors.

Figure 10: HEENS block diagram [4]

2.1.1 Control Unit

The control unit is in charge of managing the flow of execution of the program, and it’s

made of an Instruction Memory (IMEM) and a Sequencer.

The IMEM is used to store both machine instructions, i.e. the neural model’s algorithm,

and global constant variables, and it can be addressed with some specific instructions in

order to retrieve those memory cells.

Since the instructions size is on 32 bits but the constants stored in the memory are on

16 bits, all the fetched constants are taken in couples, and this fact has to be taken into

account when developing the algorithms.

15

The sequencer, instead, is the unit that actually manages the execution of the algorithms

stored in the memory, and sends simultaneously data to the whole array of PEs. Also, it’s

in control of the configuration of the PEs, and it’s capable of generating the signals for

synchronizing and managing the communication bus towards the other possible connected

devices.

2.1.2 Processing Element

Each PE inside the array is a digital processor, composed of some logic, a memory, a

register file and an arithmetical unit. A single neuron in the SNN is addressed by a triplet

of integers (v, r, c), where r,c represents a position in the PE array and v is the virtual

layer. In figure 11 it is shown the architecture of a single Processing Element within the

array:

Figure 11: Processing Element Architecture [4]

• Local Memory (SNRAM): Each PE is provided with its own Synaptic and Neural

memory, used for storing local variables, and among which are found the membrane

16

potential and all the incoming synaptic weights for each neuron’s connections.

All the addresses in the memory keeps two words, i.e. 32 bits, thus the values stored or

retrieved always involve two registers, R0 and R1. The memory is addressed through

the BP pointer, that can be loaded with specific instructions.

This module has a central role also in virtualization because it keeps the data for

all the neurons represented by the processing element, and indeed, the virtualization

mechanism works by addressing differently this memory, as can be seen in the next

table.

SNRAM Address 16 MSBs 16 LSBs
NEU 0 + 0 var1 var2
NEU 0 + 1 var3 var4
NEU 1 + 0 var1 var2
NEU 1 + 1 var3 var4

...

...
SYN 0 + 0 synaptic weight00 S00

SYN 0 + 1 synapti weight10 S10

SYN 0 + 2 synaptic weight20 S20

SYN 0 + 3 synaptic weight30 S30

SYN 1 + 0 synaptic weight01 S01

SYN 1 + 1 synaptic weight11 S11

...

...
NOISE SEED 0 seed MSBs seed LSBs
NOISE SEED 1 seed MSBs seed LSBs

Table 1: SNRAM configuration

All the virtual neurons in a PE have the same number of neural variables, be-

cause they depend on the mathematical model, but the same does not happen with

synapses, that depend on the network’s topology and whose amount can vary among

neurons.

After the neural parameters, the synaptic weights can be found, stored in MSBs of

the memory cell, while the LSBs contains the information of incoming spikes from

that synapse. This information is stored as a logical value in the first bit of the LSBs.

17

Indeed, for example, if neuron number 0 receives a spike from neuron number 1, then

S10 will be equal to 1, 0 otherwise.

Differently from neural variables, the number of synapses for a single neuron can dif-

fer from a neuron in another virtual layer, but the number of addresses used in the

memory by each PE must be the same. In fact, accessing the memory for retrieving

the synaptic weights for the current virtual layer is done by implementing a software

loop over a constant defined at compile time, which is the same for all PEs, and that

is calculated as the maximum number of synapses for the particular layer among all

PEs. For example, if PE0 needs 10 synaptic weights in the first virtual layer and PE1

needs only 2, the memory slots used by both for that layer is equal to 10, and, for

PE1, eight addresses will be filled with weights equal to 0. In this way, the parallelism

in the execution flow for all the PEs in the array is preserved.

Lastly, at the very end of the memory, some 32-bits seeds for noise generation are

stored.

The main limitation is the size of this memory, indeed, the number of neurons in the

network depends on the capacity of the single PE to store all the variables needed to

execute the algorithm, i.e. the SNRAM must be large enough to contain all variables

and synaptic weights for all virtual layers. This number can be large, and it scales

rapidly with the number of neurons.

• Register file: The register file is composed of 8 registers with direct access, R0 to R7,

and 8 shadow registers, SR0 to SR7, that cannot be directly addressed by the ALU

or the sequencer, but they can only exchange data with their standard counterpart.

Moreover, the register R0, also called Accumulator, is the main one in the register file,

due to the fact that is always addressed as one of the inputs by the arithmetical unit,

and it also stores every time the result of the operation. Even the SNRAM always

involves register R0, because, along with R1, are loaded with the values retrieved

18

from the memory.

Another very important feature of the register file is the possibility to be frozen

(i.e. inactive) depending on the value of some flags present in the ALU: this is the

technique that enables to differentiate the flow of the algorithms and makes possible

performing if statements.

The current state of the register file is saved in a LIFO, and this operation can be

nested at most 8 times.

• Arithmetical Unit : The ALU inside each processing element is able to perform 16

bits additions, subtractions, logical functions and multiplications. Divisions could be

performed by multiplying for the reciprocal of the divisor.

Each operation takes the value stored in R0 and a second register, and always saves

the result back to R0.

It’s also important to highlight that sums saturate instead of going to overflow, and

that the multiplications save the result in both R0 (MSBs of the result) and in R1

(LSBs of the result).

In addition, the ALU is also provided with a Zero and a Carry flag, that can be used

for controlling the algorithm’s execution.

• Spiking Logic: From the point of view of a PE, the most important feature of the

spike distribution system is that the information of a received spike is found, at each

time step, in the SNRAM, in the first bit of the 16 LSBs of the synaptic memory

cell, stored along the synaptic weight, as shown in table 1. When this value is read

from the memory, it’s saved in the LSB of R0, with the possibility of raising a flag

when shifted. On the opposite, when a neuron is firing in the current cycle, the first

bit of R0 is stored in a specific register and this value is distributed in the spike

distribution phase.

• Noise Generator (LSFR): Each processing element is also provided with a circuit for

generating Gaussian noise, that has an important role in physical neural networks.

19

This circuit is a Linear-feedback shift register, that, starting from a seed, it’s able to

generate a very long sequence of pseudo-random numbers.

2.1.3 Communication system

The communication system in HEENS allows it to exchange data with other boards by

means of the AER-SRT Controller, but also with a computer through an HDMI interface

and it is programmed remotely by means of an Ethernet connection.

The HDMI protocol is used for visualizing results, and allows for the transmission of real

time spikes from the device, with a dedicated user interface formed by the raster plot of

the network, and the possibility to monitor up to 4 neurons. [6]

The Ethernet connections, instead, is used to remotely load the programs in the device,

by specifying its IP address.

2.1.4 Operation phases

Figure 12: Operation Phases [5]

In order to simulate an SNN, after a first initialization and configuration phases, needed

for both setting up the HEENS network and the SNN, the execution flow is divided in

20

three different parts:

1. Execution Phase (EPh): In this phase, each PE executes the neural algorithm for all

the virtual layers, and evaluates the new values for the model’s variables.

2. Evolution Phase (EvPh): At the end of each cycle of execution a signal for evolu-

tion can be present, and the involved neurons are modified according to incoming

information sent by the Master chip. This feature it’s still under developing, but

once completed, it should allow the network to dynamically rearrange its topology

without the necessity of compiling again.

3. Distribution Phase (DPh): The generated spikes from all the neurons are actually

distributed through the communication bus, and the firing information is spread

throughout the network.

Except for the initialization phases, HEENS is designed to simulate a network with a time

step of 1ms, which is a constraint chosen for allowing the device to execute algorithms

in a real time manner with biological plausibility. Therefore, a whole cycle of execution,

evolution and distribution lasts that amount of time.

For this reason, the length of the executable program is limited to a maximum length,

that can be derived from the clock frequency of the device. There are also some dedicated

hardware modules able to synchronize the working frequency of the chip on 1ms when a

single execution cycle is shorter, but this topic is beyond the purpose of this paper.

21

2.2 Software support

In order to develop HEENS applications and due to the custom nature of its architecture,

it has also been developed a dedicated Instruction Set, a python compiler and two file

formats to specify both the SNN topology and the neural model.

2.2.1 Instruction Set

The complete HEENS Instruction Set is shown in table 2, and each instruction belongs

to one of the following categories:

• Sequencer: Instructions that are involved in the Sequencer or IMEM functioning,

such as unconditional jumps.

• Register: Operations that can be performed on active registers, such as shifts or

resets.

• Movement: Any operation involving the movement of data within registers or shadow

registers. Also the noise configuration is part of this set.

• Flags: Instructions that can modify the value of the flags present in the ALU.

• Arithmetic: Instructions that involve the arithmetical unit.

• Logic: This class of instructions perform logical operations, such as ANDs or ORs.

• Conditional: These operations are used for freezing the register file and performing

conditional operations.

• Others: Specific instructions implemented for specific functions in the chip, such as

storing a spike, loading the SNRAM pointer or controlling the noise generator.

22

SEQ REG MOV FLAG ARITH LOGIC COND OTHER

NOP LDALL LLSFR SETZ INC AND FREEZEC LOADSP
LOOP RST MOVA SETC DEC OR FREEZENC STOREB
LOOPV SET MOVR CLRZ ADD INV FREEZEZ STORESP
ENDL SHLN SWAPS CLRC SUB XOR FREEZENZ STOREPS
GOSUB SHRN MOVRS MULU UNFREEZE LOADSN
RET RTL SEED MULS RANDON
HALT RTR MOVSR RANDOFF
SPKDIS SHLAN LOADBP
READMP SHRAN SPMOV
RST SEQ BITSET INCS
LAYERV BITCLR
GOTO
INCV

READMPV
MARK

SYNAPSE

Table 2: HEENS instruction set

2.2.2 Network Netlist

The first of the two file formats developed for HEENS is for specifying the configuration

of the neural network, its topology and the initial state of the SNRAM of processing

element.

This file is composed of four sections:

1. @Config: needed for configuration, defines the board for uploading the HEENS

architecture and the size of the SNN.

2. @ParamSyn: In this section are present the values that will be stored in the SNRAM

in the positions pointed by each synapse.

3. @Netlist: Here can be found the synapses definition, in the form of pre-synaptic

neuron and post-synaptic neuron separated by a comma, and with the possibility to

also specify, after the second parameter, a specific value for that synapse, that will

erase the one loaded in the previous section.

4. @Params: Used for initializing sequential memory cells in the neural section of the

SNRAM, in order to store model variables. The addresses of these parameters are

23

saved inside the IMEM, and they can be retrieved through the apposite instructions.

As for the synapses, there is the possibility to differentiate the values received by

each neuron, so that different kinds of neuron can be modeled in parallel.

This section should also define the seeds for initializing the noise generator, since

they’re also stored in the SNRAM memory.

Below, a general example of a netlist file, with different colors for each section, and its

respective graph.

Figure 13: An example of a netlist file with its respective network’s graph

24

2.2.3 Neural Model

The file format for the neural models is a typical assembly executable, with a section for

global variables and another for the actual code, and it’s entirely stored in the IMEM.

Despite the fact that each neural model is different, some recurrent structures should al-

ways be present for the correct behaviour of the neurons. In fact, before the starting point

of the simulation, the virtual mechanism inside each PE must be initialized as shown in

figure 14, and then, if required, the seeds should be given to the noise generator through

the appropriate instructions.

Finally, the simulation loop is executed, and inside, the virtualization loop, that is re-

peated NVL times, along with the increment of the layer at the end by means of the

instruction INCV, followed by the spike distribution (performed by SPKDIS) once the

loop finishes. [5]

25

Figure 14: Neural model generic structure

2.2.4 Result Analysis

The analysis of HEENS results is done through a dedicated user interface, that, through

an HDMI connection, can display on a screen the real time raster plot of the network and

up to four other different parameters. [6]

A raster plot is a graph able to represent the firings of the neurons, by having on the x-

axes the time and on the y-axes the number of the neurons, and when a neuron generates

a spike, it’s visualized a pulse on that instant of time for the given neuron.

By means of a FIFO, HEENS is able to communicate with the pc and send the necessary

data for producing the raster plot of the net. In this way, it’s possible to keep track of the

26

behaviour of the network and up to four parameters, by storing them in the FIFO using

the dedicated instruction STOREB.

In figure 15, an example of how the output is shown via HDMI. The implemented network

has not a specific application, and it has been used only with the aim of presenting how

the results are displayed.

The raster plot is the figure on top, but, since with the current implementation are al-

ways shown 256 neurons while only 16 have been used, the visualization is condensed and

thus not much meaningful for this specific case. Anyway, HEENS has the possibility to

generate a text file with the information of the raster plot, i.e. the neurons that fired at

any given time, in order to check accurately the results when necessary.

The bottom graphs represent the membrane potentials over time of four different neurons,

but any variable can be chosen and plotted here.

Figure 15: Example of HEENS visualization of results

27

3 Neural Models

Neural models are mathematical equations that reproduce the behavior of a biological

neuron as a function of membrane potential and incoming spikes.

The amount of biological accuracy of the model drives the complexity of its implemen-

tation, in fact, in order to emulate the electrochemical reactions inside a neuron, lots of

computational efforts are needed, slowing down the simulation and requiring lot of power.

As a result, certain models opt for a simplified and cost-effective implementation, sac-

rificing some biological details. This, in turn, highlights the importance of choosing an

appropriate model based on the specific requirements for the specific application.

3.1 Hodgkin-Huxley

Hodgkin-Huxley is one of the most important neural models that have been developed, de-

scribing the flow of Sodium and Potassium ions across a cell’s membrane [7]. The strength

and the weakness of the model lie together in its high biological accuracy, providing a re-

alistic emulation of a neuron’s behaviour, but with the drawback of a very demanding

implementation. For this reason, is not commonly used for SNNs applications, where other

simpler model are preferred.

The membrane potential evolution over time is described by a set of four differential equa-

tions:

28

Cm
dV

dt
= INa + IK + Ileak + Iext (1a)

dm

dt
= αm(V)(1−m)− βm(V)m (1b)

dh

dt
= αh(V)(1− h)− βh(V)h (1c)

dn

dt
= αn(V)(1− n)− βn(V)n (1d)

being:

INa = gNam
3h(V − ENa) Sodium Current

IK = gKn
4(V − EK) Potassium current

Ileak = gleak(V − Eleak) Leakage current

and with:

V : Membrane potential

Cm : Membrane capacitance

m : Variable for activation of Sodium gate

h : Variable for inhibition of Sodium gate

n : Variable for activation of Potassium gate

ENa, EK , Eleak : Reversal potentials

gNa, gK , gleak : Channel conductances

α, β : Rate constants

In figure 16 are shown the dynamics of the variables of the model in response to an

external step input current.

29

Figure 16: Dynamics of a Hodgkin-Huxley neuron [15]

30

3.2 Leaky Integrate and Fire

The Leaky Integrate and Fire (LIF), is the model with the simplest implementation, and

its name reminds to the fact that the integration of received synaptic currents raises

the membrane potential, but also that some current is leaking from the membrane. This

duality makes the neuron firing only in presence of enough input spikes in a short period

of time.

When the membrane voltage is above a threshold, the neuron fires and sends a spike, and

then returns to its resting potential [8].

The equation describing this model is:

τm
dV

dt
= −(V − Vrest) + Iext (2)

if V ≥ Vth then V = Vrest

and being:

τm : Decay constant

V : Membrane potential

Vrest : Resting potential

Vth : Threshold voltage

Iext : External current

The dynamics of a LIF neuron (depicted in figure 17) are much simpler with respect to

a Hodgkin-Huxley one, but still, the efficacy of its results makes it a reliable option for

SNNs applications.

