
POLITECNICO DI TORINO
Master’s Degree in Computer Engineering

Master’s Degree Thesis

BiometricNet
A deep learning-based approach for biometric

authentication

Thesis supervisor

Prof. ENRICO MAGLI

Candidate

STEFANO BRILLI

JULY 2020

Abstract

This thesis presents an analysis of a novel, deep learning-based approach for user
verification. Face verification is the task of comparing a candidate face to another
and verifying whether it is a match. The traditional approach consists of relying on
analytical metrics to shape the classification boundary. Instead of defining a metric,
our approach allows the network to inherently learn it by mapping matching and
non-matching face pairs onto different statistical distributions. Although any class
of target distributions can be applied, using the Gaussians is a logical choice since
the natural output of large enough fully-connected layers comes to be Gaussian.
Moreover, since their masses tend to stay close to a single value, a threshold-based
classification can be employed for the verification.

To Carla, Dario and Riccardo...

i

Table of Contents

List of Tables v

List of Figures vii

Acronyms ix

1 Introduction 1
1.1 Structure of the paper . 1

2 Introduction to Machine Learning and Deep Learning 3
2.1 Definition and basic concepts about Machine Learning 3

2.1.1 Types of machine learning 4
2.2 Deep learning . 5

2.2.1 Introduction to Neural Networks 6
2.2.2 Convolutional Neural Networks 9
2.2.3 ResNet: an overview . 11

3 Introduction to Face Recognition 12
3.1 Some famous applications of face recognition 13
3.2 Preprocessing of the data . 14

3.2.1 Detection and alignment . 15
3.2.2 Datasets . 16

3.3 Face verification steps . 18
3.4 Literature review . 19

3.4.1 Related works . 22

4 Introduction to BiometricNet 28
4.1 Proposed method . 29
4.2 Architectural details . 32
4.3 Pairs selection . 32
4.4 Verification . 33

iii

5 Experiments 35
5.1 Preliminary results . 36
5.2 Final model and comparisons . 38

5.2.1 Performances comparison 39
5.2.2 Analysis of BiometricNet: ROC curves 40
5.2.3 Discussion about metrics distribution 41

6 Conclusions 44

Appendix 44

A Settings and results of other models 45
A.1 Model B . 45
A.2 Model C . 47
A.3 Model D . 49
A.4 Model E . 51
A.5 Model F . 52

Bibliography 55

iv

List of Tables

3.1 Training sets . 16

4.1 Summary of all possible images combinations with related metric
value z . 34

5.1 Results achieved by using z1 (original images) as metric value . . . 37
5.2 Results achieved by using z as metric value 37
5.3 Verification accuracy of different methods on benchmark datasets

LFW, YTF, CFP-FP, CALFW, CPLFW. These results refer to z
metric. 39

5.4 Confusion Matrix of BiometricNet on LFW, YTF, CFP-FP, CALFW
and CPLFW. These results refer to z metric. 39

5.5 Genuine Acceptance Rate (GAR) obtained by BiometricNet for
LWF, YTF, CFP-FP, CALFW and CPLFW if False Acceptance
Rate (FAR) is set to 10−2 and 10−1 41

A.1 Comparison between state-of-the-art and BiometricNet (Model B)
performances when z1 metric value is used 46

A.2 Comparison between state-of-the-art and BiometricNet (Model B)
performances when z metric value is used 47

A.3 Confusion Matrix of BiometricNet (Model B) on LFW, YTF, CFP-
FP, CALFW and CPLFW. These results refer to z metric. 47

A.4 Comparison between state-of-the-art and BiometricNet (Model C)
performances when z1 metric value is used 48

A.5 Comparison between state-of-the-art and BiometricNet (Model C)
performances when z metric value is used 49

A.6 Confusion Matrix of BiometricNet (Model C) on LFW, YTF, CFP-
FP, CALFW and CPLFW. These results refer to z metric. 49

A.7 Comparison between state-of-the-art and BiometricNet (Model D)
performances when z1 metric value is used 50

v

A.8 Comparison between state-of-the-art and BiometricNet (Model D)
performances when z metric value is used 50

A.9 Confusion Matrix of BiometricNet (Model D) on LFW, YTF, CFP-
FP, CALFW and CPLFW. These results refer to z metric. 51

A.10 Comparison between state-of-the-art and BiometricNet (Model E)
performances when z1 metric value is used 52

A.11 Comparison between state-of-the-art and BiometricNet (Model E)
performances when z metric value is used 52

A.12 Confusion Matrix of BiometricNet (Model E) on LFW, YTF, CFP-
FP, CALFW and CPLFW. These results refer to z metric. 53

A.13 Comparison between state-of-the-art and BiometricNet (Model F)
performances when z1 metric value is used 53

A.14 Comparison between state-of-the-art and BiometricNet (Model F)
performances when z metric value is used 54

A.15 Confusion Matrix of BiometricNet (Model F) on LFW, YTF, CFP-
FP, CALFW and CPLFW. These results refer to z metric. 54

vi

List of Figures

2.1 Paradigm shifting introduced by ML 4
2.2 Relationship between AI, ML and DL 6
2.3 The neuron: a scheme . 7
2.4 Example of activation functions . 8
2.5 Examples of CNN inputs . 10

3.1 MTCNN pipeline . 16
3.2 Pictures taken from CASIA, MS1M-DeepGlint and Asian-DeepGlint

respectively. 17
3.3 Pictures taken from LFW, YTF, CFP-FP, CALFW and CPLFW

respectively. 18
3.4 Enrollment phase . 19
3.5 Verification phase . 20
3.6 Cross entropy function when true label = 1 22

4.1 Input pair mapping according to label 29
4.2 BiometricNet architecture. FeatureNet takes images of facial pairs

as input and provides two embeddings. MetricNet takes such em-
beddings as input and maps them onto the latent space z. 30

5.1 FeatureNet regularization . 35
5.2 MetricNet regularization . 36
5.3 ROC curves of BiometricNet on LFW, YTF, CFP-FP, CALFW,

CPLFW . 40
5.4 Distribution of z1 metric for each dataset. The blue area refers to

matching pairs, the red area refers to non-matching pairs. 41
5.5 Distribution of z metric for each dataset. The blue area refers to

matching pairs, the red area refers to non-matching pairs. 42
5.6 LFW: False Accept . 42
5.7 LFW: False Reject . 43

vii

Acronyms

FR
Face Recognition

FV
Face Verification

AI
Artificial Intelligence

ML
Machine Learning

DL
Deep Learning

NN
Neural Network

CNN
Convolutional Neural Network, a family of neural networks.

FC
Fully Connected, referred to fully connected layers employed in neural net-
works.

TP, FP, TN, FN
Regarding to the confusion matrix, these acronyms mean True Positive, False
Positive, True Negative, False Negative.

ix

Chapter 1

Introduction

Authentication systems based on biometric analysis have become very popular
in the last years since they both avoid the users to remember passwords and to
physically prompt a key for getting access to a system. Moreover, progressions in
designing convolutional neural networks (Section 2.2.2) have conducted to achieve
very high performances in many computer vision tasks. One of them is the face
recognition task, i.e. the ability to analyze and detect useful characteristics from a
face. As explained in detail in Section 3, we can be more precise, discriminating
between "face identification" which means labeling each face, and "face verification"
which means deciding whether two faces represent the same person.

