Stefano Brilli
BiometricNet - A deep learning-based approach for biometric authentication.
Rel. Enrico Magli. Politecnico di Torino, Corso di laurea magistrale in Ingegneria Informatica (Computer Engineering), 2020
|
PDF (Tesi_di_laurea)
- Tesi
Licenza: Creative Commons Attribution Non-commercial No Derivatives. Download (2MB) | Preview |
Abstract: |
This thesis presents an analysis of a novel, deep learning-based approach for user verification. Face verification is the task of comparing a candidate face to another and verifying whether it is a match. The traditional approach consists of relying on analytical metrics to shape the classification boundary. Instead of defining a metric, our approach allows the network to inherently learn it by mapping matching and non-matching face pairs onto different statistical distributions. Although any class of target distributions can be applied, using the Gaussians is a logical choice since the natural output of large enough fully-connected layers comes to be Gaussian. Moreover, since their masses tend to stay close to a single value, a threshold-based classification can be employed for the verification. |
---|---|
Relatori: | Enrico Magli |
Anno accademico: | 2019/20 |
Tipo di pubblicazione: | Elettronica |
Numero di pagine: | 71 |
Soggetti: | |
Corso di laurea: | Corso di laurea magistrale in Ingegneria Informatica (Computer Engineering) |
Classe di laurea: | Nuovo ordinamento > Laurea magistrale > LM-32 - INGEGNERIA INFORMATICA |
Aziende collaboratrici: | NON SPECIFICATO |
URI: | http://webthesis.biblio.polito.it/id/eprint/15331 |
Modifica (riservato agli operatori) |