31

Figure 17: LIF neuron dynamics

Another important feature of this model is that a LIF neuron can be implemented in

analogue with an RC circuit (figure 18), that has the key advantages of being very small

and consuming very little power.

Figure 18: LIF neuron implemented as an RC circuit [5]

32

3.3 Izhikevich Model

The Izhikevich model is probably the most prominent neural model, proposing a very

effective trade-off between implementation costs and biological accuracy.

This model has been obtained from the Hodgkin-Huxley one, it uses a set of two differential

equations in order to mimic neural activity, and it’s able to emulate different kinds of

neural behaviours as shown in figure 19. [12]

For example, Regular Spiking, Intrinsically Bursting and Chattering are behaviour studied

in cortical excitatory neurons, while Fast Spiking and Low-Threshold Spiking have been

observed in cortical inhibitory neurons. The membrane potential is here a function not

only of input spikes, but also of second state variable, called recovery potential, used for

accounting also the recovery time needed for a neuron after a spike. [10]

The equations describing the model are:

dV

dt
= 0.04V 2 + 5V + 140− U + Iext (3a)

dU

dt
= a(bV − U) (3b)

if V ≥ Vth then V = c and U = U + d

and being:

V : Membrane potential

U : Recovery potential

a : Time scale of U

b : Sensitivity of U to subthreshold fluctuations of V

c : After-spike reset potential

d : After-spike increment of U

33

Figure 19: Dynamics of Izhikevich neurons [9]

Also for this model have been developed analogue circuits counterparts, as the one shown

below in figure 20, in which the membrane and recovery potentials are modeled by the

voltage difference across the two capacitors; besides, the increased complexity with regard

to the RC-LIF analogue model (figure 18) is evident.

Figure 20: Analogue circuital implementation of an Izhikevich neuron [13]

34

3.4 Adaptive Exponential Integrate and Fire

The last model to be presented is the Adaptive Exponential Integrate and Fire, or aEIF,

firstly presented by R. Brette and W. Gerstner in 2005, and which also utilizes a second

variable for accounting the recovery time of the neurons. Differently from Izhikevich, an

exponential term is introduced in the equation, allowing for a more realistic and smoother

spike initialization region, i.e. when the membrane potential is close to the threshold volt-

age. [10]

Again, more biological details imply higher implementation complexity, in this case, em-

bedded in the addition of the exponential function.

The set of differential equation is the following:

C
dV

dt
= −gL(V − EL) + gL∆T e

(V −Vth)

∆T − U + Iext (4a)

τu
dU

dt
= a(V − EL)− U (4b)

if V ≥ Vth then V = EL and U = U + b

and being:

V : Membrane potential

U : Recovery potential

EL : Leak reversal potential

Vth : Spike threshold

Vpeak : Spike peak

C : Membrane capacitance

gL : Leak conductance

35

∆T : Slope factor

a : Subthreshold adaptation

b : Spike-triggered adaptation

It is worth noticing that, in this case, there is an distinction between Vth and Vpeak; the

former, indeed, is the actual value to overcome for the membrane potential to trigger a

spike, while the latter is the peak voltage of the spike reached by the neuron, ensuring

that the membrane potential does not increase uncontrollably during a burst [11]. In the

previous models this distinction is not present and does not affect the results.

Lastly, as for Izhikevich, this model can describe a various set of neural behaviours, de-

pending on the values of its constant parameters, with the different dynamics shown in

the next figure and briefly explained in section 4.1.1.

The main difference, is that even tough the Izhikevich model is sufficient to account for

most types of firing patterns observed in the nervous system, the generated spikes appear

with an unrealistic delay, while, with the introduction of an exponential term, the results

match with direct measurements of biological neurons. [11]

36

Figure 21: Dynamics of Adaptive Exponential Integrate and Fire neurons[11]

37

4 Implementation of the Adaptive Exponential Inte-

grate and Fire model

In this chapter, it is presented the implementation of the aEIF model by showing four

different neural behaviours (Regular Spiking, Spike Frequency Adaptation, Initial burst-

ing and Tonic Bursting) in response to a DC current, firstly using MATLAB and then on

HEENS, focusing on the problems that arose from the architecture’s limitations and the

methods used to solve them.

For sake of readability, only some extracts of the code are presented, but it can be found

complete in the appendices.

4.1 General Information

4.1.1 Expected Results

The simulations portrayed in the following sections aim to depict four different type of

neural behaviour, comparing the results with the ones illustrated in figure 21. These are:

Regular Spiking (21.a), Spike Frequency Adaptation (21.b), Initial Bursting (21.c) and

Tonic Bursting (21.d).

Regular Spiking (RS) is the simplest type of spiking pattern, generated by a regular

discharge of action potentials, and it’s the only firing pattern that a standard leaky or non-

leaky integrate-and-fire model shows subject to constant current injection. It corresponds

to the absence of spike-triggered adaptation and adaptation sensitivity to subthreshold

voltage (a, b = 0).

Most neurons, however, have some level of spike-frequency adaptation (SFA), depicted in

figure 21.b.[11]

Neurons with spike frequency adaptation are the most common in mammalian cortex. [9]

Initial Bursting (IB) behaviour denotes a group of spikes that were emitted at a frequency

considerably greater than the steady-state frequency.

38

The main difference between IB and the previous spike patterns can be found in the after-

spike resets: RS and SFA exhibits only sharp resets, meaning that the membrane potential

increases monotonically after a spike, while IB shows sharp resets only at beginning,

followed by broad resets, that can be recognized from a low curvature at all times after a

firing.

Tonic Bursting (TB) is an alternation of sharp resets followed by a broad one.[11]

In figure 22 on the right side, it can be seen the difference between the two types of resets,

above the sharp reset, below the broad one. On the left, a voltage-current graph of a

neuron, reported for completeness but outside the scope of this work, and thus it won’t

be considered.

Figure 22: Sharp (a) and Broad (b) resets [11]

4.1.2 Neural Constants

In order to obtain the different output patterns, the constants for the model have been

retrieved from the work of Brette and Gerstner[11] and have been set as in table 3.

39

RS SFA IB TB

C(pF) 200 200 130 200

gL(nS) 10 12 18 10

∆T (ms) 200 200 200 200

Vth(mV) -50 -50 -50 -50

Vrst(mv) -58 -58 -50 -46

EL(mv) -70 -70 -58 -58

τu(ms) 30 300 150 120

a(nS) 2 2 4 2

b(pA) 0 60 120 100

Iin(pA) 500 500 400 210

Table 3: Model’s constants

4.1.3 Ranges and Measurement Units

Due to the length of registers in HEENS and to the 2’s complement representation of in-

teger numbers, the range of possible values involved in the calculations is [-32768, 32767];

meantime, the membrane potentials involved in neural models are in the range of [-70,

30]mV.

These facts, combined with the needing of working with a reasonable resolution, led to

the selection of 10uV as the unit for voltages, and consequently, all the voltages in the

models are limited by the range [-327.68, 327.67]mV. This scaling allows for working with

2 decimal digits resolution.

The same happens for the currents, that are in the range [-327.68, 327.67]pA, with a single

unit of 0.01pA.

The time constants used in the models work with a resolution of 1ms and are not scaled.

40

4.1.4 Differential Equations and Time Resolution

The differential equations of the model are solved using Euler’s method, for which, each

variables next step in the simulation is evaluated as:

x(t+ 1) = x(t) + x′(t) ∗ dt

Since HEENS operates with a 1ms resolution, for the calculations it has been selected

dt = 1ms.

4.1.5 Multiplications and Divisions

Given N as the number of bits in a register, the result of a digital multiplication of the

form N ∗N bits can always be represented with at most 2N bits.

For this reason, multiplications in HEENS takes R0 and another register as input operands

and the couple R0-R1 for storing the result.

In addition, divisions are made by multiplying for the reciprocal of the divisor, considering

that x : y = x ∗ (y)−1 .

The reciprocal value has to be calculated when writing the algorithm, and it must be

treated as a constant number, since during the execution is not possible to evaluate it.

4.1.6 Code references

In table 4, a reference for some of the variables names used in the code.

41

Variable
Name

Description

N Number of neurons in the network

exec cycles Length of the simulation

S NxN matrix of synapses

v Membrane potentital over time

u Recovery potential over time

firings Post-synaptic spikes over time

Iin External DC current

fv Function that combines the linear and the exponential term of the model’s equation. Used for
differentiating the sequence of operations done in HEENS

fv ap The approximated function of fv

fv root Value of voltage for which fv ap equals 0

v n Current step membrane potential

u n Current step recovery potential

Vmin, Vmax Limits of the registers

Table 4: Variables Description

42

4.2 Methods Involved

4.2.1 Method for handling fixed point numbers

Constant numbers belonging to the range of values (0,1) are transformed into integers

by multiplying them for, usually, the value 2N , with N being the registers length, and

truncating the eventual remaining part of the mantissa.

In this way, when multiplied, the result itself is enlarged by a factor 216, but since it’s

stored within the couple R0-R1, by taking only the value stored in the MSBs (R0), the

result is divided again by 216, restoring the correct result.

The drawback is that, when the mantissa is truncated, the numbers are approximated

and the precision is decreased.

In table 5, an example of the division 900 : 200 = 4.5, where in the last row, it can be

seen the approximation of the digital result which is 5 instead of 4.5.

Also, is important to notice that the shifted reciprocal of the divisor, equal to 328 in this

case, has to be evaluated before the execution, and it’s the actual value given to HEENS

for performing the divisions.

An actual example of this issue is presented in section 4.4.1, where, in the part of the file

dedicated to the variables definition, the values of C and τu are already 216

C
and 216

τu
.

43

Decimal
Number

Digital Number Digital Approx-
imation

Dividend 900 00000011 10000100 900

Divisor 200 00000000 11001000 200

1
divisor 0.005 .00000001 01001000 0.0050048828125

216

divisor 327.68 00000001 01001000. 328

Dividend ∗ 216

divisor 294912 00000000 00000100 (R0) .10000000 00000000 (R1) 294912

Dividend
divisor 4.5 00000000 00000100 (R0) 5

Table 5: Division in HEENS

4.2.2 Method for controlling flow of execution

The conditional statements in HEENS are done by using subtractions and shiftings, by

considering that a > b ⇐⇒ (a− b) > 0.

By shifting by one to the left the result of a subtraction, the carry flag of the arithmetical

unit is loaded with the sign’s bit of the number, and it’s possible to freeze the register file

based on that bit’s value. In this way, only some neurons will modify their status based

on the operation enclosed in freezing instructions, differentiating effectively the execution

flows.

4.2.3 Method for the approximation the exponential function

One of the main problems in the development of the model is the approximation of the

exponential term in the equations. The linear and the exponential terms in the first equa-

tion at (4), have been joined in a new function referred to as fv(V), and rewriting the

equation, it becomes:

44

fv(V) = −gL(V − EL) + gL∆T e
V −Vth
∆T

C
dV

dt
= fv(V) + I − U

The approximation of the exponential is therefore extended to the whole fv function,

justified by the fact that, combined with hardware limitations, it has been found easier to

implement and to get correct results from it. The technique used for approximating this

approximation, referred to as fv ap is to divide it in three operating regions, each with a

different function:

fv ap =

(1) − gL(V − EL) V < Vth

(2) min(0, V 2fv a+ V fv b+ fv c) Vth ≤ V < fv root

(3) max(0, 4(V 2fv a+ V fv b+ fv c)) fv root ≤ V

(1) In the first case, when the membrane potential is below from the threshold voltage,

the exponential term can be considered ≈ 0, and thus is neglected.

(2) The second range is the most critical one, because the exponential term is influencing

the result but not enough to quickly trigger a spike. The solution found is a quadratic

approximation of fv in the range [Vth, fv root], with Vth being the spiking threshold while

fv root is the value of potential such that fv(fv root) = 0. Since this range is below the

value of fv root, all the positive results are discarded. The major drawback involving this

method is the fact that for each set of model’s constants, the quadratic function has to

be found manually, first by calculating fv root by solving the equation fv(V) = 0, than

by finding the constants for a quadratic approximation of the function in that range.

45

Therefore, for every neural behaviour simulated the constants fv root, fv a, fv b and

fv c are different.

These values have been extracted with a python script, found in appendix, but unfortu-

nately, the results obtained using this method alone have been found not good enough,

so a further manual tuning of the constants has been necessary, as reported in table 6.

fv root fv a fv a (final) fv b fv b (final) fv c fv c (final)

RS -4494 32 32 1245 1241 11842 11950
SFA -4494 39 39 1494 1491 14210 14175
IB -4650 57 57 2222 2210 21404 21400
TB -4650 21 21 802 810 7729 7796

Table 6: Constants for fv calculation

(3) The quadratic function used in previous paragraph is multiplied by a scaling factor

for emulating the rapid increase of the exponential for voltage values above fv root. As

done for the previous equation, the negative results are discarded..

The error here is much bigger then in the other sections, but its influence in the result is

minimal, as long as the approximation can trigger a spike within few execution cycles, as

the original function achieves.

The multiplication factor has been chosen equal to 4 as a trade-off between implementa-

tion and approximation of the results.

The dynamics for the approximation can be seen in figure 23, in which the black line

is the correct function, the purple lines represent the chosen approximation without pre-

cision losses, and finally the scattered red dots are the approximated version with also the

roundings operated by the hardware.

To be noticed that the value of the purple and the red approximations need to be ≤ 0 for

voltage values below the root, and thus in the figure they are not interrupted but forced

to 0.

46

It can be seen that the error is less than 1mV before the function’s root (every square is

0.5mV), and it becomes larger for voltage values far from that point.

Figure 23: Dynamics of the approximation (in black the exact function, in purple the approximation, in
red the implemented approximation with the precision losses due to hardware constraints)

Although also other techniques have been tried, such as a truncated Taylor series ex-

pansion or a simpler linear approximation, this solution has been the one whose results

behaved as close as possible w.r.t figure 21.

47

4.3 MATLAB

MATLAB has been used for developing two different programs simulating an aEIF neuron,

one for the actual model described by the equations at (4), and one emulating the features

of HEENS architecture, for example, by limiting the values to the range [−215, 215 − 1]

or representing decimal numbers in fixed point notation.

The network is composed of 4 different unconnected neurons, each with a different set of

constants for emulating a different behaviour.

The main program contains the definition of the constants for the four different neural

behaviours, than calls the two model functions, and plots the results on the same image.

4.3.1 aEIF High Accuracy Simulation

The implementation of the model from the equations given at (4) is pretty straightforward,

and the structure of the simulation is divided in three main parts:

1. Spiking evaluation: all the neurons are checked, and, if their membrane potential is

equal or greater than the peak, a spike is registered and the current generated by

the neuron is stored inside variable I.

2. Model simulation: the step for the differential equations is calculated by computing

the delta for both membrane and recovery potentials.