This thesis explores new solutions for implementing face verification systems by
using deep learning techniques. In particular, as will be explained in Chapter 4, we
employ a novel approach for achieving good results, better than the one performed
by state-of-the-art methods.

1.1 Structure of the paper
The thesis is organized as follows:

• Chapter 2. An introduction to Machine Learning and Deep Learning

• Chapter 3. Introduction to Face Recognition: it presents a comprehensive
introduction to the approaches for implementing FR tasks, and some actual
applications

• Chapter 4. Introduction to BiometricNet: an introduction to the proposed
approach for implementing FV, with a complete discussion about it

• Chapter 5. Experiments and results: experimental settings and results of
our experiments

1

1 – Introduction

• Chapter 6. Conclusions and future works: an analysis of the possible
improvements for BiometricNet and a recap about the work.

2

Chapter 2

Introduction to Machine
Learning and Deep Learning

Machine learning has grown a lot in the last years due to the large set of fields
it can be applied: finance, health, academic research, entertainment, and social
sciences. Its growth is perhaps ascribed to the availability and reduction in costs
of the hardware needed for implementing the algorithms (CPU, GPU, cheap cloud
services, etc.).
Another reason is the availability of well-documented frameworks, such as Tensorflow
[1], PyTorch [2], Keras [3], etc. Currently there are more than 41k repositories
matching Machine Learning keyword on GitHub [4] and more than 23k repositories
matching Deep learning keyword [5].

This chapter provides a comprehensive overview of the principal ML and DL
topics and techniques.

2.1 Definition and basic concepts about Machine
Learning

Artificial intelligence can be defined as intelligence demonstrated by machines,
in contrast with the natural intelligence demonstrated by humans. According to
[6], “Intelligence measures an agent’s ability to achieve goals in a wide range of
environments."
Machine learning is a set of methods that can automatically detect patterns in data,
and then use the uncovered patterns to predict future data [7]. These patterns are
learned by computers, that become capable of understanding what data represent
and how to manipulate them to get an output. Instead of programming a computer
for doing something, it learns how to do that. Instead of writing code for teaching

3

2 – Introduction to Machine Learning and Deep Learning

to a robot how to walk, the robot learns how to walk by trying and trying again.
These examples show a shifting in the programming paradigm: In traditional

programming, the programmer writes rules, i.e. the logic (through code) and
obtains such an output providing such an input. On the other hand, an ML
algorithm can be seen as a black box that gets data and related outputs and,
performing some kind of operations, returns the logic of the program, i.e. a way to
map inputs onto the outputs (an illustration is reported in Figure 2.1).

Classical
programming

Logic
(rules)

Input
data

Target

Machine Learning
Target

Input
data

Logic
(rules)

Figure 2.1: Paradigm shifting introduced by ML

Preprocessing of data is a very important step in the model’s building pipeline.
Since computers can only understand numerical information, it is important to
process and convert data in such format. We call samples the observations we
have in our dataset or database, while we refer to features for indicating pieces of
information each sample is composed of.
Each feature can assume a value according to the context it is involved in. For
instance, if our dataset is composed of samples about people, we may have a feature
that refers to the person’s age (a numerical value from 0 to 99) and a categorical
value that indicates the person’s sex (0 for male and 1 for female).

2.1.1 Types of machine learning
Machine learning can be divided into two subcategories:

• Supervised learning. In this approach the goal is to learn a mapping
between the input data x and the output data y. An example of a task is the
spam filter, that can learn how spam and ham (it refers to good emails) emails
are mapped onto the output space and take decision when a new email comes.
The data already labeled and used by the model to learn the mapping belong
to the training set since they are used to improve the knowledge of the model.
The unlabelled data, i.e. the ones the model looks at in order to take a decision

4

2 – Introduction to Machine Learning and Deep Learning

belong to the testing set. During the training phase, just the training set must
be used, because the goal is to decrease as much as possible the generalization
error, i.e. the model has to learn how to handle data in general, without
specializing on training samples.
Supervised tasks can be further divided into two categories, according to the
type of output data.

A classification task seeks a mapping between input data and categorical
labels. For instance, the spam filter reported above belongs to this category.

On the other hand, when the output labels are continuous values the task is
called regression. Predicting the stock value of a company in the future is a
regression task.
Supervised algorithms require a huge human effort because each sample has
to be labeled for being used as a training one.

• Unsupervised learning. Algorithms belonging to this category do not
require labels, because their goal is to split data into categories according to
patterns learned by data. An example of an unsupervised algorithm could be
the identification of topics in a set of online discussions so that the ones that
talk about sports fall into a different cluster with respect to the ones that talk
about animals.

2.2 Deep learning
As shown in Figure 2.2, deep learning is part of the ML family, even though there
are some important differences.

Conventional machine-learning techniques were limited in their ability to process
natural data in their raw form. For decades, constructing a pattern-recognition
or machine-learning system required careful engineering and considerable domain
expertise to design a feature extractor that transformed the raw data (such as
the pixel values of an image) into a suitable internal representation or feature
vector from which the learning subsystem, often a classifier, could detect or classify
patterns in the input.[8]

Deep learning algorithms work differently and overcome these limitations. They
are capable of working with raw data, so no features engineering is required.
Moreover, the expert is not required to know the working context and the proper
family of function to use to approximate the mapping function.
These methods can approximate complex functions by using multiple levels of
non-linear transformations. At each level, data are taken as input, manipulated,
and outputted to the next layer, in a very deep fashion.

5

2 – Introduction to Machine Learning and Deep Learning

AI

ML
DL

Figure 2.2: Relationship between AI, ML and DL

2.2.1 Introduction to Neural Networks
Neural networks are the most common algorithms for implementing DL. They
are computer systems that can learn how to map input data to output labels,
without prior knowledge and with no need to specify the rules. The programmer is
required to just provide labeled data according to the context, a way to measure
the goodness of the predictions, and a way for updating the model itself. The result
is achieved by performing a trial-and-error approach until a certain condition is
met.

Implementation

Neural networks are an inspiration of the human brain. A NN is composed of a
series of nodes called artificial neurons (similar to the brain neurons) and edges
(like the synapse) that bring signals from a neuron to other ones. Each edge brings
a signal that is modulated by its weight, so higher the weight of an edge, stronger
the contribution of the neuron that edge starts from. Once all the signals come to
a given neuron, they are summed and passed as input to a non-linear function and
its output becomes the value to bring to the next neuron through the next edge.
Figure 2.3 shows an example of neuron in a NN.