3. Variables update: the new value for the variables is updated and stored in v and u.

1 %simulating #cycles ms

2 for cycle = 1:exec_cycles

3 t = cycle*dt; % time in ms

4

5 v_n = v(:, cycle); % current membrane pot

6 u_n = u(:, cycle); % current recovery pot

7

48

8 I = Iin(:, cycle)/C; % input current divided by C for later operations

9

10

11 %firings and synaptic currents evaluation

12 for i = 1:N % for every neuron in the net

13 if v_n(i) >= Vpeak %if v > peak then fire

14 firings = [firings; t, i-1]; %store the firing

15

16 v_n(i) = Vrst; %restore membrane potential

17 u_n(i) = u_n(i) + b; %increment recovery potential

18

19 for j = 1:N % for every synapse of the neuron

20 I(j) = I(j) + S(i, j); %store outgoing current

21 end

22 end

23 end

24

25 %model simulation

26 for i = 1:N

27 %evaluate fv

28 fv(i, cycle) = (-gl*(v_n(i) - El) + gl*delta_t.*exp((v_n(i)-Vt)/delta_t))/C;

29

30 dv(i) = fv(i, cycle) - u_n(i)/C + I(i); %calculate dv

31 dv(i) = dv(i)*dt;

32

33 du(i) = a*(v_n(i) - El) - u_n(i); %calculate du

34 du(i) = du(i) / tau_u * dt;

35

36 end

37

38 %updating the neurons

39 v(:, cycle+1) = v_n(:) + dv(:); %update membrane potential

40 v(:, cycle +1) = min(max(v(:, cycle+1), -Vmin) , Vmax);

41

42 u(:, cycle+1) = u_n(:) + du(:); %update recovery potential

43

44 end

4.3.2 HEENS Emulation of the aEIF Model

This program aims to replicate the flow of operations done by HEENS, in particular, all

the results are rounded the limited and the function fv ap is calculated as discussed in

4.2.3 and in 4.4.2. Also here, the simulation loop is divided in three main phases, that

49

can be seen in the code below, with the main differences found in the calculations for the

variables step.

1 %simulating #cycles ms

2 for cycle = 1:exec_cycles

3 t = cycle*dt; % ms with dt resolution

4 v_n = v(:, cycle);

5 u_n = u(:, cycle);

6 I = Iin(:, cycle); %getting external current

7

8 %firings and synaptic currents evaluation

9 for i = 1:N % for every neuron in the net

10 if v_n(i) >= Vpeak %if v > peak then fire

11 firings = [firings; t, i-1]; %store the firing

12

13 v_n(i) = Vrst; %restore membrane potential

14 u_n(i) = u_n(i) + b; %increment recovery potential

15 u_n(i) = clip(Vmin, Vmax, u_n(i));

16

17 for j = 1:N % for every synapse of the neuron

18 I(j) = I(j) + S(i, j); %store outgoing current

19 end

20 end

21 end

22 %model execution

23 for i = 1:N

24 %evaluation of linear term always perfomed

25 fv_ap(i) = El-v_n(i);

26 fv_ap(i) = clip(Vmin, Vmax, fv_ap(i));

27

28 fv_ap(i) = fv_ap(i)*gl; % +gl(El-v) == -gl(v-El)

29 fv_ap(i) = clip(Vmin, Vmax, fv_ap(i));

30

31 fv_ap(i) = fv_ap(i)*C_div; gl(El-v)*C*2^16

32 fv_ap(i) = floor(fv_ap(i)/2^16); %fv_ap = gl(El-v)

33 fv_ap(i) = clip(Vmin, Vmax, fv_ap(i));

34

35 %if Vt < v_n

36 if Vt - v_n(i) < 0

37 %evaluate quadratic term of approximation

38 fv_ap(i) = floor(v_n(i)^2/2^16); % v^2/2^16

39 fv_ap(i) = clip(Vmin, Vmax, fv_ap(i));

40 fv_ap(i) = fv_ap(i)*fv_a; %fv_ap = fv_a*v^2

50

41 fv_ap(i) = clip(Vmin, Vmax, fv_ap(i));

42

43 %evaluate first order term of approximation

44 tmp = floor(v_n(i)/2)*fv_b; %v/2 * fv_b *2^8

45 tmp = floor(tmp/2^8); v/2*fv_b

46 tmp =clip(Vmin, Vmax, tmp);

47

48 fv_ap(i) = fv_ap(i) + tmp; %fv_a*v^2 + fv_b*v/2

49 fv_ap(i) = clip(Vmin, Vmax, fv_ap(i));

50 fv_ap(i) = fv_ap(i) + tmp; % fv_ap = fv_a*v^2+fv_b*v

51 fv_ap(i) = clip(Vmin, Vmax, fv_ap(i));

52

53 fv_ap(i) = fv_ap(i) + fv_c; %fv_ap = fv_a*v^2 + fv_b*v + fv_c

54

55 %perform min function and get result

56 tmp = 0;

57 if fv_ap(i) >= 0 %if fv_ap is positive, save in tmp but reset for later

58 tmp = fv_ap(i); %only if fv_ap was >= 0

59 clip(Vmin, Vmax, tmp);

60 fv_ap(i) = 0; %if fv_ap > 0, here put fv_ap = 0

61 end

62 fv_ap(i) = clip(Vmin, Vmax, fv_ap(i));

63

64 end

65 %if v_n > root

66 if root - v_n(i) < 0

67 fv_ap(i) = (4*tmp); %max func not needed because tmp >= 0

68 fv_ap(i) = clip(Vmin, Vmax, fv_ap(i));

69 end

70

71 dv(i) = I(i) - floor((u_n(i)* C_div)/2^16) ;

72 dv(i) = dv(i)*dt + dt*fv_ap(i); %get total dv

73

74 du(i) = a*(v_n(i) - El) - u_n(i);

75 du(i) = floor((du(i) * floor(2^16/tau_u))/2^16) * dt; %get du

76 end

77 %updating the neurons

78 v(:, cycle+1) = v_n(:) + dv(:); %update membrane potential

79 v(:, cycle +1) = clip(Vmin, Vmax, v(:, cycle+1));

80

81 u(:, cycle+1) = u_n(:) + du(:); %update recovery potential

82 u(:, cycle +1) = clip(Vmin, Vmax, u(:, cycle+1));

83 end

51

4.3.3 MATLAB results

The MATLAB file have been tested using an input DC current, as done for the reference

results in figure 21.

Below, figure 24 illustrates the firings pattern achieved by the exact model in black, and

by it’s approximation in red, while in figure 25 are represented the membrane voltages

over time.

Figure 24: MATLAB simulation (in black the exact model, in red the approximated one)

52

Figure 25: Membrane potentials over time (in black the exact model, in red the approximated one)

As can be seen, the black and red points follow the same behaviour, but the approximation

of the mathematical expressions makes the frequencies of the neurons not exactly identical.

For the same reason, for certain spikes the value of the black line get much higher values

w.r.t the red one, but what’s important is that the red value is above the threshold.

Lastly, in table 7, the errors committed by the drift of the approximations, evaluated as

#red spikes
#black spikes

for a 20 seconds simulation.

Red Spikes Black Spikes #red spikes
#black spikes

RS 1666 1666 1
SFA 260 264 0.985
IB 359 419 0.857
TB 273 281 0.972

Table 7: Spikes count in a 20s simulation

53

4.4 HEENS

Regarding HEENS implementation, the two necessary files have been developed, and the

results are shown both with a QuestaSim simulation, and with a screenshot of HEENS

user interface.

4.4.1 Netlist file

The network is composed of four unconnected neurons, but providing to each of them a

different set of constants, summarized in table 8.

It’s important to notice that the constants C, ∆T and τu are not set to their value, but

to the their multiplied reciprocal, in order to being used correctly in the calculations.

RS SFA IB TB

C div 327 327 504 327
gL 10 12 18 10
∆T 200 200 200 200

∆T div 327 327 327 327
Vth -50 -50 -50 -50
Vrst -58 -58 -50 -46
EL -70 -70 -58 -58
τu 2184 218 436 546
a 2 2 4 2
b 0 60 120 100

Const curr 250 250 307 105
fv root -4494 -4494 -4650 -4650
fv a 32 39 57 21
fv b 1241 1491 2210 810
fv c 11950 14175 21400 7796

Table 8: All constants used

Excepts for ∆T and Vth that are global variables and thus are stored inside the IMEM,

the others constants are proper of each neural behaviour, making necessary to store them

in the SNRAM in the PE.

In this way, the maximum number of neuron in the network is reduced, because each

neuron needs 7 different addresses in the SNRAM for storing the model’s constants, plus

the one for the potentials, fact that has to be accounted when simulating SNNs. Moreover,

54

it can be noticed that the value of the input constant current is treated as a variable, and

it’s value is bigger then the size of registers, for this reason, in the netlist file, the current

is already divided by C, in order to fit the in 16 bits registers.

1 @Config

2 Zedboard_4x8

3 @ParamSyn

4 # synaptic weights = 0

5 0, 0

6 @Netlist

7 0, 0

8 1, 1

9 2, 2

10 3, 3

11 @Params

12 #membrane potential and recovery variable at t = 0

13 .0x1E3/16/NEUR/$NVL/-7000, -1400

14

15 # all the model's variables

16 .0x3E0/16/EL_GL/$NVL/0 , 0

17 0, -7000, 10

18 1, -7000, 12

19 2, -5800, 18

20 3, -5800, 10

21 UNMAPPED, 0, 0

22

23 .0x3E1/16/V_RST_CONST_CURR/$NVL/0, 0

24 0, -5800, 250

25 1, -5800, 250

26 2, -5000, 307

27 3, -4600, 105

28 UNMAPPED, 0, 0

29

30 .0X3E2/16/C_DIV_TAU_U/$NVL/0, 0

31 0, 327, 2184

32 1, 327, 218

33 2, 504, 436

34 3, 327, 546

35 UNMAPPED, 0, 0

36

37 .0x3E3/16/NEU_A_B/$NVL/0, 0

38 0, 2, 0

55

39 1, 2, 6000

40 2, 4, 12000

41 3, 2, 10000

42 UNMAPPED, 0, 0

43

44 .0x3E4/16/FV_A_B/$NVL/0, 0

45 0, 32, 1241

46 1, 39, 1491

47 2, 57, 2210

48 3, 21, 810

49 UNMAPPED, 0, 0

50

51 .0x3E5/16/FV_C_ROOT/$NVL/0, 0

52 0, 11950, -4494

53 1, 14175, -4494

54 2, 21400, -4650

55 3, 7796, -4650

56 UNMAPPED, 0, 0

57

58 #seed for noise generation

59 .0x1FD/32/SEED/2/-6500, 800

60 5, 10

56

4.4.2 Neural Model

MAIN LOOP

The main algorithm is short and the flow is linear, and after some initial configuration,

the state of the neuron in the first virtual layer is loaded inside the processor, then the

overcoming of the threshold is checked, the synaptic currents and the constant DC input

are summed and stored, and after the delta for the model are calculated.

Finally, the new value for the variables is updated,the neuron’s state is stored back in the

memory and the virtual layer is increased.

Since for this simulation only one layer is needed, the virtualization loop ends and the

spike distribution phase begins.

1 EXEC_LOOP: ; Execution loop

2

3 LOOP NVL ; Virtualization loop

4 SYNAPSE NLS_0

5 GOSUB LOAD_NEURON ; Loading current neuron

6

7 GOSUB DETECT_SPIKE; ;check for spike

8

9 RST R6 ;reset register for current

10 READMPV LSA0_0 ;loads the address with curr layer synapses

11 LOADBP

12 LOOPV NLS_0 ; synaptic loop. Reads number of current-layer synapses

13 GOSUB SYNAPSE_CALC ;calculate synaptic currents

14 ENDL

15

16 GOSUB ADD_CONST_CURR ;add DC const current

17

18 GOSUB EVAL_DELTA_V; ;evaluate dv/dt

19 GOSUB EVAL_DELTA_U; ;evaluate du/dt

20 GOSUB CALC_STEP; ; update v and u

21

22 MOVA R2 ; R0 <= membrane potential

23 STOREB ; value of R0 in fifo for visualization of results

24

25 GOSUB STORE_NEURON; ;store back neuron state

57

26

27 RST ACC

28 RST R3

29 RST R2

30 INCV ;increment virtual layer

31 ENDL ;end virtualization loop

32

33 SPKDIS ; Distribute spikes

34 GOTO EXEC_LOOP ;

LOAD NEURON

As an example of working with the SNRAM memory, it is presented the loading of a

neuron inside the processor for each virtual layer:

1 LOAD_NEURON: ;

2 READMPV NEUR_0 ; Address of real neuron + virt (valid also for non-virtual)

3 LOADBP ; SNRAM pointer to currently processed neuron

4 LOADSN ; Load Neural parameters from SNRAM to R1<=u & ACC<=Vmem

5 MOVR R2 ; R2 <= v0

6 MOVA R1 ; ACC<=u0

7 MOVR R3 ; r3<=u

8 RET

The instructions READMPV, LOADBP and LOADSN are to be executed in this order,

to provide the correct reading of the data from the memory inside R0-R1.

SYNAPSE CALC

For this network synapses are not present, but the function is shown for illustrating an

example of an if statement.

58

1 SYNAPSE_CALC:

2 LOADSP ; Load Synaptic parameters and spike to R1 & ACC

3 SHRN 1 ; Move spike to flag

4 FREEZENC

5 MOVA R1 ; Synaptic parameter to ACC

6 ADD R6

7 MOVR R6

8 UNFREEZE

9 RST ACC

10 STORESP ; Stores synaptic parameter and increases BP for

11 ; next synapse processing

12 INCS

13 RET

The instruction SHRN loads the Carry flag with the LSB of R0, in which is stored the in-

formation of received spike, and the register file is freezed with the operation FREEZENC

if that flag equals 0, meaning that a spike has not arrived.

If R0 contains the information for a received spike, the operations inside the freeze are

executed as normally, summing the synaptic current to R6.

EVAL DELTA V

The evaluation of dv is done by firstly approximating the exponential approximation, and

later by summing the currents and the recovery potential.

The most critical part is to calculate fv, for that a further explanation is needed.

As said in 4.2.3, the approximation is divided in three operating regions:

1. V < Vth: The calculations involving only the linear term are always performed, and

the result is overwritten when not needed.

It’s interesting to notice that the division by C is done with a multiplication, with

the constant 216

C
defined in the netlist and stored in the SNRAM.

The division by 216 for getting the correct result is done by considering only register

R0 and discarding R1.

59

1 EVAL_FV:

2 ;1) evaluate always v < vt : fv = -gl(v - El) -> gl(el - v), R0 KEEPS EL, R1 KEEPS GL

3 READMPV EL_GL_0 ;ADDRESS CONSTANTs gl AND El

4 LOADBP

5 LOADSN ;R0 <= EL, R1 <= GL

6 SUB R2 ; R0 <= EL - V

7 MULS R1 ; GL*(EL - V) ; RESULT IS IN R1 BECAUSE LSB

8

9 MOVSR R1 ;R1S TEMPORARY STORES THE VALUE GL(EL-V)

10

11 READMPV C_DIV_TAU_U_0 ; ADDRESSES C_DIV AND TAU_U

12 LOADBP

13 LOADSN ;2^16/C IN R0, 2^16/TAU_U IN R1

14 MOVRS R1 ; R1 <= GL(EL -V)

15

16 MULS R1 ; RESULT IS IN R0 BECAUSE MSB

17 MOVR R1 ; R1 <= GL(EL - V)/C

18 MOVSR R1 ; SR1 <= GL(EL-V)/C FINAL RESULT

2. Vth < V < fv root: in this region, its evaluated the quadratic approximation of

the function fv, but due to hardware limitations and the constant values, some

precautions have been taken.

Indeed, because of the high range of values assumed by the different fv b constants,

it has not been possible to multiply it for 216, but only for 28, in order to not get

an overflow from the multiplication. Still, this effort was not enough for avoiding

too much bigger values, and the solution found has been to firstly divide by 2 the

membrane and sum it two times, reproducing effectively a 9 position shift, but with

the utilization of a saturated sum, which prevents the overflow.

Lastly, after that fv c has been summed, if the result is positive, it is saved into R5 for

later otherwise it’s discarded. In this way the values of dv got from this calculations

are always negative, while if positive they’re used for triggering the spike in the next

part.

Notice also that the register SR1 was storing the linear term, but it’s then overwritten

with the quadratic approximated value.

60

1 EVAL_FV:

2 ;2) evaluate v - Vt > 0 : fv = fv_a*v^2 + fv_b*v + fv_c

3 LDALL R0, VT

4 SUB R2 ;VT - V

5 SHLN 1 ;

6 FREEZENC

7 ;evaluate fv_a*v^2

8 MOVA R2

9 MULS R2 ; V^2 BUT TAKE V^2/2^16 CONSIDERING ONLY R0

10 MOVR R5 ; V^2/2^16 IN R5

11 READMPV FV_A_B_0

12 LOADBP

13 LOADSN

14 MULS R5 ; R0 AND R1 KEEPS fv_a*V^2, result in R1

15 MOVA R1 ; ACC <= R1

16 MOVR R4 ; QUADRIC TERM IN R4

17

18 MOVA R2 ; R0 <= VMEMB

19 SHRAN 1 ; R0 <= VMEMB/2

20 MOVR R5 ; R5 <= VMEMB/2

21 READMPV FV_A_B_0 ;ADDRESS CONSTS FV_A, FV_B

22 LOADBP

23 LOADSN ;R0 <= FV_A, R1 <= FV_B

24 MOVA R1 ;R0 <= FV_B

25 MULS R5 ;R0 <= V/2*FV_B AND RESULT IN R0[7:0] AND R1[15:8]

26 SHLN 7 ;

27 SHLN 1 ;R0 NOW KEEPS RESULT IN R0[15:8] AND R0[7:0] = 0

28 MOVR R5 ; R5[15:8] KEEPS PARTIAL RESULTS, R5[7:0] = 0

29 MOVA R1 ; R0 NOW KEEPS OTHER HALF OF RESULT IN R0[15:8]

30 SHRN 7 ;

31 SHRN 1 ; R0[15:8] = 0, R0[7:0] KEEPS PARTIAL RESULT

32 OR R5 ; (R5[15:8] OR R0[15:8]=0), (R5[7:0]=0 OR R0[7:0]) ---> (2^8*FV_B*V/2^8) / 2

33

34 ;summing fv_b*v/2 + fv_a*Vmemb + fv_b*v/2

35 MOVR R1 ;SAVE RESULT ON R1

36 ADD R4 ; R0 = FV_A*VMEMB^2 + (2^8*FV_B*V/2^8) / 2

37 ADD R1 ; R0 = FV_A*VMEMB^2 + (2^8*FV_B*V/2^8)

38 MOVR R4 ; R4 KEEPS SUM OF FIRST AND SECOND ORDER TERMS

39

40 READMPV FV_C_ROOT_0 ;ADDRESS FV_C AND FV_ROOT

41 LOADBP

42 LOADSN ;R0 <= FV_C, R1 <= FV_ROOT

43 ADD R4 ; R0 <= FINAL RESULT OF APPROXIMATION

44

45 MOVR R1 ; R1 <= FINAL RESULT0

61

46 RST R5 ; R5 TO 0

47 SHLN 1 ; CHECK WHETHER FINAL RESULT < 0

48 FREEZEC ;FREEZE IF RESULT IS NEGATIVE, OTHERWISE SAVE IT FOR LATER

49 MOVA R1 ;GET BACK RESULT FROM R1

50 MOVR R5 ;R5 != 0 ONLY WHEN RESULT OF FV IS POSITIVE

51 RST R1 ;RESET R1

52 UNFREEZE

53

54 MOVSR R1 ; NOW R1S KEEPS THE TERM OF FV

55 UNFREEZE

3. fv root < V : for the last part, the result of the previous section is retrieved from

R5, and it is different from 0 only if it was positive, to avoid approximation errors.

This value is then summed four times, in order to enlarge it and to prevent overflows.

1 ;3)evaluate ROOT - V >= 0 : 4*fv of case 2)

2 READMPV FV_C_ROOT_0 ; ADDRESS FV_C AND FV_ROOT

3 LOADBP

4 LOADSN ; R0 <= FV_C, R1 <= FV_ROOT

5 MOVA R1 ; R0 <= FV_ROOT

6 SUB R2 ; R0 <= FV_ROOT - VMEMB

7 SHLN 1 ; LOAD CARRY FLAG

8 FREEZENC ; FREEZE WHEN ROOT - V >= 0

9 MOVA R5 ; QUADRATIC APPROX RESULT, ONLY RESULTS > 0

10

11 ADD R5

12 ADD R5

13 ADD R5 ; ADD INSTEAD OF SHLAN BECAUSE SATURATES

14

15 MOVR R1 ;R1 <= FINAL RESULT

16 MOVSR R1 ; OVERWRITE PREVIOUS RESULTS

17 UNFREEZE

62

4.4.3 HEENS Results

The results of the HEENS simulation are presented both in QuestaSim hardware simula-

tions, in fig. 26-27, and with the actual HEENS user interface, in figure 28.

As expected, the results are identical and they’re congruent with the MATLAB simulation

done for the architecture shown in previous paragraphs.

Figure 26: QuestaSim view of the output spikes

63

Figure 27: Closer view of Questasim output spikes

Figure 28: HEENS view of membrane potentials

64

5 Reservoir Network Simulation

The last part of this work is the simulation of a Spiking Neural Network, composed of 16

neurons, and implemented in a Reservoir topology.

The topology of the network and the data for the comparison of the results have been

provided by professor S. Moriya of Tohoku University in Japan, whom we thank, and that

is developing an analogue CMOS circuit able to implement Izhikevich equations.

We received only partial information regarding the network functionalities, mainly be-

cause they are still under research and because it’s only a part of a bigger project. The

final purpose of the network is to generate different firing patterns in response to inputs

arriving to different neurons: in fact, this topology could be seen as a sub-network withing

a bigger topology, and its inputs are the outputs from different nets, connected only to

some neurons. In this way, depending on which neuron receive an input stimulation, the

output layer should be able to classify it, but, again, the project is not completed and an

output layer is yet not present.

Overall, the whole system aims to provide autonomous features for robotics applications.

For these reasons, the network does not have an actual input nor an output, and the

results are compared inspecting the whole dynamics.

The scope of this section is therefore to provide a digital HEENS simulation of the same

network, in order to compare analogical and digital results, and proving their consistency.

65

Figure 29: Reservoir Network Topology

66

5.1 Izhikevich Analogue Neuron

The mechanism behind this technology is to have CMOS transistors working in sub-

threshold regions, arranged to behave following the equations described by the Izhikevich

model.

Figure 30: CMOS implementation of an Izhikevich neuron [13]

The circuit is divided in three parts, one subcircuit for membrane potential dynamics,

one for the recovery potential, and the last is a comparator that triggers the spikes. The

model’s variables are represented by the voltage difference across the capacitors. [13]

Since analyzing such circuit is not part of this work, it won’t be discussed further.

5.2 Network Topology and Neural Models

The network consists of 16 neurons, 13 of which (numbered 0 to 12) have outgoing posi-

tive synaptic weights and are referred as excitatory, and 3 (13 to 15) that have negative

synaptic weights and are called inhibitory. Furthermore, inhibitory neurons have a differ-

ent set of constants with respect to the excitatory ones, thus having a different behaviour.

The inputs are constant currents for the neurons 0 to 5, whereas an actual output layer

is missing, and the raster plot of the net is the final result.

67

The network connections are represented in figure 31 in the form of a Synaptic Matrix,

for which the neurons in the rows are the pre-synaptic neurons, i.e. the ones firing, and

the columns indicate the post-synaptic neurons, i.e. the ones receiving the spikes. Notice

that there are no recurrent connections (the main diagonal) and all the weights are set to

1 or -1, meaning that they have same absolute value.

Figure 31: Synaptic Matrix for the Reservoir Network

The different set of constants for the two kind of neurons are shown in table 9.

a b c d

Excitatory neurons 0.015 0.15 -70 6
Inhibitory neurons 0.02 0.2 -70 2

Table 9: Excitarory and Inhibitory constants

Moreover, in order to get similar results to the one obtained with the analogue technology,

both the DC input currents and the synaptic ones are modeled with an exponential decay,

and thus, at each time step, instead of being reset, they are decreased with a factor τI = 20.

I(t) = I(t− 1) ∗ e(−1/τI) + Iin(t) (6)

68

5.3 HEENS Files

5.3.1 Netlist

The netlist file is simple and linear, with the only arrangements done for the synaptic

weights, for the inhibitory constants and for the constant currents to input to neurons 0

to 5.

1 @Config

2 Zedboard_4x8

3

4 @ParamSyn

5 400, 0

6

7 @Netlist

8 #excitatory synapses definition

9 0 , 2

10 ...

11 12 , 6

12

13 #inhibitory synapses

14 13 , 1 , -400

15 ...

16 15 , 11 , -400

17

18 @Params

19 # Addr/Size/Name/Entries/default (empty for random) R0 / R1

20 .0x1E3/16/NEUR/$NVL/-7000, -1050

21

22 .0x3E0/16/IZH_A_B/$NVL/983 , 9830

23 13, 1310, 13107

24 14, 1310, 13107

25 15, 1310, 13107

26 UNMAPPED, 0, 0

27

28 .0x3E8/16/IZH_C_D/$NVL/-7000, 600

29 13, -7000, 200

30 14, -7000, 200

31 15, -7000, 200

32 UNMAPPED, 0, 0

33

34 .0x3F4/16/CONST_CURR/$NVL/0, 0

69

35 0, 400 , 0

36 1, 400 , 0

37 2, 400 , 0

38 3, 400 , 0

39 4, 400 , 0

40 5, 400 , 0

41 UNMAPPED, 0, 0

42

43 .0x1FD/32/SEED/2/-6500, 800

44 5, 10

5.3.2 Neural Model

The main loop in file for the Izhikevich neural model has the same structure of the one

proposed for the aEIF, with the addition of the currents exponential decay and a slight

difference in the membrane potential evaluation.

As the current in this case is decaying and should not be reset at every cycle, it important

to store it in the SNRAM as done for the membrane and the recovery potential, and this

is obtained with the routines LOAD CURR and STORE CURR. In addition, in order to

have numerical stability, the step dv for the membrane is evaluated with a resolution of

dt
2
= 0.5ms [9], hence is calculated two times as follows:

V = V (t+
dt

2
) = V (t) + dV ∗ dt

2

V (t+ dt) = V + dV ∗ dt

2

1 MAIN:

2 ; Virtual operation init

3 LAYERV NVL ; Init sequencer vlayers. It is 0 for non-virtual operation

4 LDALL ACC, NVL ; Load defined virtual layers to PE array

5 SPMOV 0 ; VIRT <= ACC

6

7 ; Initial instructions

70

8 GOSUB RANDOM_INIT ; For noise initialization

9

10 EXEC_LOOP: ; Execution loop

11 LOOP NVL ; Neuron loop for virtual operation

12 GOSUB LOAD_NEURON ;loading membrane and recovery potentials

13 GOSUB LOAD_CURR ;get current from last step

14 GOSUB DETECT_SPIKE ;check if v > Vth

15

16 SYNAPSE NLS_0 ; configuring number of synapses

17 READMPV LSA0_0 ; addressing the synapses in mem

18 LOADBP ;load pointer

19 LOOPV NLS_0 ; synaptic loop. Reads number of current-layer synapses

20 NOP ;to prevent pipeline error

21 GOSUB SYNAPSE_CALC ;total current stored in SR1

22 ENDL

23

24 GOSUB ADD_CONST_CURR ; add constant input

25 GOSUB CURR_DECAY ; current exp decay

26

27

28 SWAPS R1 ; take total current from SR1

29 MOVA R1 ; move to acc

30 SWAPS R1 ; move to SW1

31

32 SHRAN 1 ; divide by 2 total current for later steps

33 MOVR R5 ; R5 <= current/2

34

35 LOOP 1 ; dt = 0.5

36 GOSUB MEMBRANE_POTENTIAL ; Calculate membrane potential according izhikevic

37 ;GOSUB ADD_NOISE ; Noise not added

38 ADD R5 ; add curr/2

39 MOVR R2 ;store back membrane pot

40 ENDL

41

42 GOSUB RECOVERY_UPDATE ;update recovery potential

43

44 GOSUB STORE_NEURON ;store neuron

45 GOSUB STORE_CURR ;store the current of this time step

46

47 MOVA R2

48 STOREB

49 NOP ;for preventing pipeline error, maybe not needed

50 NOP

51

52 RST ACC ;reset r0

71

53 MOVR R1 ;reset r1

54 INCV ;increment virtual layer

55

56 ENDL

57 NOP

58 SPKDIS ; Distribute spikes

59 GOTO EXEC_LOOP ; Execution loop

1 LOAD_CURR:

2 READMPV CONST_CURR_0 ;get address of const_curr

3 LOADBP

4 LOADSN ; R0 <= const_curr, R1 <= Current from prev cycle

5 MOVSR R1 ; SR1 <= curr for this cycle

6 RET

7

8 STORE_CURR:

9 READMPV CONST_CURR_0 ;get address of const_curr

10 LOADBP

11 LOADSN ; R= <= const_curr, R1 <= curr from prev cycle(to update)

12

13 MOVRS R1 ; R1 <= SR1, SR1 store updated current

14 STORESP ; store back R0 and R1 to SNRAM

15 RET

Since the function for the membrane potential update has been retrieved from a previous

work [5], it is not reported here but left complete in appendix.

Instead, below are illustrated the functions for adding the input current and the expo-

nential decay, which are an example of the difference between retrieving data from the

SNRAM (performed with three different operations) or from the IMEM (as done for the

decay constant τ).

Again, multiplications with numbers < 1 are done by transforming them to integer, cal-

culated the enlarged result, and then divide back for restoring the correct outcome.

72

1 CURR_DECAY:

2 LDALL R0, TAU_I ;R0 <= tau_I from IMEM

3 SWAPS R1 ;take total current

4 MULS R1 ; R0-R1 <= I*e^(-1/20)*2^15

5 ;dividing by 2^16 by discarding the part of the result stored in R1

6 SHLN 1 ; shift R0 for

7 MOVR R1 ; R1 <= total curr

8 SWAPS R1 ; SR1 <= total curr

9 RET

10

11 ADD_CONST_CURR:

12 READMPV CONST_CURR_0 ;read address for constant current in SNRAM

13 LOADBP ;load pointer

14 LOADSN ; R0 <= CONST_CURR , R1 <= TAU_I

15 SWAPS R1 ;R1 <= TOTAL I

16 ADD R1 ; R0 <= CONST_CURR + TOT_I

17 MOVR R1

18 SWAPS R1 ; R1S <= TOTAL CURRENT

19 RET

73

5.4 Comparison of Results

In this last section are presented three raster plots, the reference one made with the CMOS

neurons, a MATLAB simulation and HEENS results executed on QuestaSim.

Figure 32: Analogue Results

Even tough the patterns are not identical, they somehow express the same behaviour,

but with differences in the frequency of the spikes. This fact could be derived from the

fact that a finer tuning of the model’s parameters should be performed, possibly also

differentiating each neuron’s constants, but also from the limited resolution involved in

the calculations.

74

Figure 33: MATLAB Results

Figure 34: HEENS spiking output on QuestaSim

75

6 Conclusion and future work

This thesis has focused on the development of some neural models, their theory and their

software implementation on the HEENS neuromorphic architecture, a device made with

the aim of reproducing Spiking Neural Networks.

The example reported in the work is the implementation of the Adaptive Exponential

Integrate and Fire model, which presents implementation issues in the memory usage and

in the approximation of the results. While the number of the constants used in the model

cannot be changed, and thus also the needed space in memory, there could be other ways

to better calculate the exponential function, and thus reducing errors and limiting the

frequency difference from the exact model.

Also, a simulation of a Spiking Neural Network has been proposed and compared with

an analogue technology implementing the Izhikevich neural model. Qualitatively the ob-

tained results reproduce the expected and desired behaviour, but finer modifications of

the parameters are needed in order to get a better fit of the output firing pattern.