A neuron implements the functions

z =
Ø
i

wixi + b0 (2.1)

y = σ(z) (2.2)

6

2 – Introduction to Machine Learning and Deep Learning

Figure 2.3: The neuron: a scheme

where:

• z is the total signal coming into the neuron

• xi is the value of the ith feature of the sample

• wi is the weight of the ith edge

• b0 is called bias and could be seen an extra input

• σ is the non-linear activation function

• y is the neuron’s output

The neurons that perform the same transformation, being at the same depth, are
grouped in layers.

The activation function sigma is the most important part of the neuron and, in
general, of the model. Utilizing non-linear functions, a DL model can approximate
almost any function, even the most complex. The most common activation functions
used in DL are the following.

• Sigmoid. It is defined as σ(x) = 1
1+e−x and squashes any value between 0

and 1 (Figure 2.4a).

• Softmax. It is a function that takes a vector of real numbers and normalizes
it into a probability distribution. After having applied the softmax function
to these numbers, each entry of the vector contains a probability score and
the sum of all entries is one. It is defined as σ(xi) = exiq

j
exj .

7

2 – Introduction to Machine Learning and Deep Learning

• Hyperbolic Tangent (Tanh) It is defined as σ(x) = ex−e−x

ex+e−x and squashes
any value between −1 and 1 (Figure 2.4b).

• Rectified Linear Unit (ReLU) It is defined as σ(x) = max(0, x) (Figure
2.4c).

Figure 2.4d shows that a combination of ReLU functions can approximate pretty
well a parable function.

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
0.0

0.2

0.4

0.6

0.8

1.0

(x) = 1
1 + e x

Sigmoid function

(a) Sigmoid function

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
(x) = ex e x

ex + e x

Tanh function

(b) Tanh function

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
0

2

4

6

8

10

(x) =max(0, x)

ReLU function

(c) ReLU function

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
ReLUs approximation [g(x) = relu(x)]

f= x2

f= g(x) + g(x) + g(2(x 1)) + g(2(x+ 1))

(d) Parable approximation

Figure 2.4: Example of activation functions

Loss function and weights update

"Most deep learning algorithms involve optimization of some sort. Optimization
refers to the task of either minimizing or maximizing some function f(x) by altering
x." [9, p. 82]

8

2 – Introduction to Machine Learning and Deep Learning

The loss function also called cost function, is a function that maps an event onto
a real number. In implementing DL algorithms, we use such a loss function for
getting the amount of error our model did in mapping inputs during the last epoch.
If the loss function returns a large number it means that we have to modify a lot
our network since it is performing badly. A small number, conversely, means that
our model can approximate well the function that maps input onto the outputs,
and the network parameters should not change too.

To decide how much each weight should be updated we use a technique called
backpropagation [9, pp. 204–210], which consists of computing the partial derivative
(using the chain rule) of the loss for each network parameter. The rationale is that
computing the derivative of the loss for such parameters, we can understand how
much the loss function changes when its inputs change. Updating the weights in
the decreasing direction we can minimize the loss function and improve our model
performances.

The last actor in this process is the optimizer. While the loss function defines
how much error we have to backpropagate, the optimizer defines how to technically
do that (it defines the updating algorithm). Examples of optimizers are SGD [10]
and ADAM [11].

It is worth citing two common problems that can occur during the backpropaga-
tion phase. Exploding gradient occurs when the gradient becomes too large to be
fit in memory, causing overflow and making very unstable the network. Overflow
is caused by the chain rule since if such a deep layer has a gradient > 1, it will
go through continuous matrix multiplications until it becomes NaN. On the other
hand, if the gradient of deeper layers is < 1 it will be continuously multiplied for
weight matrices until it will become too small. This situation is called vanishing
gradient, and it causes the model to stop learning.

2.2.2 Convolutional Neural Networks
In fully connected neural networks each neuron is linked to all neurons of the next
layer. Building a classifier by using such a network is possible and efficient for a
large set of tasks, like solving the XOR problem, but it could be infeasible for other
tasks, like implementing an images classifier.
Building an image classifier by using an FC network could lead to at least three
problems related to the very high number of parameters required by such a network
[12, pp. 3–4]:

• Overfitting. If the dataset is small and there are a lot of trainable parameters,
the network could learn a perfect representation of the training data and the
loss could go to zero. Nevertheless, if fresh data are different from the ones
used in the training phase, the performances of the model could degrade a lot.

9

2 – Introduction to Machine Learning and Deep Learning

• Out-of-memory issues. Having too many parameters could lead to a mem-
ory overflow.

• Structural limitations. FC networks do have no built-in invariance con-
cerning translations or distortions of the input image.

CNNs are a class of deep neural networks primarily used for analyzing images.
They were inspired by the experiments of Hubel and Wiesel on the mammalian
visual cortex in [13].

CNN is similar to a traditional neural network. It has an input layer, some
hidden layers, biases, and an output layer. However, such kind of networks differs
for the shape of input data and weights. As we have seen in the previous section,
traditional neural networks do have inputs and weights as scalar values.
Inputs and weights of a CNN are instead multidimensional, like images. A black
and white image is composed of just two dimensions (Figure 2.5a), while an RGB
image has a third dimension that indicates the channels, i.e. the amount of red,
green and blue each pixel is composed by (Figure 2.5b). In this case, we indicate
such input as a tensor, a structure of dimensionality higher than two. Differently
from traditional network parameters, that are scalars, CNNs have multidimensional
parameters too.

0 5 10 15 20 25

0

5

10

15

20

25

(a) A black and white image

0 10 20

0

10

20

0 10 20

0

10

20

0 10 20

0

10

20

(b) An RGB image

Figure 2.5: Examples of CNN inputs

They combine two architectural ideas that solve the problems listed above.
Indeed, its hidden layers are characterized by a local connectivity, ensuring that
neurons can extract simple features like edges and corners and high layers will
combine them to extract more complex features [12, p. 5].
Moreover, the layers’ weights are shared among neurons, and this ensures both a
lower number of free parameters, solving the out-of-memory problem and the fact
that the same feature can be extracted independently by its position within the
image. [12, p. 5]

CNN is commonly composed of three types of layers:

10

2 – Introduction to Machine Learning and Deep Learning

• Convolutional layer. It consists of a set of filters that are convoluted across
the input image. Convolution is the linear operation that gives the name to
CNNs [9, p. 330] and is defined as

s(t) = (x ∗ w)(t) =
∞Ø

a=−∞
x(a)w(t− a) (2.3)

The result of this operation is called feature map.

• Non-linear layer. The feature map is passed as input to a non-linear
activation function to apply the non-linearity to the signal. Some activation
functions have been presented in Section 2.2.1

• Pooling layer. This layer is used to reduce the dimensionality of the repre-
sentation and so the number of free parameters the next convolutional layer
will handle. This allows controlling overfitting as well.

2.2.3 ResNet: an overview
Residual Networks are a special type of neural networks introduced in [14].

The special feature of ResNet is the use of the so-called identity shortcut
connection, that allows the signal to flow over the network by skipping some layers.
The motivation for skipping layers is to avoid the vanishing gradient problem
(Section 2.2.1) by reusing the activations of previous layers until the adjacent layer
learns its weights.