Originally, the net was designed to also have an output trained layer in order to recognize

input patterns, so a possible future work is to develop the mentioned layer, define some

input patterns and train the network to prove whether it could be able to solve classifi-

cation tasks.

76

Acknowledgements

As a conclusion of a long path, I would like to thank here all the people that shared their

support and love throughout the years, starting with my parents, my siblings and all my

family.

A special thank also to professor Jordi Madrenas, supervisor of this work and that gave

me this opportunity, and to its assistant Bernardo Vallejo, without whom the thesis would

have been finished by the year 3023.

Last but not least, a thank to all my friends for standing me, for the company received

in the infinite hours spent in libraries and for all the moments we still have to live.

”Gentlemen, it has been a privilege playing with you tonight.” (Titanic, 1997)

77

References

[1] Wulfram Gerstner and Werner M. Kistler. Spiking Neuron Models: Single Neurons,

Populations, Plasticity. Cambridge University Press, 2002.

[2] Wulfram Gerstner, Werner M. Kistler, Richard Naud, and Liam Paninski. Neuronal

Dynamics: From Single Neurons to Networks and Models of Cognition. Cambridge

University Press, USA, 2014.

[3] Matteo Cucchi, Steven Abreu, Giuseppe Ciccone, Daniel Brunner, and Hans Klee-

mann. Hands-on reservoir computing: a tutorial for practical implementation. Neu-

romorphic Computing and Engineering, 2(3):032002, aug 2022.

[4] Mireya Zapata Rodriguez. Arquitectura escalable SIMD con conectividad jerárquica

y reconfigurable para la emulación de SNN. PhD thesis, UPC, Departament

d’Enginyeria Electrònica, Sep 2017.

[5] Antonio Caruso. Izhikevich neural model and STDP learning algorithm mapping

on spiking neural network hardware emulator. PhD thesis, UPC, Escola Tècnica

Superior d’Enginyeria de Telecomunicació de Barcelona, Departament d’Enginyeria

Electrònica, Nov 2020.

[6] Clément Nader. Real-time display of a multiprocessor spiking neural network. PhD

thesis, UPC, Escola Tècnica Superior d’Enginyeria de Telecomunicació de Barcelona,

Departament d’Enginyeria Electrònica, Feb 2022.

[7] Hodgkin L. and Huxley F. A quantitative description of membrane current and

its application to conduction and excitation in nerve. The journal of Physiology,

117:500–544, 1952.

[8] Gerstner W. and Werner M.K. Spiking Neuron Models : Single Neurons Populations

Plasticity. Cambridge U.K: Cambridge University Press, 2002.

78

[9] E.M. Izhikevich. Simple model of spiking neurons. IEEE Transactions on Neural

Networks, 14(6):1569–1572, 2003.

[10] Romain Brette and Wulfram Gerstner. Adaptive exponential integrate-and-fire

model as an effective description of neuronal activity. Journal of Neurophysiology,

94(5):3637–3642, 2005. PMID: 16014787.

[11] Richard Naud, Nicolas Marcille, Claudia Clopath, and Wulfram Gerstner. Fir-

ing patterns in the adaptive exponential integrate-and-fire model. Biol. Cybern.,

99(4–5):335–347, nov 2008.

[12] Eugene M. Izhikevich. Dynamical Systems in Neuroscience: The Geometry of Ex-

citability and Bursting. The MIT Press, 07 2006.

[13] Shigeo Sato, Satoshi Moriya, Yuka Kanke, Hideaki Yamamoto, Yoshihiko Horio, Ya-

sushi Yuminaka, and Jordi Madrenas. A subthreshold spiking neuron circuit based

on the izhikevich model. In Igor Farkaš, Paolo Masulli, Sebastian Otte, and Stefan

Wermter, editors, Artificial Neural Networks and Machine Learning – ICANN 2021,

pages 177–181, Cham, 2021. Springer International Publishing.

[14] Brian2 Contributors. Brian2: Examples, brette gerstner 2005 - brian2 simulator.

URL: https://brian2.readthedocs.io/en/stable/examples/frompapers.Brette Gerstner 2005.html

(Online, accessed on September 01, 2023).

[15] Brian2 Contributors. Brian2: Examples, hodgkin huxley 1952 - brian2 simulator.

URL: https://brian2.readthedocs.io/en/stable/examples/compartmental.hodgkin huxley 1952.html

(Online, accessed on September 01, 2023).

[16] Wikipedia Contributors. Biological neural model - wikipedia, the free enciclope-

dia. URL: https://en.wikipedia.org/wiki/Biological neuron model (Online, accessed

on September 01, 2023).

79

A aEIF MATLAB Code

aEIF Simulation

1 clear

2 close all

3

4 S = zeros(1);

5 seconds_sim = 1;

6 exec_cycles = 1000 * seconds_sim;

7 dt = 1;

8 Vmax = 2^15-1;

9 Vmin = -2^15;

10 v0 = -7000;

11 u0 = -1400;

12 Vpeak = 3000;

13 scale_I_factor = 100;

14

15 %%

16 %%%%%%%%%%%%%%%%% REGULAR SPIKING %%%%%%%%%%%%%%%%

17 rs.gl = 10;

18 rs.C = 200;

19 rs.C_div = 327;

20 rs.delta_t = 200;

21 rs.Vt = -5000;

22 rs.El = -7000;

23 rs.Vrst = -5800;

24 rs.Vpeak = Vpeak;

25 rs.a = 2;

26 rs.b = 0;

27 rs.tau_u = 30;

28 rs.v0 = v0;

29 rs.u0 = u0;

30 rs.dt = dt;

31 rs.Vmax = Vmax;

32 rs.Vmin = Vmin;

33

34 rs.const_curr = 500 * scale_I_factor;

35 rs.I = rs.const_curr*ones(length(S), exec_cycles); %for exact model

36 rs.I_C = floor(rs.const_curr/rs.C)*ones(length(S), exec_cycles); %I/C for heens model

37

38 rs.root = -4494;

39 rs.fv_a = 32;

40 rs.fv_b = 1241;

41 rs.fv_c = 11950;

42 %%

43 %%%%%%%%%%%% SPIKE FREQUENCY ADAPTATION %%%%%%%%%%

44 fa.gl = 12;

45 fa.C = 200;

46 fa.C_div = 327;

47 fa.delta_t = 200;

48 fa.Vt = -5000;

49 fa.El = -7000;

50 fa.Vrst = -5800;

51 fa.Vpeak = Vpeak;

52 fa.a = 2;

53 fa.b = 6000;

80

54 fa.tau_u = 300;

55 fa.v0 = v0;

56 fa.u0 = u0;

57 fa.dt = dt;

58 fa.Vmax = Vmax;

59 fa.Vmin = Vmin;

60

61 fa.const_curr = 500 * scale_I_factor;

62 fa.I = fa.const_curr*ones(length(S), exec_cycles) * scale_I_factor;

63 fa.I_C = floor(fa.const_curr/fa.C)*ones(length(S), exec_cycles);

64

65 fa.root = -4494;

66 fa.fv_a = 39;

67 fa.fv_b = 1491;

68 fa.fv_c = 14175;

69 %%

70 %%%%%%%%%%%%%% INITIAL BURSTING %%%%%%%%%%%%%%%%%%

71 ib.gl = 18;

72 ib.C = 130;

73 ib.C_div = 504;

74 ib.delta_t = 200;

75 ib.Vt = -5000;

76 ib.El = -5800;

77 ib.Vrst = -5000;

78 ib.Vpeak = Vpeak;

79 ib.a = 4;

80 ib.b = 12000;

81 ib.tau_u = 150;

82 ib.v0 = v0;

83 ib.u0 = u0;

84 ib.dt = dt;

85 ib.Vmax = Vmax;

86 ib.Vmin = Vmin;

87

88 ib.const_curr = 400 * scale_I_factor;

89 ib.I = ib.const_curr * ones(length(S), exec_cycles) * scale_I_factor;

90 ib.I_C = floor(ib.const_curr/ib.C) * ones(length(S), exec_cycles);

91

92 ib.root = -4650;

93 ib.fv_a = 57;

94 ib.fv_b = 2210;

95 ib.fv_c = 21400;

96 %%

97 %%%%%%%%%%%%%% TONIC BURSTING %%%%%%%%%%%%%%%%%%%%

98 tb.gl = 10;

99 tb.C = 200;

100 tb.C_div = 327;

101 tb.delta_t = 200;

102 tb.Vt = -5000;

103 tb.El = -5800;

104 tb.Vrst = -4600;

105 tb.Vpeak = Vpeak;

106 tb.a = 2;

107 tb.b = 10000;

108 tb.tau_u = 120;

109 tb.v0 = v0;

110 tb.u0 = u0;

111 tb.dt = dt;

112 tb.Vmax = Vmax;

81

113 tb.Vmin = Vmin;

114

115 tb.const_curr = 210 * scale_I_factor;

116 tb.I = tb.const_curr * ones(length(S), exec_cycles) * scale_I_factor;

117 tb.I_C = floor(tb.const_curr/tb.C) * ones(length(S), exec_cycles);

118

119 tb.root = -4650;

120 tb.fv_a = 21;

121 tb.fv_b = 810;

122 tb.fv_c = 7796;

123

124 %%

125 %%%%%%%%%%%%%%%%%%%%%%%%%%% APPROXIMATED SIMULATION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

126

127 [v1_approx, u1_approx, firings1_approx] = aEIF_HEENS(S, rs.I_C, exec_cycles, rs);

128

129 [v2_approx, u2_approx, firings2_approx] = aEIF_HEENS(S, fa.I_C, exec_cycles, fa);

130

131 [v3_approx, u3_approx, firings3_approx] = aEIF_HEENS(S, ib.I_C, exec_cycles, ib);

132

133 [v4_approx, u4_approx, firings4_approx] = aEIF_HEENS(S, tb.I_C, exec_cycles, tb);

134

135 %%%%%%%%%%%%%%%%%%%%%%%%%%%%% EXACT SIMULATION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

136

137 [v1, u1, firings1] = aEIF_exact(S, rs.I, exec_cycles, rs);

138

139 [v2, u2, firings2] = aEIF_exact(S, fa.I, exec_cycles, fa);

140

141 [v3, u3, firings3] = aEIF_exact(S, ib.I, exec_cycles, ib);

142

143 [v4, u4, firings4] = aEIF_exact(S, tb.I, exec_cycles, tb);

144

145 %%

146 %%%%%%%%%%%%%%%%%%%%%%%% RASTER PLOT %%%

147

148 figure(1)

149

150 plot(firings1_approx(:,1), 15+firings1_approx(:,2),'*r');

151 title('aEIF Different Behaviours', 'FontSize',30)

152 xlabel("time(ms)")

153

154 hold on

155 ylim([5 65])

156 yticks([])

157 plot(firings1(:,1), 10+firings1(:,2),'*k');

158

159 plot(firings2_approx(:,1), (30+firings2_approx(:,2)),'*r');

160 plot(firings2(:,1), (25+firings2(:,2)),'*k');

161

162 plot(firings3_approx(:,1), (45+firings3_approx(:,2)),'*r');

163 plot(firings3(:,1), (40+firings3(:,2)),'*k');

164

165 plot(firings4_approx(:,1), (60+firings4_approx(:,2)),'*r');

166 plot(firings4(:,1), (55+firings4(:,2)),'*k');

167

168 annotation('textbox',[0.012 0.05 .05 .2], 'String',"Neuron 4",'FitBoxToText','on','FontSize',10)

169 annotation('textbox',[0.012 0.25 .05 .2], 'String',"Neuron 3",'FitBoxToText','on','FontSize',10)

170 annotation('textbox',[0.012 0.45 .05 .2], 'String',"Neuron 2",'FitBoxToText','on','FontSize',10)

171 annotation('textbox',[0.012 0.65 .05 .2], 'String',"Neuron 1",'FitBoxToText','on','FontSize',10)

82

172

173 %%%%%%%%%%%%%%%%%%%%% MEMBRANE POTENTIALS PLOT %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

174 figure(2)

175 dim = [0 500 -8000 33000];

176

177 subplot(4,1,1)

178 plot(v1_approx, 'r')

179 hold on

180 plot(v1, 'k');

181 axis(dim)

182 title('Regular spiking')

183

184 subplot(4,1,2)

185 plot(v2_approx, 'r')

186 hold on

187 plot(v2, 'k')

188 axis(dim)

189 title('Spike Frequency Adaptation')

190

191 subplot(4,1,3)

192 plot(v3_approx, 'r')

193 hold on

194 plot(v3, 'k')

195 axis(dim)

196 title('Initial Bursting')

197

198 subplot(4,1,4)

199 plot(v4_approx, 'r')

200 hold on

201 plot(v4, 'k')

202 axis(dim)

203 title('Tonic Bursting')

204

205 annotation('textbox',[0.012 0.05 .05 .2], 'String',"Neuron 4",'FitBoxToText','on','FontSize',20)

206 annotation('textbox',[0.012 0.25 .05 .2], 'String',"Neuron 3",'FitBoxToText','on','FontSize',20)

207 annotation('textbox',[0.012 0.45 .05 .2], 'String',"Neuron 2",'FitBoxToText','on','FontSize',20)

208 annotation('textbox',[0.012 0.65 .05 .2], 'String',"Neuron 1",'FitBoxToText','on','FontSize',20)

83

aEIF exact model

1 function [v, u, firings] = aEIF_exact (S, Iin, cycles, constants)

2 N = length(S);

3

4 %constants definition

5 C = constants.C;

6 gl = constants.gl;

7 El = constants.El;

8 Vt = constants.Vt;

9 Vpeak = constants.Vpeak;

10 Vrst = constants.Vrst;

11 delta_t = constants.delta_t;

12 tau_u = constants.tau_u;

13 a = constants.a;

14 b = constants.b;

15 v0 = constants.v0;

16 u0 = constants.u0;

17 dt = constants.dt;

18 Vmax = constants.Vmax;

19 Vmin = constants.Vmin;

20

21 exec_cycles = cycles/dt; %length of simulation

22

23 v = zeros(N, exec_cycles); %membrane potential evolution in time

24 u = zeros(N, exec_cycles); %recovery potential evolution in time

25 firings = []; %output firings

26

27 v(:,1) = v0; %v init

28 u(:,1) = u0; %u init

29

30 v_n = v0*ones(N,1); %temp variable for storing membrane potential

31 u_n = u0*ones(N,1); %temp variable for storin recovery potential

32 fv_ap = zeros(N, 1); %approximation of the exponential function

33

34 I = zeros(N, 1); %external current at each cycle

35

36 %simulating #cycles ms

37 for cycle = 1:exec_cycles

38 t = cycle*dt; % time in ms

39

40 v_n = v(:, cycle); % current membrane pot

41 u_n = u(:, cycle); % current recovery pot

42

43 I = Iin(:, cycle)/C; % input current divided by C for later operations

44

45

46 %firings and synaptic currents evaluation

47 for i = 1:N % for every neuron in the net

48 if v_n(i) >= Vpeak %if v > peak then fire

49 firings = [firings; t, i-1]; %store the firing

50

51 v_n(i) = Vrst; %restore membrane potential

52 u_n(i) = u_n(i) + b; %increment recovery potential

53

54 for j = 1:N % for every synapse of the neuron

55 I(j) = I(j) + S(i, j); %store outgoing current

84

56 end

57 end

58 end

59

60 %model simulation

61 for i = 1:N

62

63 fv(i, cycle) = (-gl*(v_n(i) - El) + gl*delta_t.*exp((v_n(i)-Vt)/delta_t))/C; %evaluate fv

64

65 dv(i) = fv(i, cycle) - u_n(i)/C + I(i); %calculate dv

66 dv(i) = dv(i)*dt;

67

68 du(i) = a*(v_n(i) - El) - u_n(i); %calculate du

69 du(i) = du(i) / tau_u * dt;