As will be explained in the next chapters, we will employ ResNet as part of our
models since they exhibit good performances for our purposes.

11

Chapter 3

Introduction to Face
Recognition

A facial recognition system is a technology capable of identifying or verifying a
person from a digital image or a video frame from a video source.

FR systems are widely used in the security area. Such systems can be found
in any place where facial verification or recognition is required for granting access
to users or to validate some kind of badge: airports, universities, banks, stadiums,
and so on.

The face recognition field can be subdivided into three more specific fields of
application:

• Face identification. It answers the question "who is this person?". Identi-
fication is the action of guessing the identity of a person, so the set of data
must contain at least one picture of all people we want to build a classifier on.
Such a classifier can be used, for instance, for automatically labeling a picture
according to the subject within it. It computes a one-to-many similarity since
the probe face is compared with all the pictures in the dataset to find the
match.

• Face verification. It answers the question ’are these pictures representing
the same person?’. Verification is the act of deciding if two representations
(an image, a video, and so on) are referred to the same person. It can be
employed in situations in which is more important to detect a match between
two people instead of labeling a person. It computes a one-to-one similarity
between the probe image and each image of the dataset, to decide whether
the two images are of the same person.

• Face clustering. It means to find some common features between faces and
grouping people according to them. Clustering algorithms can be employed for

12

3 – Introduction to Face Recognition

grouping faces of the same person in the same group of pictures, and pictures
of other people in other groups.

It is worth mentioning that there exist other recognition techniques based on human
beings’ characteristics: among others, there are fingerprint and iris recognition
systems. Both of them can only work in a very constrained situation since the
person has to put her finger into a scanner or look at an iris camera by a short
distance. So they can be only employed when the person is close to the scanner
and nothing can occlude the scanning; these techniques are invasive but they do
not suffer any distortion or occlusion situation.

On the other hand, face recognition techniques can work in almost any situation:
the person can be pretty far from the camera and she could not even notice the
presence of it. However, lightness paucity and an unconstrained position of the
person could lead to misclassifications and so to an error. Researchers are working
on systems able to overcome these drawbacks.

3.1 Some famous applications of face recognition
Face recognition systems are studied by a lot of researchers around the world and
are far from working perfectly. However, such systems are widely used in some
contexts. In the following are reported some examples of common daily usage of
face recognition, and one example of a situation in which it failed.

The Boston Marathon

During the marathon on April 15, 2013, two bombs were placed, killing three people.
FBI tried to use a face recognition system to find and catch the suspects. Their
idea was simple: for each face captured by surveillance cameras, the system had
to compare each of them with faces contained into the Massachusetts Registry of
Motor Vehicles database, where driving license pictures of all citizens were stored.
They failed for two reasons [15]:

• The driving license pictures were taken in a very constrained manner: same
angle, same position, same quality, and same lightness. Instead, pictures
provided by the surveillance cameras were taken from unconstrained angles,
with variable lightness, the subject could have never looked toward the camera
and the quality was low.

• The driving license’s picture of Dzhokhar Tsarnaev, the suspect the FBI was
looking for, was taken when he was 16, so the system was not able to detect a
match.

13

3 – Introduction to Face Recognition

This story highlights the challenges researchers are facing nowadays. Having
systems that work only in constrained situations is useless since real situations
happen in unconstrained manners. They are working for building systems that can
recognize people regardless the age, lightness, or position.

Face unlocking system on smartphones

Smartphones have become commonplace in our life; we use them for taking pictures,
chatting with friends, and keeping secrets. To keep hidden all these things, the
devices have to offer a way to not allowing access to anyone who is not the owner.

First sold smartphones could be unlocked by prompting a security code or a
symbol. These approaches were useful, but not safe and pretty uncomfortable.
Years later fingerprint scanners were implemented onto the devices, by allowing
much more high security but not solving the inconvenience since the user had to
physically touch the scanner.

In the last years, more advanced smartphones were sold with an integrated face
recognition scanner. Such a system allows very high security and a comfortable
action for the user since it has just to look at the frontal camera for unlocking the
device. This is an example of a face verification process, that will be explained in
the next section.

3.2 Preprocessing of the data
In Section 3 we talked about the differences between face authentication and
authentications based on other biometric features, such as iris and fingerprint.
We said that building authentication systems based on these two latter biometric
features could be easier, at least for the quality of the provided biometry, since the
user has to look at, or put his finger on, a scanner.
However, having few sources of error comes at the cost of a more intrusive situation
for the user.

On the other hand, an authentication system based on face recognition can be
employed with much fewer constraints for the user. Face pictures can be taken at
a distance, and such systems can be much less invasive to the ones we talked about
above. The cost of this low level of constraints is that there can occur a lot of
variations and modifications in the quality of the picture that the recognition could
not work properly. For instance, using a face recognition system for surveillance
purposes lead to take faces with a lot of variations in pose and illuminations, or
detecting a partial or total occlusion of the face. In general, taking pictures in an
uncontrolled situation could lead to a degradation of performances because of noise
in the picture.

14

3 – Introduction to Face Recognition

As pictures were taken in uncontrolled situations can contain a lot of extra
things, like animals and cars, or the same picture could contain different people, we
need a system that can detect people and align their faces. However, detecting and
aligning faces are challenging operations due to the already discussed variations in
pose, illumination, and occlusion. A group of researchers has recently demonstrated
that a poor alignment on low-resolution pictures taken in a controlled situation,
is the major problem that causes a poor recognition performance, while poor
performance in using pictures taken in uncontrolled situations is caused both by
the variations in pose and illumination and a poor alignment [16].

3.2.1 Detection and alignment
For preprocessing data we follow the strategy employed by other works such as
[17][18]. MTCNN (Multi-Tasking Convolutional Neural Network)[19] is a complex
but powerful system for face detection and alignment. In the following will be
reported a description of how it works. MTCNN aims to detect a face (or faces)
within a picture and then align it utilizing five facial detected landmarks. Having
an input image, different copies of different sizes are created by the system, to form
a pyramidal structure.

MTCNN is composed of three convolutional neural networks and each of them
is involved in a preprocessing step. Figure 3.1 shows the stages of MTCNN.

• The first network is called Proposal Network (P-Net). It takes the test image
as input and produces the candidate’s facial windows of the image. These
windows can be seen as regions of interest of the image. Since there could exist
a lot of overlapping windows, a Non-Maximum Suppression (NMS) algorithm
is used for merging too many similar windows.

• The second network is called Refine Network (R-Net). It takes as input all
the proposal windows produced by P-Net. It performs calibration and again
applies the NMS algorithm for merging too many similar windows. During
this phase, a lot of false-positive candidates are rejected.

• The third and last network is called Output Network (O-Net). It performs
similar to the previous network since it applies again NMS algorithm. This
network identifies five regions of interest of the face (left eye, right eye, nose,
left corner of the mouth, right corner of the mouth) and returns just one single
bounding box, the one containing the aligned face.

For BiometricNet we employ MTCNN to generate normalized facial crops of size
160 x 160 pixels, performing an alignment based on five facial points. In particular,
our benchmark pictures are cropped to size 160x160 px, while the training pictures
are cropped to size 182x182 px with a margin of 22 pixels on each side to perform

15

3 – Introduction to Face Recognition

random crops, enhancing data augmentation, and reducing overfitting during the
training. Moreover, the images are mean normalized and constrained in the interval
[-1,1], as done in [17][18].

Figure 3.1: MTCNN pipeline

3.2.2 Datasets
This section provides a brief description of the datasets we used for conducting
experiments. Choosing good training sets is crucial for achieving satisfying perfor-
mances and, in the FR field, that means choosing a pretty large set that contains
as much generalization between faces as possible.

For each dataset, some statistics (for instance number of pictures and number
of different people) and some example pictures are reported.

Training sets

The following datasets were used for training our models. It is worth saying that
we have used them by following no specific rule, in the sense that we could have
used one of them for the first two phases of training and another one for the final
finetuning. However, a detailed description of the datasets used for each phase will
be reported in the experimental section.

Dataset #photos #subjects
CASIA Webface[20] 0.49M 10K
MS1M-DeepGlint[21] 3.9M 87K
Asian-DeepGlint[21] 2.83M 94K

Table 3.1: Training sets

Benchmark sets

In order to test the goodness of our models, we employ the following datasets. As
said earlier, the work behind this thesis is focused on face verification so, for all

16

3 – Introduction to Face Recognition

Figure 3.2: Pictures taken from CASIA, MS1M-DeepGlint and Asian-DeepGlint
respectively.

the datasets, we report the results achieved by testing 6000 pairs of face images,
3000 matching pairs, and 3000 non-matching pairs.

Dataset #photos #subjects
Labelled Faces in the Wild (LFW)[22] 13.2K 5.7K
YouTube Faces (YTF)[23] 3.4K 1.6K
Celebrities in Frontal-Profile (CFP-FP)[24] 7K 500
Cross-Age LFW (CALFW)[25] 12.1K 5.7K
Cross-Pose LFW (CPLFW)[26] 11.6K 5.7K

17

3 – Introduction to Face Recognition

Figure 3.3: Pictures taken from LFW, YTF, CFP-FP, CALFW and CPLFW
respectively.

3.3 Face verification steps
Since the topic of this thesis is to build a face verification system (technical details
later) it is worth listing the steps involved in this kind of approach.

Enrollment

The user is required to provide a picture of himself in a constrained situation in
terms of position, lightness, and without any accessory (sunglasses, hats, etc.). The

18

3 – Introduction to Face Recognition

system extracts useful features from the picture and saves them to a local database.
These features will be compared with the fresh image the user will provide for
getting access to the system. An illustration is reported in Figure 3.4.

Verification

The user provides a fresh image of his face to the system to get access. The system
extracts the features from the image as done in the previous phase, loads the stored
one from the local database, and performs a comparison. The decision is taken by
employing such a metric so, if the result is above the threshold the user can get
access. Otherwise, the system rejects the request and asks a new fresh image to
the user. An illustration is reported in Figure 3.5

Scanner

Features
Extraction DB

User

Figure 3.4: Enrollment phase

3.4 Literature review
The study of FR became popular in the early 1990s when an approach based on
computing the eigenvectors of the covariance matrix of the set of face images was
introduced: Eigenface [27].
The idea was to represent every image in the dataset as a linear combination of
the eigenfaces. For performing the recognition, the weights of the test image were
computed and compared with the weights of all the images into the dataset. The
classification was performed by taking the label of the training image with the least
error.

This and other methods developed in those years worked by making assumptions
about the distribution of the faces. But these kinds of methods fail to address the
uncontrolled facial changes, that cause a deviation from their prior assumptions
[28, p. 1].

In the early 2010s methods based on learning local descriptors were introduced.
In [29] an unsupervised method is used to learn an encoder, then the PCA (Principal

19

3 – Introduction to Face Recognition

Scanner

Features
Extraction DB

User

Match

Score

Figure 3.5: Verification phase

Component Analysis, a technique used for reducing the features space and keeping
as most information as possible) is applied to reduce the dimensionality of the
features and get better compactness.

The performances of such FR systems were unstable because of the difficulties
encountered in extracting good features in the pose, light, and age variations [28,
p. 1].

In 2012, when AlexNet won the ImageNet competition (a challenge that evaluates
algorithms for object detection and image classification at large scale), the situation
changed. AlexNet was a CNN designed by Alex Krizhevsky and described in [30].
It achieved a top-5 test error rate of 15.3% in that competition, more than 10%
lower than the second-place network (26.2%). From that event, deep learning was
employed in almost all researches about FR around the world. It reshaped all
the aspects involved in such research areas, such as algorithms, training/test sets,
applications, and evaluation protocols [28, p. 2].

As explained in Chapter 2, building an efficient ML model requires large datasets,
since the model has to learn as many patterns as possible avoiding to overfit data
and decreasing the generalization error. Since there are billions of people on the
Earth, and so billions of different faces, FR tasks can be seen as classification
problems with billions of classes. However, academic research can not get access to
the same, very large, datasets employed by internet companies in building their FR
models. For this reason, academic researchers are making an effort in designing loss
functions that can overcome the situation of using pretty small datasets [28, p. 5].

20

3 – Introduction to Face Recognition

In the following, it is described how a classification task is implemented by using
a neural network. A traditional NN employed for solving a classification task is
composed of the following parts:

• Input layer. The ones that take raw data;

• Hidden layers. They are involved in extracting features and transforming
them;

• Bottleneck layer. This layer is the one that outputs the representations of
data before feeding them into the classification layer. Such representation is
called pre-logits;

• Classification layer. This layer gets the pre-logits representation and output
a probability vector. Each entry of it represents the probability that the sample
belongs to the class ith class. Usually, this layer employs a sigmoid or a softmax
activation function.

Once the data has been obtained the goodness of the model is measured by means
of a loss function. The most used loss function employed in conjunction with
softmax is the cross-entropy loss. It is defined as

loss = −
MØ
c=1

yo,clog(po,c) (3.1)

where

• M is the number of classes;

• log is the natural logarithm;

• o is an observation, a sample;

• y is a binary indicator. It assumes value 0 or 1 if label c is the correct
classification for observation o;

• p is the predicted probability for o belonging to class c.

Cross-entropy loss takes as input a probability value and outputs an error
measure. It increases as the predicted probability diverges from the actual label,
and it decreases as the predicted probability converges to the actual label (Figure
3.6)

21

3 – Introduction to Face Recognition

0.0 0.2 0.4 0.6 0.8 1.0
Predicted probability

0

1

2

3

4

5

Lo
ss

Cross entropy loss with true label = 1

Figure 3.6: Cross entropy function when true label = 1

3.4.1 Related works
This section provides an overview of the most recent and famous works about
FR. For each of them, the idea and a brief analysis are comprehended. As will
be clear later, such models did not invent new approaches for implementing face
recognition tasks. They defined and studied innovative metrics for discriminating
pairs of pictures. For generating embedding representations of images, such models
use siamese networks, i.e. networks that take two samples at the time as input
and provide comparable output vectors. Since the network must be regularized for
handling two different samples at the time, its weights are shared. Regularizing such
networks means to make them able to generate close representations in space when
images represent the same person and far representations when images represent
different people. The concept of "close" and "far" depends on the distance metric
employed, described by the loss function.