70

71 end

72

73 %updating the neurons

74 v(:, cycle+1) = v_n(:) + dv(:); %update membrane potential

75 v(:, cycle +1) = min(max(v(:, cycle+1), -Vmin) , Vmax);

76

77 u(:, cycle+1) = u_n(:) + du(:); %update recovery potential

78

79 end

85

aEIF approximated model

1 function [v, u, firings] = aEIF_HEENS(S, Iin, cycles, constants)

2 N = length(S);

3

4 %constants definition

5 C = constants.C;

6 C_div = constants.C_div;

7 gl = constants.gl;

8 El = constants.El;

9 Vt = constants.Vt;

10 Vpeak = constants.Vpeak;

11 Vrst = constants.Vrst;

12 delta_t = constants.delta_t;

13 tau_u = constants.tau_u;

14 tau_u_div = floor(2^16/tau_u);

15 a = constants.a;

16 b = constants.b;

17 v0 = constants.v0;

18 u0 = constants.u0;

19 dt = constants.dt;

20 Vmax = constants.Vmax;

21 Vmin = constants.Vmin;

22

23 %approximated function constants

24 root = constants.root;

25 fv_a = constants.fv_a;

26 fv_b = constants.fv_b;

27 fv_c = constants.fv_c;

28

29 exec_cycles = cycles/dt; %length of simulation

30

31 v = zeros(N, exec_cycles); %membrane potential evolution in time

32 u = zeros(N, exec_cycles); %recovery potential evolution in time

33 firings = []; %output firings

34

35 v(:,1) = v0; %v init

36 u(:,1) = u0; %u init

37

38 v_n = v0*ones(N,1); %temp variable for storing membrane potential

39 u_n = u0*ones(N,1); %temp variable for storin recovery potential

40

41 fv_ap = zeros(N, 1); %approximation of the exponential function

42 I = zeros(N, 1); %external current at each cycle

43

44 %simulating #cycles ms

45 for cycle = 1:exec_cycles

46 t = cycle*dt; % ms with dt resolution

47 v_n = v(:, cycle);

48 u_n = u(:, cycle);

49 I = Iin(:, cycle); %getting external current

50

51 %firings and synaptic currents evaluation

52 for i = 1:N % for every neuron in the net

53 if v_n(i) >= Vpeak %if v > peak then fire

54 firings = [firings; t, i-1]; %store the firing

55

86

56 v_n(i) = Vrst; %restore membrane potential

57 u_n(i) = u_n(i) + b; %increment recovery potential

58 u_n(i) = clip(Vmin, Vmax, u_n(i));

59

60 for j = 1:N % for every synapse of the neuron

61 I(j) = I(j) + S(i, j); %store outgoing current

62 end

63 end

64 end

65 %model execution

66 for i = 1:N

67 %evaluation of linear term always perfomed

68 fv_ap(i) = El-v_n(i);

69 fv_ap(i) = clip(Vmin, Vmax, fv_ap(i));

70

71 fv_ap(i) = fv_ap(i)*gl; % +gl(El-v) == -gl(v-El)

72 fv_ap(i) = clip(Vmin, Vmax, fv_ap(i));

73

74 fv_ap(i) = fv_ap(i)*C_div; gl(El-v)*C*2^16

75 fv_ap(i) = floor(fv_ap(i)/2^16); %fv_ap = gl(El-v)

76 fv_ap(i) = clip(Vmin, Vmax, fv_ap(i));

77

78 %if Vt < v_n

79 if Vt - v_n(i) < 0

80 %evaluate quadratic term of approximation

81 fv_ap(i) = floor(v_n(i)^2/2^16); % v^2/2^16

82 fv_ap(i) = clip(Vmin, Vmax, fv_ap(i));

83 fv_ap(i) = fv_ap(i)*fv_a; %fv_ap = fv_a*v^2

84 fv_ap(i) = clip(Vmin, Vmax, fv_ap(i));

85

86 %evaluate first order term of approximation

87 tmp = floor(v_n(i)/2)*fv_b; %v/2 * fv_b *2^8

88 tmp = floor(tmp/2^8); v/2*fv_b

89 tmp =clip(Vmin, Vmax, tmp);

90

91 fv_ap(i) = fv_ap(i) + tmp; %fv_a*v^2 + fv_b*v/2

92 fv_ap(i) = clip(Vmin, Vmax, fv_ap(i));

93 fv_ap(i) = fv_ap(i) + tmp; % fv_ap = fv_a*v^2+fv_b*v

94 fv_ap(i) = clip(Vmin, Vmax, fv_ap(i));

95

96 fv_ap(i) = fv_ap(i) + fv_c; %fv_ap = fv_a*v^2 + fv_b*v + fv_c

97

98 %perform min function and get result

99 tmp = 0;

100 if fv_ap(i) >= 0 %if fv_ap is positive, save in tmp but reset for later

101 tmp = fv_ap(i); %only if fv_ap was >= 0

102 clip(Vmin, Vmax, tmp);

103 fv_ap(i) = 0; %if fv_ap > 0, here put fv_ap = 0

104 end

105 fv_ap(i) = clip(Vmin, Vmax, fv_ap(i));

106

107 end

108 %if v_n > root

109 if root - v_n(i) < 0

110 fv_ap(i) = (4*tmp); %max func not needed because tmp >= 0

111 fv_ap(i) = clip(Vmin, Vmax, fv_ap(i));

112 end

113

114 dv(i) = I(i) - floor((u_n(i)* C_div)/2^16) ;

87

115 dv(i) = dv(i)*dt + dt*fv_ap(i); %get total dv

116

117 du(i) = a*(v_n(i) - El) - u_n(i);

118 du(i) = floor((du(i) * floor(2^16/tau_u))/2^16) * dt; %get du

119 end

120 %updating the neurons

121 v(:, cycle+1) = v_n(:) + dv(:); %update membrane potential

122 v(:, cycle +1) = clip(Vmin, Vmax, v(:, cycle+1));

123

124 u(:, cycle+1) = u_n(:) + du(:); %update recovery potential

125 u(:, cycle +1) = clip(Vmin, Vmax, u(:, cycle+1));

126 end

88

B aEIF HEENS Code

Netlist file

1 @Config

2 Zedboard_4x8

3

4 @ParamSyn

5 # synaptic weights = 0

6 0, 0

7 @Netlist

8 #empty netlist

9 0, 0

10

11 @Params

12 #membrane potential and recovery variable at t = 0

13 .0x1E3/16/NEUR/$NVL/-7000, -1400

14

15 # all the model's variables

16 .0x3E0/16/EL_GL/$NVL/0 , 0

17 0, -7000, 10

18 1, -7000, 12

19 2, -5800, 18

20 3, -5800, 10

21 UNMAPPED, 0, 0

22

23 .0x3E1/16/V_RST_CONST_CURR/$NVL/0, 0

24 0, -5800, 250

25 1, -5800, 250

26 2, -5000, 307

27 3, -4600, 105

28 UNMAPPED, 0, 0

29

30 .0X3E2/16/C_DIV_TAU_U/$NVL/0, 0

31 0, 327, 2184

32 1, 327, 218

33 2, 504, 436

34 3, 327, 546

35 UNMAPPED, 0, 0

36

37 .0x3E3/16/NEU_A_B/$NVL/0, 0

38 0, 2, 0

39 1, 2, 6000

40 2, 4, 12000

41 3, 2, 10000

42 UNMAPPED, 0, 0

43

44 .0x3E4/16/FV_A_B/$NVL/0, 0

45 0, 32, 1241

46 1, 39, 1491

47 2, 57, 2210

48 3, 21, 810

49 UNMAPPED, 0, 0

50

51 .0x3E5/16/FV_C_ROOT/$NVL/0, 0

52 0, 11950, -4494

53 1, 14175, -4494

89

54 2, 21400, -4650

55 3, 7796, -4650

56 UNMAPPED, 0, 0

57

58 #seed for noise generation

59 .0x1FD/32/SEED/2/-6500, 800

60 5, 10

90

aEIF Neural Model

1 ;;;;;;;;;;;;;;;;REGISTERS USAGE;;;;;;;;;;;;;;;;;;;;

2 ; R0: CALCULATIONS SR0: UNUSED

3 ; R1: CALCULATION SR1: TMP STORAGE

4 ; R2: STORING MEMBRANE POTENTIAL SR2: STORING dV

5 ; R3: STORING RECOVERY POTENTIAL SR3: STORING dU

6 ; R4: TMP STORAGE SR4: UNUSED

7 ; R5: TMP STORAGE SR5: UNUSED

8 ; R6: TOTAL SYNAPTIC CURRENT SR6: UNUSED

9 ; R7: UNUSED SR7: UNUSED

10 ;;;

11

12 .org 0x010

13 .data

14 VPEAK = 3000

15 VT = -5000

16 DELTA_T = 200

17 DELTA_T_DIV = 327 ; 2^16/DELTA_T

18

19 .org 0x70

20 .code

21

22 GOTO MAIN

23

24 ;;;;;;;;;;;;;;;;;;;;;; FUNCTIONS ;;;;;;;;;;;;;;;;;

25 RANDOM_INIT: ; Uses R0 and R1

26 LOADBP SEED_0

27 LOADSN

28 SEED ; High seed

29 LOADBP SEED_1

30 LOADSN

31 SEED ; Low seed

32 RET

33 ;;

34

35 LOAD_NEURON: ;

36 READMPV NEUR_0 ; Address of real neuron + virt (valid also for non-virtual)

37 LOADBP ; SNRAM pointer to currently processed neuron

38 LOADSN ; Load Neural parameters from SNRAM to R1<=u & ACC<=Vmem

39 MOVR R2 ; R2 <= v0

40 MOVA R1 ; ACC<=u0

41 MOVR R3 ; r3<=u

42 RET

43 ;;

44

45 SYNAPSE_CALC:

46 LOADSP ; Load Synaptic parameters and spike to R1 & ACC

47 SHRN 1 ; Move spike to flag

48 FREEZENC

49 MOVA R1 ; Synaptic parameter to ACC

50 ADD R6

51 MOVR R6

52 UNFREEZE

53 RST ACC

54 STORESP ; Stores synaptic parameter and increases BP for

55 ; next synapse processing

91

56 INCS

57 RET

58 ;;

59 ADD_CONST_CURR:

60 READMPV V_RST_CONST_CURR_0

61 LOADBP

62 LOADSN

63 MOVA R1

64 ADD R6 ;R6 is total syn current + const_curr

65 MOVR R6

66 RST ACC

67 RET

68 ;;

69 EVAL_FV:

70 ;1) evaluate below vt : fv = -gl(v - El) -> gl(el - v), R0 KEEPS EL, R1 KEEPS GL

71 READMPV EL_GL_0

72 LOADBP

73 LOADSN

74 SUB R2 ; EL - V

75 MULS R1 ; GL*(EL - V) ; RESULT SHOULD BE IN R1 BECAUSE LSB

76

77 MOVSR R1 ;R1S SAVES THE VALUE GL(EL-V)

78 READMPV C_DIV_TAU_U_0 ; 1/C*2^16 IN R0, TAU_U IN R1

79 LOADBP

80 LOADSN

81 MOVRS R1

82 MULS R1 ; RESULT IS IN R0 BECAUSE MSB

83 MOVR R1 ; R1 <= GL(EL - V)/C

84 MOVSR R1 ; GL(EL-V)/C -> FV RESULT IF V < VT

85

86 ;2) evaluate v - Vt > 0 : fv = fv_a*v^2 + fv_b*v + fv_c

87 LDALL R0, VT

88 SUB R2 ;VT - V

89 SHLN 1 ;

90 FREEZENC

91 ;evaluate fv_a*v^2

92 MOVA R2

93 MULS R2 ; V^2 BUT TAKE V^2/2^16 CONSIDERING ONLY R0

94 MOVR R5 ; V^2/2^16 IN R5

95 READMPV FV_A_B_0

96 LOADBP

97 LOADSN

98 MULS R5 ; R0 AND R1 KEEPS fv_a*V^2, result in R1

99 MOVA R1 ; ACC <= R1

100 MOVR R4 ; QUADRIC TERM IN R4

101

102 ;evaluate 2 times fv_b*v/2

103 MOVA R2

104 SHRAN 1

105 MOVR R5

106 READMPV FV_A_B_0

107 LOADBP

108 LOADSN

109 MOVA R1 ; R0 KEEPS FV_B

110 MULS R5 ; V/2*FV_B AND RESULT IN R0[7:0] AND R1[15:8]

111 SHLN 7 ; R0 KEEPS RESULT IN R0[15:8] AND R0[7:0] = 0

112 SHLN 1

113 MOVR R5 ; R5 USED AS TMP REGISTER

114 MOVA R1 ; R0 NOW KEEPS RESULT IN R0[15:8]

92

115 SHRN 7 ; R0[7:0] AND R0[15:8] = 0

116 SHRN 1

117 OR R5 ; R5[15:8] OR R0[15:8]=0 --- R5[7:0]=0 OR R0[7:0] ---> SHOULD BE 2^8*FV_B*V/2^8

118

119 MOVR R1

120 ADD R4

121 ADD R1

122 MOVR R4 ; R4 KEEPS FIRST AND SECOND ORDER TERMS

123

124 READMPV FV_C_ROOT_0

125 LOADBP

126 LOADSN

127 ADD R4 ; NOW R0 KEEPS THE RESULT OF TOTAL FV APPROXIMATED

128

129 MOVR R1 ; SAVES RESULT ON R1

130 RST R5 ; R5 TO 0

131 SHLN 1 ; SET CARRY FLAG

132 FREEZEC ;FREEZE IF RESULT IS NEGATIVE, OTHERWISE SAVE STIT FOR LATER

133 MOVA R1 ;GET THE POS RESULT STORE IN R1

134 MOVR R5 ;R5 != 0 ONLY WHEN RESULT OF FV IS POSITIVE

135 RST R1 ;RESET R1 TO PERFORM MIN(0, FV)

136 UNFREEZE

137

138 MOVSR R1 ; NOW R1S KEEPS THE TERM OF FV

139

140 UNFREEZE ; ENDS 2)

141

142 ;3)evaluate ROOT - V >= 0 : 4*fv of case 2)

143 READMPV FV_C_ROOT_0

144 LOADBP

145 LOADSN

146 MOVA R1

147 SUB R2 ; ROOT - V

148 SHLN 1

149 FREEZENC ; ROOT - V >= 0 FREEZE, SO DONT FREEZE WHEN V > ROOT

150 MOVA R5 ;GET MAX(0, FV)

151

152 ADD R5 ; 2*FV

153 ADD R5 ; 3*FV

154 ADD R5 ; 4*FV, USED ADD BECAUSE SATURATES

155 MOVR R1

156 MOVSR R1 ; PUT IN R1S RESULT

157 UNFREEZE

158

159 RET

160 ;;

161 EVAL_DELTA_V:

162

163 MOVSR R2 ; R2S now keeps the membrane val maybe not needed

164 MOVSR R3 ; R3S now keeps the recovery pot maybe not needed

165 MOVSR R6 ; R6S now keeps total incoming current

166

167 GOSUB EVAL_FV ; R1S now keeps the value of fv/c

168

169 MOVRS R2

170 MOVRS R3

171 MOVRS R6

172

173 READMPV C_DIV_TAU_U_0

93

174 LOADBP

175 LOADSN

176 MULS R3 ; U/C WITH RESULT IN R0 BECAUSE MSB

177 MOVR R1

178 MOVA R6

179 SUB R1 ; ACC <= TOTAL_I - U/C

180

181 MOVR R1 ; R1 <= U/C

182

183 MOVRS R1 ;RETRIEVE FV VALUE

184 ADD R1 ;DV IN R0

185

186 MOVR R2 ; R0S KEEPS DV

187 SWAPS R2 ; R2 Vmemb, R2S dV

188 RET

189 ;;