DeepFace

DeepFace [31] was one of the first works to use DL for implementing face recog-
nition tasks and one of the first to approach with the results close to the human
performance on the LFW dataset [22] (97.35% of DeepFace vs 97.53% of human)
[17, p. 1].

Their network is composed of two convolutional layers and a max-pooling layer
within them, to extract low-level features. Such representations are supplied to
three locally connected layers. Such layers work similarly to convolutional layers,
but the weights are unshared, that is, different filters are used for each section of
the image. Finally, there are two fully connected layers: the output of the first one
is used as the face representation feature vector, and the output of the second one

22

3 – Introduction to Face Recognition

is provided to a k-class softmax, that performs the classification [31, pp. 3–4].
For implementing a face verification task, the researchers experimented two

different approaches.

• Taking the feature vector representation of two faces (provided by the first
fully connected layer), they used the weighted-χ2 similarity [31, p. 5]:

χ2(f1, f2) =
Ø
i

ωi(f1[i] − f2[i])2/(f1[i] + f2[i]) (3.2)

where f1 and f2 are the representations of DeepFace. The weight parameters
ωi are learned using a linear SVM onto (f1[i] − f2[i])2/(f1[i] + f2[i]).

• After having regularized the face identification network they removed the top
layer and doubled the architecture, obtaining a siamese network. For each pair
of images, they computed the absolute difference between the feature vectors
and regularized a new top fully connected layer with a sigmoid activation
function [31, p. 5].
The distance metric they employed for regularizing the classification space is
defined as d(f1, f2) = q

i αi|f1[i] − f2[i]|, where αi are trainable parameters.

FaceNet

According to Facenet[32] researchers, training a verification model following the
traditional approach is inefficient since one has to hope that the bottleneck layer
outputs a representation that can well generalize all new faces [32, p. 2].

Their approach consists of directly training and optimizing a network that
produces an embedded representation for each face (the representation provided by
the bottleneck layer), minimizing the distance between faces of the same person, and
maximizing the distance between faces of different people. In order to implement
such an approach, they introduced the triplet-loss [32, p. 3], defined as

NØ
i

[||f(xai) − f(xpi)||22 − ||f(xai) − f(xni)||22 + α]+ (3.3)

where

• xai is the anchor image, i.e. a picture of a specific person;

• xpi is the positive image, another picture of the same person;

• xni is the negative image, a picture of another person;

• α is the forced margin between positive and negative pairs.

23

3 – Introduction to Face Recognition

In order to reach a fast convergence it is crucial to choose the most difficult triplets,
i.e. given an anchor xai , they want to select:

• an hard positive sample xpi defined as argmaxxp
i
||f(xai) − f(xpi)||22

• an hard negative sample xni defined as argminxn
i
||f(xai) − f(xni)||22

However they argue that selecting hardest negatives could lead a local minima
pretty early in the training phase [32, p. 4], so they select such negatives by
imposing the condition ||f(xai) − f(xpi)||22 < ||f(xai) − f(xni)||22, calling these samples
semi-hard. For their experiments, they employed convulutional neural networks
using Stochastic Gradient Descent (SGD) [10] with standard backpropagation, and
Adagrad [33] as the optimizer.

Once the training is over, the network can be employed for classifying pairs
of face pictures. The network gets the pictures as input and, for each of them,
returns a numerical representation in such a dimension. Then it is computed the
l2 distance between those representations and set a threshold. If the distance is
above the threshold, the system classifies pictures as belonging to the same person,
otherwise not.

This approach has improved the embedding representation provided by a deep
neural network. Nevertheless, some researches have highlighted that it is pretty
difficult to directly optimize a network like this, and some tricks are needed [34].

SphereFace

In [35], the researchers argued that some methods combine softmax loss with other
losses like contrastive loss [36], and use triplet-loss [32] for regulating the embedding
learning. According to them, such combinations require to carefully design a
pair/triplet selection and it is time-consuming and sensible to the performances.

They reasoned about the possibility that the Euclidean space could not always
be suitable for learning discriminative facial features. They highlighted that the
features learned by softmax loss have inherent angular distribution, concluding
that the Euclidean margin-based losses are incompatible with softmax loss.

For binary-class cases the decision boundary of softmax loss is defined as
(W1 − W2)x + b1 − b2 = 0, where Wi are weights and bi is bias in softmax
loss. Defining x as a feature vector and constraining ||W1|| = ||W2|| = 1 and
b1 = b2 = 0, the decision boundary becomes ||x||(cos θ1 − cos θ2) = 0, where θi is
the angle between Wi and x. This new decision boundary only depends on θ1 and
θ2, and the modified softmax loss can directly optimize angles.

To control the angular decision boundary, researchers introduced an inte-
ger m(m ≥ 1), defining a modified version of softmax loss called A-Softmax.
For a binary-class case the decision boundaries for class 1 and class 2 become

24

3 – Introduction to Face Recognition

||x||(cosmθ1 − cos θ2) = 0 and ||x||(cos θ1 − cosmθ2) = 0 respectively, while m
controls the size of the angular margin. SphereFace was the first work to show the
effectivness of angular margin in face recognition [35, p. 2].

A-Softmax loss is formulated as

LA−softmax = 1
N

Ø
i

− log(e||xi||ψ(θyi,i)

e||xi||ψ(θyi,i) + q
j /=yi

e||xi|| cos(θyi,i)
) (3.4)

subject to ψθyi,i = (−1)k cos(mθyi,i) − 2k, θyi,i ∈ [kπ
m
, (k+1)π

m
] and k ∈ [0,m− 1].

SphereFace reached very competitive results, close to the ones achieved by models
trained on higher-quality datasets. Moreover, it started the study of the angular
losses for face recognition tasks, preparing the way for coming state-of-the-art
models.

CosFace

Authors of CosFace [17] pointed out that the standard cross-entropy loss can not be
employed to learn separable features if they are not discriminative enough. They
also stated that an angular margin would be preferable since there is an intrinsic
consistency between softmax and the cosine of the angle.

Following the same idea of SphereFace [35], they proposed a modified version
of softmax loss, normalizing both features and weight vectors to remove radial
variations [17, p. 2]. Like the previous architecture, they introduced a cosine margin
termm for maximizing the decision margin in the angular space. However, they used
this term differently and the decision boundary is given by cos(θ1) −m = cos(θ2),
where θi is the angle between the feature and the weight of the class i.

They explained this reformulation by saying that the decision boundary defined
by the A-Softmax has difficulty in optimization because of the non-monotonicity
of the cosine function. Moreover, they highlighted that the decision boundary of
SphereFace depends on θ, leading to different margins for different classes [17].
Their loss overcomes such drawbacks.

The final formulation of the loss they called Large Margin Cosine Loss [17, p. 3]
is then

Llmc = 1
N

Ø
i

− log es(cos (θyi,i)−m)

es(cos(θyi,i)−m) + q
j /=yi

es cos(θj,i)
(3.5)

subject to

W = W ∗

||W ∗||
, (3.6)

x = x∗

||x∗||
, (3.7)

cos (θj, i) = W T
j xi, (3.8)

25

3 – Introduction to Face Recognition

where:

• N is the number of training samples,

• xi is the i-th feature vector corresponding to the ground-truth class of yi,

• Σj is the weight vector of the j-th class,

• θj is the angle between Σj and xi.

ArcFace

According to ArcFace’s [18] researchers, both softmax-loss-based and triplet-loss-
based can achieve excellent performances on face recognition, but both of them
have some drawbacks:

• Softmax loss:

– the linear transformation matrix W ∈ Rd×n increases in size with the
number of identities n;

– the learned features can well separate identities in a closed-set classification
problem, but they are not discriminative enough for the open-set face
recognition problem.

• Triplet loss:

– the number of face triplets increases a lot for large datasets, leading to an
increase in the number of iteration steps;

– training the models with semi-hard samples is a difficult task.

In their work, they analyze the improvements reached by SphereFace in introducing
the idea of an angular loss. However, they stated that the A-Softmax loss requires
some approximations to be computed, and then the training is unstable. [37, p. 2].

While CosFace directly adds the cosine margin penalty to the target logit,
ArcFace performs differently. By using the arc-cosine function, it computes the
angle between the feature and the target weight. Then, it adds the angular margin
to the target angle and re-compute the cosine of this new representation. Finally,
after having re-scaled all logits by a feature norm, this loss behaves as the softmax
loss.

To define their loss function, they imposed bj = 0 and transformed the logit as
W T
j xi = ||Wj|| ||xi|| cosθj, where θj is the angle between the weight Wj and the

feature xi. Then, they fixed the individual weight ||Wj|| = 1 by L2 normalization
and fixed the embedding feature ||xi|| by L2 normalization, re-scaling it by s [37,
p. 2]. Finally, they added the margin term m between xi and Wyi

to shrink the

26

3 – Introduction to Face Recognition

margin between intra-class samples and enlarge the margin between inter-class
samples. The ArcFace loss is defined as

Larcface = − 1
N

Ø
i

log es(cos (θyi,i +m))

es(cos(θyi,i +m)) + q
j /=yi

es cos(θj,i)
(3.9)

27

Chapter 4

Introduction to
BiometricNet

In the previous chapter, we have seen that CNNs have improved the performances
of FR tasks since they can learn complex non-linear approximations and extract
features without handcrafting them. We have also discussed the choice of the loss
function, talking about the various losses introduced during the last years.

All methods discussed above employ a specific and predefined metric for com-
puting the distance between the embedded representations of images. All of them
constraint the model to enlarge the distance between pictures of different people
and compress the distance between pictures of the same person. This demonstrates
that choosing a good metric is crucial for achieving good results and, conversely, a
bad metric could lead to bad accuracies and not so relevant performances.

We propose a different approach for training face verification models. Instead of
defining a specific metric for evaluating the distances between the input pair, we
regularize the network in such a way that it learns the best metric for comparing
images. This is achieved by imposing the output of the network to follow a statistical
distribution when input images belong to the same person and another statistical
distribution when input images belong to different people.

The idea of imposing the outputs to follow the determined distribution was first
introduced and experimented by AuthNet [38] and RegNet [39], even though with a
different approach: [38] and [39] aim to solve a one-vs-all task, by building networks
capable of mapping the biometric features of authorized user onto a distribution
far away from the unauthorized users distribution. This means that it is necessary
to re-train the network if the authorized user changes.

BiometricNet works differently since it takes as input facial pairs and maps
them on the criteria whether they represent the same person or not. Once a model
based on BiometricNet has been trained it can work for any person, with no need

28

4 – Introduction to BiometricNet

to re-train the network.
BiometricNet works by performing the following steps:

• A pair of pictures is provided to BiometricNet: one of them is the anchor, the
other one could be a positive or a negative sample (positive if it represents
the same person of anchor, negative otherwise). As will be discussed in the
next chapter, such images get aligned before being fed to the network;

• Such images are processed by BiometricNet, that extracts useful features layer
by layer;

• The images are mapped onto a statistical distribution. In an ideal situation,
and looking at Figure 4.1, if the pair of images represents the same person,
output should be mapped to the blue distribution, while if the images represent
different people the output should be mapped to the red distribution;

• Since BiometricNet regularizes the output to follow a well-defined distribution,
we can employ a simple linear boundary for classifying the images;

• The loss is computed by comparing predicted and actual labels and the network
parameters are updated.

matching
pairs

non-matching
pairs

Figure 4.1: Input pair mapping according to label

4.1 Proposed method
The goal of BiometricNet is to learn meaningful features of the faces and, at the
same time, a metric for classifying the two faces. In this section, the general
architecture of BiometricNet and the loss functions employed in our experiments
will be explained.

BiometricNet is constituted of two sub-networks, as depicted in Figure 4.2:

29

4 – Introduction to BiometricNet

• FeatureNet. It is a siamese CNN network that takes as input images of
facial pairs x = [x1, x2] and after having extracted features across the layers,
returns an embedding representation of both the images f = [f1, f2].
The size of these representations is set by the user and it is a tuning parameter
since increasing the size of this representation means getting more information
for each picture, but also much more resources are required for the task.
Moreover, using a too large embedding representation could lead the network
to overfit the data, causing a drop in performance.

• MetricNet. This network maps the embeddings computed by FeatureNet
onto a p-dimensional latent space z. The embeddings must be combined before
being provided to MetricNet. For instance, they can be concatenated or the
difference between them can be computed. The output of this network is used
for the final classification.

FC layers matching
pairs

non-matching
pairs

f1

f2weight sharing

handling

Target
distributions

[f1,f2]

FeatureNet MetricNet

Net1

Net2

z
....w,bInput 1

Input 2

Figure 4.2: BiometricNet architecture. FeatureNet takes images of facial pairs as
input and provides two embeddings. MetricNet takes such embeddings as input
and maps them onto the latent space z.

The novelty of this approach is that no predetermined metric is imposed. The
metric is directly learned by the network since the decision space is shaped to follow
a target distribution through the loss function.
It is worth mentioning that an arbitrary distribution can be employed as a target
distribution. However, employing distributions whose masses tend to stay close to
a single value might be the best choice, since a linear boundary can be used for
classification. From the central limit theorem, it is known that the output of fully
connected layers tend to follow a Gaussian distribution [40]. Since the second part
of BiometricNet is composed of fully connected layers, as will be described later,
we chose to employ multivariate Gaussian distributions as target ones.