190 EVAL_DELTA_U:

191 READMPV EL_GL_0

192 LOADBP

193 LOADSN

194 MOVR R1 ; R1 KEEPS EL

195 MOVA R2 ; ACC <= VMEMB

196 SUB R1 ; ACC <= VMEMB - EL

197 MOVR R4 ; R4 USED AS TMP STORAGE

198

199 READMPV NEU_A_B_0

200 LOADBP

201 LOADSN

202 MULS R4 ; A*(VMEMB - EL) WITH RESULT IN R1 BECAUSE LSB

203 MOVA R1

204 SUB R3 ; ACC <= A(VMEMB-EL) - U

205 MOVR R4

206

207 READMPV C_DIV_TAU_U_0

208 LOADBP

209 LOADSN

210 MOVA R1 ; ACC <= TAU_U

211 MULS R4 ; ACC&R1 <= (A(VMEMB-EL) - U)/TAU_U WITH RESULT IN R0 BECAUSE MSB

212 MOVSR R3 ;SAVES U INTO R3S

213 MOVR R3 ; R3 <= DU

214 SWAPS R3 ; R3 <= U, R3S <= DU

215

216 RET

217 ;;

218 DETECT_SPIKE:

219 LDALL R0, VPEAK

220 SUB R2 ; Vthres - Vmemb

221 SHLN 1 ; if MSB = 1 then Vmemb > Vthres so it fired

222 RST ACC

223 FREEZENC

224 SWAPS R2

225 SWAPS R3

226 MOVR R2 ; DV = 0

227 MOVR R3 ; DU = 0

228 SWAPS R2

229 SWAPS R3

230

231 READMPV V_RST_CONST_CURR_0

232 LOADBP

94

233 LOADSN

234 MOVR R2 ; R2 <= V_RST

235

236 READMPV NEU_A_B_0

237 LOADBP

238 LOADSN

239 MOVA R1

240 ADD R3

241 MOVR R3 ; R3 <= U + B

242

243 SET ACC ; put a 1 in R0 LSB for tx a spike

244 UNFREEZE

245

246 STOREPS

247 RET

248 ;;

249 CALC_STEP:

250 MOVA R2 ; ACC = Vmemb

251 SWAPS R2 ; R2 = dV

252 ADD R2 ; ACC = Vmemb + dV

253 MOVR R2 ; R2 = Vmemb + dV

254

255 MOVA R3 ; same for R3 and U-dU

256 SWAPS R3

257 ADD R3

258 MOVR R3

259 RET

260 ;;

261 STORE_NEURON:

262 MOVA R3 ; acc = U

263 MOVR R1 ; r1 = U

264 MOVA R2 ; acc = Vmemb

265

266 READMPV NEUR_0 ; Address of real neuron + virt (valid also for non-virtual)

267 LOADBP ; SNRAM pointer to currently processed neuron

268

269 STORESP ; Store u and Vmem to SNRAM

270 RET

271 ;;;

272 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;; MAIN PROGRAM ;;

273 ;;;

274 MAIN:

275 ; Virtual operation init

276 LAYERV NVL ; Init sequencer vlayers. It is 0 for non-virtual operation

277 LDALL ACC, NVL ; Load defined virtual layers to PE array

278 SPMOV 0 ; VIRT <= ACC

279

280 ; Initial instructions

281 GOSUB RANDOM_INIT ; For noise initialization

282

283 EXEC_LOOP: ; Execution loop

284

285 LOOP NVL ; Virtualization loop

286 SYNAPSE NLS_0

287 GOSUB LOAD_NEURON ; Loading current neuron

288

289 GOSUB DETECT_SPIKE; ;check for spike

290

291 RST R6 ;reset register for current storing

95

292 READMPV LSA0_0 ; needed for configuration

293 LOADBP

294 LOOPV NLS_0 ; synaptic loop. Reads number of current-layer synapses

295 GOSUB SYNAPSE_CALC ;calculate synaptic currents

296 ENDL

297

298 GOSUB ADD_CONST_CURR ;add DC const current

299

300 GOSUB EVAL_DELTA_V; ;evaluate dv/dt

301 GOSUB EVAL_DELTA_U; ;evaluate du/dt

302 GOSUB CALC_STEP; ; update v and u

303

304 MOVA R2 ; R0 <= membrane potential

305 STOREB ; value of R0 in fifo for visualization of results

306

307 GOSUB STORE_NEURON; ;store back neuron state

308

309 RST ACC

310 RST R3

311 RST R2

312 INCV ;increment virtual layer

313 ENDL ;end virtualization loop

314

315 SPKDIS ; Distribute spikes

316 GOTO EXEC_LOOP ; Execution loop

317

96

C Reservoir Network Code

MATLAB Simulation

1 %indexes for neurons

2 neu_0 = 1; neu_1 = 2; neu_2 = 3; neu_3 = 4; neu_4 = 5; neu_5 = 6;

3 neu_6 = 7; neu_7 = 8; neu_8 = 9; neu_9 = 10; neu_10 = 11; neu_11 = 12;

4 neu_12 = 13; neu_13 = 14; neu_14 = 15; neu_15 = 16;

5 Ne=13; % # of excitatory neurons

6 Ni=3; % # ofinhibitory neurons

7

8 Vrest = -70; %resting potential

9 Vthres = 30; %threshold potential

10

11 %coefficient for exitatory neurons

12 a_ex = 0.015;

13 b_ex = 0.15;

14 c_ex = -70;

15 d_ex = 6;

16 %coefficient for inhibitory neurons

17 a_in = 0.02;

18 b_in = 0.2;

19 c_in = -70;

20 d_in = 2;

21

22 %%%%%%%%%%%%%%%% SYNAPSIS MATRIX FROM FILE %%%%%%%%%%%%%%%%%%%%%%%%%%%%

23 fileID = fopen('reservoir_net.txt', 'r');

24 sizeA = [3 inf];

25 file_array = fscanf(fileID, '%d, %d, %d', sizeA);

26 fclose(fileID);

27

28 S_dim = Ne + Ni;

29 S = zeros(S_dim);

30

31 for j = 1:length(file_array)

32 %dividing by 100 because the weigths in the file are in uV

33 S(file_array(1,j)+1 , file_array(2, j)+1) = file_array(3, j)/100; % /100 because weights in uV in the netlist

34 end

35 clear fileID sizeA file_array;

36 %%%

37 %%%

38

39 %Init v and u

40 v=Vrest*ones(Ne+Ni,1); % Initial values of v

41

42 u(1:Ne,1)=b_ex.*v(1:Ne); % Initial values of u for excitatory

43 u(Ne+1 : Ne+Ni,1) = b_in.*v(Ne+1 : Ne+Ni); % Initial values of u for inhibitory

44

45 %init current

46 I = zeros(Ne+Ni,1);

47 const_curr = 4; %The value of the const current that goes to neurons 0 to 5

48 I_noise = 0; %current noise set to 1

49 tau_I = 20; %decay constant for the current

50

51 %init plot variables and exec time

52 exec_cycle = 125;

53

97

54 neu2plot = neu_0; %neuron that will be plotted (its membrane pot)

55 memb2plot = []; %plot-related vars

56 u2plot = [];

57

58 memb2plot = [1, v(neu2plot)]; % init plot-relateted vars

59 u2plot = [1, u(neu2plot)];

60 all_firings=[]; % spike timings for raster plot

61

62 %%%%%%%%%%%%%%%%%% SIMULATION %%

63 % simulation of exec_cycle time stamps

64 for t=1:exec_cycle

65 fired = [];

66 x_fired = zeros(Ne+Ni,1);

67

68 %constant current to apply to neuron 0 to 5

69 I = I*exp(-1/tau_I);

70 I(neu_0:neu_5) = const_curr + I(neu_0:neu_5) ;

71

72 for i=1:Ne %for every exitatory neuron

73 if v(i) >= Vthres %if fired

74 all_firings = [all_firings; t, i-1];

75 fired = [fired, i];

76

77 v(i) = c_ex; %update fired neuron params

78 u(i) = u(i) + d_ex;

79

80 for j = 1:length(S) %evaluate its spikes

81 I(j) = I(j) + S(i,j); %

82 end

83 end

84 end

85

86 for i = Ne+1:(Ne+Ni) %for every inhibitory neuron

87 if v(i) >= Vthres %if fired

88 all_firings = [all_firings; t, i-1];

89 fired = [fired, i];

90

91 v(i) = c_in; %update neuron params

92 u(i) = u(i) + d_in;

93

94 for j = 1:length(S) %evaluate neuron spikes

95 I(j) = I(j) + S(i,j) ;

96 end

97 end

98 end

99

100 for i = 1:(Ne+Ni) %for every neuron update v and u

101 %calculate dv in two steps

102 v(i) = v(i) + 0.5.*(0.04*v(i).^2 + 5.*v(i) + 140 - u(i) + I(i));

103 v(i) = v(i) + 0.5.*(0.04*v(i).^2 + 5.*v(i) + 140 - u(i) + I(i));

104

105 %calculate u depending on the variables

106 if i <= Ne

107 u(i) = u(i) + a_ex.*(b_ex.*v(i) - u(i));

108 else

109 u(i) = u(i) + a_in.*(b_in.*v(i) - u(i));

110 end

111

112 if v(i) > Vthres %for limiting the values

98

113 v(i) = Vthres;

114 end

115 end

116

117 %for plots

118 memb2plot = [memb2plot; t, v(neu2plot)];

119 u2plot = [u2plot; t, u(neu2plot)];

120 end

121

122 %%%%%%%%%%%%% PLOTS AND FIGURES %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

123 set(groot, 'defaultLineMarkerSize', 8)

124 n_fig = 1;

125

126 figure(n_fig) %All firings for all neurons in the execution time

127 n_fig = n_fig+1;

128 exc_firing = find(all_firings(:,2) < Ne);

129 inh_firing = find(all_firings(:,2) >= Ne);

130

131 plot(all_firings(exc_firing, 1), all_firings(exc_firing,2),'*r');

132 hold on

133 plot(all_firings(inh_firing,1), all_firings(inh_firing,2),'*b');

134 xlabel('Time')

135 ylabel('Neurons')

136 axis([0 exec_cycle -1 (Ne+Ni)])

137

138 %Membrane potential of neuron to be plotted (neu2plot)

139 figure(n_fig)

140 n_fig = n_fig+1;

141 plot(memb2plot(:,1), memb2plot(:,2))

142

143 figure(n_fig)

144 n_fig = n_fig+1;

145 plot(u2plot(:,1), u2plot(:,2))

99

HEENS Netlist file

1 @Config

2 Zedboard_4x8

3 @ParamSyn

4 #Single synaptical weight|R0

5 400, 0

6

7 @Netlist

8 0 , 2

9 0 , 5

10 0 , 12

11

12 1 , 3

13 1 , 12

14 1 , 14

15

16 2 , 3

17 2 , 11

18 2 , 15

19

20 3 , 2

21 3 , 8

22 3 , 13

23

24

25 4 , 1

26 4 , 5

27 4 , 8

28

29 5 , 6

30 5 , 13

31

32 6 , 4

33 6 , 7

34

35 7 , 0

36 7 , 14

37

38 8 , 9

39 8 , 10

40

41 9 , 10

42 9 , 11

43 9 , 15

44

45 10 , 2

46 10 , 9

47

48 11 , 0

49 11 , 7

50

51 12 , 4

52 12 , 6

53

54 13 , 1 , -400

55 13 , 8 , -400

100

56

57 14 , 0 , -400

58 14 , 5 , -400

59 14 , 12 , -400

60

61 15 , 3 , -400

62 15 , 9 , -400

63 15 , 11 , -400

64

65 @Params

66 # Addr/Size/Name/Entries/default (empty for random) R0 / R1

67 .0x1E3/16/NEUR/$NVL/-7000, -1050

68

69 .0x3E0/16/IZH_A_B/$NVL/983 , 9830

70 13, 1310, 13107

71 14, 1310, 13107

72 15, 1310, 13107

73 UNMAPPED, 0, 0

74

75 .0x3E8/16/IZH_C_D/$NVL/-7000, 600

76 13, -7000, 200

77 14, -7000, 200

78 15, -7000, 200

79 UNMAPPED, 0, 0

80

81 .0x3F4/16/CONST_CURR/$NVL/0, 0

82 0, 400 , 0

83 1, 400 , 0

84 2, 400 , 0

85 3, 400 , 0

86 4, 400 , 0

87 5, 400 , 0

88 UNMAPPED, 0, 0

89

90 .0x1FD/32/SEED/2/-6500, 800

91 5, 10

101

HEENS Izhikevich Neural Model

1 .org 0x010

2 .data

3 ;; Membrane potential parameters common to all neurons

4 VTHRES = 3000 ; Threshold voltage -25 mV

5 N70 = 7000 ; 70mV, used as 140/2 for the model

6 N0002 = 26844 ; 0.0002*2^27, constant for the model

7 TAU_I = 31170 ; e^(-1/20)*2^15

8 NOISE_LIMIT = 0x3FF; noise for test is 10mV, 1280

9

10 .org 0x70

11 .code

12 GOTO MAIN ; Jump to main program

13

14 ;

15 ; **************************** PROCEDURES BEGIN ****************************

16 ;

17 RANDOM_INIT: ; Uses R0 and R1

18 LOADBP SEED_0

19 LOADSN

20 SEED ; High seed

21 LOADBP SEED_1

22 LOADSN

23 SEED ; Low seed

24 RET

25 ;;;

26 LOAD_NEURON: ; Uses R0, R1, R2, R3, R5

27 READMPV NEUR_0 ; Address of real neuron + virt (valid also for non-virtual)

28 LOADBP ; SNRAM pointer to currently processed neuron

29 LOADSN ; Load Neural parameters from SNRAM to R1<=u & ACC<=Vmem

30 MOVR R2 ; Move Vmem from ACC to R2

31 MOVA R1 ; ACC<=u

32 MOVR R3 ; r3<=u

33 MARK

34 RET

35 ;;;

36 MEMBRANE_POTENTIAL: ;Uses R0,R4,R7 32808

37 MOVA R2

38 MULS R0 ; v^2*2^12 (CHANGED MUL IN MULS!!)

39 NOP ; Check if needed

40 ; Shift R0R1 4 positions left

41 SHLN 4 ; Shift Accumulator 2^4

42 MOVR R4

43 MOVA R1 ; Move LS part (R1) to R0 (2^16)

44 SHRN 4

45 SHRAN 4

46 SHRAN 4 ; 2^16/2^12 = 2^4

47 ADD R4 ; Combine and obtain v^2/2^12

48 LDALL R4 N0002 ; 0.0002*2^27 is in R4

49 MULS R4 ; v^2*2^(-12)*0.0002*2^27/2^16 = 0.0002*v^2*2^(-1)

50 ;(CHANGED MUL IN MULS!!)

51 NOP ; Check if needed

52 SHLN 1 ; Shift Accumulator 2^1

53 MOVR R4

54 MOVA R1 ; Move LS part (R1) to R0 (2^16)

55 SHRN 5

102

56 SHRAN 5

57 SHRAN 5 ; 2^16/2^15 = 2^1

58 ADD R4 ; Combine and obtain 0.0002*v^2

59 MOVR R7

60 MOVA R2 ; ACC<=Vinit

61 SHRAN 2 ; ACC<=0.25*Vinit;

62 ADD R2 ; ACC<=ACC+Vinit=1.25*Vinit

63 SHLAN 1 ; ACC<=2*ACC =2.5*Vinit

64 ADD R7

65 LDALL R4 N70 ; R4<=70

66 ADD R4

67 MOVR R7

68 RST ACC

69 SUB R3 ; ACC=- u

70 SHRAN 1

71 ADD R7

72 ADD R2 ; ACC=ACC+Vinit

73 MOVR R2 ; Back to R2 where membrane potential is stored

74 RET

75 ;;;

76 ADD_NOISE: ; Uses R0, R2 and R5

77 RANDON ; LFSR ON

78 LLFSR ; Noise to ACC

79 MOVR R5

80 LDALL ACC, NOISE_LIMIT

81 AND R5

82 RANDOFF ; LFSR OFF. Arbitrarily here

83 SHRN 1

84 FREEZENC

85 MOVR R5

86 RST ACC

87 SUB R5 ; Generate signed noise without the negative bias of two's complement

88 UNFREEZE

89 MOVSR ACC ; TO MONITOR THE NOISE

90 ADD R2 ; Add to Vmem

91 MOVR R2 ; Back to R2

92 RET

93 ;;;

94 SYNAPSE_CALC:

95 LOADSP ; Load Synaptic parameters and spike to R1 & ACC

96 SHRN 1 ; Move spike to flag C

97 FREEZENC

98 MOVA R1 ; Synaptic parameter to ACC

99 SWAPS R1

100 ADD R1

101 MOVR R1

102 SWAPS R1

103 UNFREEZE

104 RST ACC

105 STORESP ; Stores synaptic parameter and increases BP for

106 ; next synapse processing

107 INCS

108 RET

109 ;;;

110 RECOVERY_UPDATE: ;uses R3,R5,R6

111

112 READMPV IZH_A_B_0

113 LOADBP

114 LOADSN ; R0 <= A, R1 <= B

103

115 MOVR R6 ;R6 <= A

116 MOVA R1

117 MOVR R5 ; R5 <= B

118 MOVA R2 ;ACC<=Vinit

119 MULS R5 ;ACC<=R5*ACC=B*Vinit

120 SUB R3 ;ACC<= ACC-R3= B*VMEMB-U

121

122 MULS R6 ;ACC<=A*ACC;

123 ADD R3 ;ACC<=ACC+Uinit

124 MOVR R3 ;Back to R3 where recovery value is stored

125 RET

126 ;;;

127 DETECT_SPIKE: ; Uses R0,R3 and R2

128 LDALL ACC, VTHRES

129 SUB R2 ; Compare Vth - Vmem

130 SHLN 1 ;subtraction sign to C flag

131 RST ACC

132 FREEZENC ; If positive, freeze

133 READMPV IZH_C_D_0

134 LOADBP

135 LOADSN ;R0 <= C, R1 <= D

136 MOVR R2 ; VMEMB = C

137

138 MOVA R1 ; R0 <= D

139 ADD R3 ; ACC<= u+d

140 MOVR R3 ; u<= u+d

141 SET ACC

142 UNFREEZE

143 STOREPS ; Push spikes

144 RET

145 ;;;

146 STORE_NEURON: ; uses R0,R3 and R1

147 MOVA R3 ;move u from R3 to acc

148 MOVR R1 ;move u from ACC to R1

149 MOVA R2 ; Move Vmem from R2 to ACC

150 READMPV NEUR_0 ; Address of real neuron + virt (valid also for non-virtual)

151 LOADBP ; SNRAM pointer to currently processed neuron

152 STORESP ; Store u&Vmem to SNRAM

153 RET

154 ;;;

155 ADD_CONST_CURR:

156 READMPV CONST_CURR_0 ;read address for constant current in SNRAM

157 LOADBP ;load pointer

158 LOADSN ; R0 <= CONST_CURR , R1 <= TAU_I

159 SWAPS R1 ;R1 <= TOTAL I

160 ADD R1 ; R0 <= CONST_CURR + TOT_I

161 MOVR R1

162 SWAPS R1 ; R1S <= TOTAL CURRENT

163 RET

164 ;;;

165 CURR_DECAY:

166 LDALL R0, TAU_I ;R0 <= tau_I from IMEM

167 SWAPS R1 ;take total current

168 MULS R1 ; R0-R1 <= I*e^(-1/20)*2^15

169 ;dividing by 2^16 by discarding the result store in R1

170 SHLN 1 ; shift R0 for

171 MOVR R1 ; R1 <= total curr

172 SWAPS R1 ; SR1 <= total curr

173 RET

104

174 ;;;

175 LOAD_CURR:

176 READMPV CONST_CURR_0 ;get address of const_curr

177 LOADBP

178 LOADSN ; R0 <= const_curr, R1 <= Current from prev cycle

179 MOVSR R1 ; SR1 <= curr for this cycle

180 RET

181 ;;;

182 STORE_CURR:

183 READMPV CONST_CURR_0 ;get address of const_curr

184 LOADBP

185 LOADSN ; R= <= const_curr, R1 <= curr from prev cycle(to update)

186

187 MOVRS R1 ; R1 <= SR1, SR1 store updated current

188 STORESP ; store back R0 and R1 to SNRAM

189 RET

190

191 ; **************************** PROCEDURES END ******************************

192 ;;;

193 ; **************************** MAIN PROGRAMME BEGIN ************************

194 MAIN:

195 ; Virtual operation init

196 LAYERV NVL ; Init sequencer vlayers. It is 0 for non-virtual operation

197 LDALL ACC, NVL ; Load defined virtual layers to PE array

198 SPMOV 0 ; VIRT <= ACC

199

200 ; Initial instructions

201 GOSUB RANDOM_INIT ; For noise initialization

202

203 EXEC_LOOP: ; Execution loop

204 LOOP NVL ; Neuron loop for virtual operation

205 GOSUB LOAD_NEURON ;loading membrane and recovery potentials

206 GOSUB LOAD_CURR ;get current from last step

207 GOSUB DETECT_SPIKE ;check if v > Vth

208

209 SYNAPSE NLS_0 ; configuring number of synapses

210 READMPV LSA0_0 ; addressing the synapses in mem

211 LOADBP ;load pointer

212 LOOPV NLS_0 ; synaptic loop. Reads number of current-layer synapses

213 NOP ;to prevent pipeline error

214 GOSUB SYNAPSE_CALC ;total current stored in SR1

215 ENDL

216

217 GOSUB CURR_DECAY ; current exp decay

218 GOSUB ADD_CONST_CURR ; add constant input

219

220 SWAPS R1 ; take total current from SR1

221 MOVA R1 ; move to acc

222 SWAPS R1 ; move to SW1

223

224 SHRAN 1 ; divide by 2 total current for later steps

225 MOVR R5 ; R5 <= current/2

226

227 LOOP 1 ; dt = 0.5

228 GOSUB MEMBRANE_POTENTIAL ; Calculate membrane potential according izhikevic

229 ;GOSUB ADD_NOISE ; Noise not added

230 ADD R5 ; add curr/2

231 MOVR R2 ;store back membrane pot

232 ENDL

105

233

234 GOSUB RECOVERY_UPDATE ;update recovery potential

235

236 GOSUB STORE_NEURON ;store neuron

237 GOSUB STORE_CURR ;store the current of this time step

238

239 MOVA R2 ; ACC <= Vmemb

240 STOREB ; used for sending Vmemb to the pc for displaying

241

242 RST ACC ;reset r0

243 MOVR R1 ;reset r1

244 INCV ;increment virtual layer

245

246 ENDL

247 NOP

248 SPKDIS ; Distribute spikes

249 GOTO EXEC_LOOP ; Execution loop

106

D Python Code

Constant generator for FV approximation

1 import numpy as np

2 from scipy.optimize import fsolve

3

4 def exp_func(v, gl, El, delta_t, vt, C): #exact function

5 return (-gl*(v - El) + gl*delta_t*np.exp((v-vt)/delta_t))/C

6

7

8 def main():

9 #constants for the neural model

10 rs_gl = 10 ; rs_el = -7000 ; rs_delta_t = 200 ; rs_vt = -5000 ; rs_C = 200

11 fa_gl = 12 ; fa_el = -7000 ; fa_delta_t = 200 ; fa_vt = -5000 ; fa_C = 200

12 ib_gl = 18 ; ib_el = -5800 ; ib_delta_t = 200 ; ib_vt = -5000 ; ib_C = 130

13 tb_gl = 10 ; tb_el = -5800 ; tb_delta_t = 200 ; tb_vt = -5000 ; tb_C = 200

14

15 #################### regular spikign ###########################

16 #get fv_root with the give set of constants

17 root = fsolve(exp_func, x0 = rs_vt/2, args=(rs_gl, rs_el, rs_delta_t, rs_vt, rs_C))

18 print("rs_root = ", root[0])

19

20 #calculate the exact function

21 x = np.array(np.linspace(rs_vt, round(root[0]), num=10000))

22 print(x)

23 y = exp_func(x, rs_gl, rs_el, rs_delta_t, rs_vt, rs_C)

24 #get the coefficient for quadratic approx

25 coefficients = np.polyfit(x, y, 2)

26 a,b,c = coefficients

27

28 #print the coefficient multiplied by 2^16 and 2^8

29 print("rs_a, rs_b, rs_c = ", a, ' ', b, ' ', c)

30 print("rs_a, rs_b, rs_c = ", a*2**16, ' ', b*2**8, ' ', c)

31 print("rs_a, rs_b, rs_c = ", round(a*2**16), ' ', round(b*2**8), ' ', round(c))

32 print("rs_a, rs_b, rs_c = ", round(a*2**16)/2**16, ' ', round(b*2**8)/2**8, ' ', c)

33 print()

34

35 #################### frequency adaptation ###########################

36 root = fsolve(exp_func, x0 = fa_vt/2, args=(fa_gl, fa_el, fa_delta_t, fa_vt, fa_C))

37 print("fa_root = ", root[0])

38

39 x = np.array(np.linspace(rs_vt, round(root[0]), num=10000))

40 y = exp_func(x, fa_gl, fa_el, fa_delta_t, fa_vt, fa_C)

41

42 coefficients = np.polyfit(x, y, 2)

43

44 a,b,c = coefficients

45

46 print("fa_a, fa_b, fa_c = ", a, ' ', b, ' ', c)

47 print("fa_a, fa_b, fa_c = ", a*2**16, ' ', b*2**8, ' ', c)

48 print("fa_a, fa_b, fa_c = ", round(a*2**16), ' ', round(b*2**8), ' ', round(c))

49 print("fa_a, fa_b, fa_c = ", round(a*2**16)/2**16, ' ', round(b*2**8)/2**8, ' ', c)

50 print()

51

52 #################### initially bursting ###########################

53 root = fsolve(exp_func, x0 = ib_vt/2, args=(ib_gl, ib_el, ib_delta_t, ib_vt, ib_C))

107

54 print("ib_root = ", root[0])

55

56 x = np.array(np.linspace(rs_vt, round(root[0]), num=10000))

57 y = exp_func(x, ib_gl, ib_el, ib_delta_t, ib_vt, ib_C)

58

59 coefficients = np.polyfit(x, y, 2)

60

61 a,b,c = coefficients

62

63 print("ib_a, ib_b, ib_c = ", a, ' ', b, ' ', c)

64 print("ib_a, ib_b, ib_c = ", a*2**16, ' ', b*2**8, ' ', c)

65 print("ib_a, ib_b, ib_c = ", round(a*2**16), ' ', round(b*2**8), ' ', round(c))

66 print("ib_a, ib_b, ib_c = ", round(a*2**16)/2**16, ' ', round(b*2**8)/2**8, ' ', c)

67 print()

68

69 #################### tonic bursting ###########################

70 root = fsolve(exp_func, x0 = tb_vt/2, args=(tb_gl, tb_el, tb_delta_t, tb_vt, tb_C))

71 print("tb_root = ", root[0])

72

73 x = np.array(np.linspace(rs_vt, round(root[0]), num=10000))

74 y = exp_func(x, tb_gl, tb_el, tb_delta_t, tb_vt, tb_C)

75

76 coefficients = np.polyfit(x, y, 2)

77

78 a,b,c = coefficients

79

80 print("tb_a, tb_b, tb_c = ", a, ' ', b, ' ', c)

81 print("tb_a, tb_b, tb_c = ", a*2**16, ' ', b*2**8, ' ', c)

82 print("tb_a, tb_b, tb_c = ", round(a*2**16), ' ', round(b*2**8), ' ', round(c))

83 print("tb_a, tb_b, tb_c = ", round(a*2**16)/2**16, ' ', round(b*2**8)/2**8, ' ', c)

84 print()

85

86 return

87

88 if __name__ == "__main__":

89 main()

108

Netlist Display

1 import networkx as nx

2 import matplotlib.pyplot as plt

3 import numpy as np

4

5 # Crea un grafo diretto

6 G = nx.DiGraph()

7

8 # Aggiungi 16 neuroni come nodi

9 num_neurons = 16

10 G.add_nodes_from(range(num_neurons))

11

12 # Leggi il file delle connessioni e aggiungi gli archi con colori e direzione appropriati

13 with open("log/Netlist.lst", "r") as file:

14 for line in file:

15 neu0, neu1 = line.strip().split(", ")

16 neu0, neu1 = int(neu0), int(neu1)

17

18 # Determina il colore e la direzione in base al neurone di origine

19 if neu0 < 13:

20 edge_color = 'red'

21 G.add_edge(neu0, neu1, color=edge_color, directed=True) # Imposta 'directed=True' per archi direzionati

22 else:

23 edge_color = 'blue'

24 G.add_edge(neu0, neu1, color=edge_color, directed=True)

25

26 # Estrai i colori dei nodi e degli archi e la loro direzione

27 edge_colors = [G[u][v]['color'] for u, v in G.edges()]

28 node_colors = [(1, 0, 0, 0.5) if node < 13 else (0, 0, 1, 0.5) for node in G.nodes()]

29

30 #define the positions of a circular layout

31 radius = 2.0

32 pos = {}

33 for node in range(num_neurons):

34 theta = 2 * np.pi * node / num_neurons + np.pi/2

35 x = radius * np.cos(theta)

36 y = radius * np.sin(theta)

37 pos[node] = (x, y)

38

39 #draw the net

40 nx.draw(G, pos, with_labels=True, node_size=500, font_size=10, font_color="black", node_color=node_colors, edgelist=G.edges(), edge_color=edge_colors, width=2, arrowsize=20, connectionstyle="arc3,rad=0.")

41

42 plt.title("Grafo della Rete Neurale con Connessioni Direzionate")

43 plt.axis("off")

44 plt.show() #show the net

109

	Introduction
	Biological Neurons
	Artificial Neurons
	Neural Networks and Reservoir Computing

	HEENS Architecture and Software Support
	Architecture
	Control Unit
	Processing Element
	Communication system
	Operation phases

	Software support
	Instruction Set
	Network Netlist
	Neural Model
	Result Analysis

	Neural Models
	Hodgkin-Huxley
	Leaky Integrate and Fire
	Izhikevich Model
	Adaptive Exponential Integrate and Fire

	Implementation of the Adaptive Exponential Integrate and Fire model
	General Information
	Expected Results
	Neural Constants
	Ranges and Measurement Units
	Differential Equations and Time Resolution
	Multiplications and Divisions
	Code references

	Methods Involved
	Method for handling fixed point numbers
	Method for controlling flow of execution
	Method for the approximation the exponential function

	MATLAB
	aEIF High Accuracy Simulation
	HEENS Emulation of the aEIF Model
	MATLAB results

	HEENS
	Netlist file
	Neural Model
	HEENS Results

	Reservoir Network Simulation
	Izhikevich Analogue Neuron
	Network Topology and Neural Models
	HEENS Files
	Netlist
	Neural Model

	Comparison of Results

	Conclusion and future work
	References
	aEIF MATLAB Code
	aEIF HEENS Code
	Reservoir Network Code
	Python Code