Let Pm and Pn be the desired target multivariate Gaussian distributions.

Pm = N (µm,Σm),Pn = N (µn,Σn) (4.1)

30

4 – Introduction to BiometricNet

where

• Σm = σ2
mIp and Σn = σ2

nIp are diagonal covariance matrices

• µm = µm1Tp and µn = µn1Tp are the expected values

It can be noted that using different values for the variance of the two distributions
would complicate the choice of the parameters since the optimal variance would be
specific to the considered dataset, in order to match its intra-class and inter-class
variances. Moreover, using the same variance for both the distributions allows us
to use a hyperplane for taking decisions and discriminating the faces. For those
reasons, we set Σm = Σn for BiometricNet.

We define xm as a pair of matching faces and xn as a pair of non-matching faces.
Then we define fm and fn as the corresponding feature representations outputted
by FeatureNet.
MetricNet can be seen as a generic encoding function H(·) of the input feature
pairs z = H(f), where z ∈ Rp, such that zm ∼ Pm if f = fm and zn ∼ Pn if
f = fn.

As explained before we want to regularize the network to constrain the metric to
follow the defined target distributions. Since we have chosen the Gaussian as target
distribution, we can write the Kullback-Leibler (KL) divergence between samples
and targets in a closed-form, as a function of first and second-order statistics.

The Kullback-Leibler divergence was introduced by Kullback and Leibler in
[41], and is a measure of how a probability distribution is different from a second
distribution.
Starting from the standard mathematical definition of KL divergence, it can be
computed its formulation for multivariate Gaussian distributions [42]:

Lm = 1
2[log det(Σm)

det(ΣSm) − p+ tr(Σ−1
m ΣSm) + (µm − µSm)TΣ−1

m (µm − µSm)] (4.2)

where S refers to the sample statistics. Ln can be obtained similarly and it is not
indicated for brevity.

It is worth noting that, since we only need the first and second-order statistics
of z, we can capture this information batch-wise.
As will be explained in detail in Section 4.3, during the training the network gets
b/2 difficult matching face pairs and b/2 difficult non-matching face pairs extracted
from the training dataset, being b the batch size.

Letting X ∈ Rb×r with r the size of a face pair, the network outputs a collection
of latent space points Z ∈ Rb×p. We then have to compute the first and second
order statistics of the encoded representations Zm, related to the matching input
faces (µSm ,ΣSm), and Zn, related to the non-matching input faces (µSn ,ΣSn).

31

4 – Introduction to BiometricNet

Let us denote as Σ(ii)
Sm

the i-th diagonal entry of the sample covariance matrix
Zm. The assumption made about the diagonal covariance allows us to simplify 4.2
as

Lm = 1
2[log σ2p

mr
i Σ

(ii)
Sm

− p+
q
i Σ

(ii)
Sm

σ2
m

+ ëµm − µSmë2

σ2
m

] (4.3)

Ln can be obtained similarly and it is not indicated for brevity. This loss captures
the statistics of the matching and non-matching pairs, enforcing the distribution
Pm and Pn respectively.

The overall loss function we have to minimize, and that covers the entire network
(FeatureNet and MetricNet), is then given by L = Lm + Ln

4.2 Architectural details
• FeatureNet. The goal of FeatureNet is to provide a good representation for

each pair of images. This is the most important part of BiometricNet since
having bad representations could lead to poor performances at the end of
the training process. We employ convolutional neural networks for this task
because of their ability to extract features from images. In particular, we
employ residual networks because of their fast convergence.

• MetricNet. The goal of MetricNet is to map representations provided by
FeatureNet onto the latent space, before the classification step. For this task,
we employ six fully connected layers.
We set the output size of the first FC layer equals to the size of the combination
of the representations provided by FeatureNet. For instance, if FeatureNet
maps images to p = 512 and we concatenate those representations, the first
fully connected layer of MetricNet will have 1024 neurons. At the output of
each layer, the leaky ReLU activation function is employed, while the last layer
linearly maps the latent space onto target distributions. In some experiments,
we regularize these layers using weight decay and dropout regularizations.

4.3 Pairs selection
Choosing meaningful face pairs is crucial for achieving the goal. For the training
phase, BiometricNet selects the most difficult matching and non-matching face
pairs, i.e. the ones that are far from their target distributions and very close to the
decision threshold. The distance between a face pair and its target distribution

32

4 – Introduction to BiometricNet

is computed during the selection phase pass. Each pair is given as input to
BiometricNet and it outputs the corresponding value of z.

At the end of the selection phase, for each mini-batch, if the subset of matching
face pairs whose output zm is enough distant from the mass center of Pm, i.e.
ëzm − µmë∞ ≥ 2σm, is selected. Similarly, the selected non-matching face pairs
are the ones whose output zn is enough distant from the mass center of Pn, i.e.
ëzn −µnë∞ ≤ 2σn. Being b the batch size, we want to select b/2 difficult matching
face pairs and b/2 difficult non-matching face pairs. If during the selection pass
this condition is not met, the batch is discarded and the procedure repeated.
Once the condition is met the forward pass starts and the loss is computed. Then,
the backward pass is performed to reduce the loss.

The rationale of this choice is that face pairs falling close to the threshold are
the ones with high uncertainly, and so the ones that can improve the regularization
of the network. It is worth noting that, as the training proceeds and the loss
decreases, difficult face pairs of such an epoch get correctly classified and they will
not be selected anymore during the next epoch.

4.4 Verification
Once the network has been trained, we can provide it pairs of face pictures for
verifying and authenticating users. This phase does not update layers weights
anymore and the input pictures are processed by the entire network. As explained
in the previous chapter, BiometricNet computes and outputs the metric value z
related to inputs. The classification is then performed by employing a hyperplane
that separates target distributions, by means of the test:

(µm − µn)Tz ≶ (µm − µn)T (µm + µn)/2 (4.4)

If we use a latent space of size p = 1 then the above test changes, and we have to
compare the scalar z with a threshold

τ = (µm + µn)/2 (4.5)

We take into consideration a different approach for looking at better performances.
Following other works, such as [17], we compute metric value z for all combinations
of original and horizontally flipped images, obtaining four different metrics. Then
we compute the final value z as the mean value of those metrics (Table 4.1).

33

4 – Introduction to BiometricNet

Image 1 Image 2 Metric value Final metric value
Original Original z1

z = 1
4

q4
i=1 zi

Original Flipped z2
Flipped Original z3
Flipped Flipped z4

Table 4.1: Summary of all possible images combinations with related metric value
z

34

Chapter 5

Experiments

This chapter reports the experiments conducted. Since directly employing the KL
loss leads to a slow convergence, we decided to split the regularization into the
following steps:

• The first step consists of regularizing FeatureNet, the part of BiometricNet
that has to output an embedding representation for each image provided
as input. Even though we argued that using a softmax classifier could not
guarantee high performances, we implemented a softmax classifier based on
cross-entropy loss for regularizing FeatureNet because of good generalization
and fast convergence properties.

Network

Input images

Softmaxlogits

Cross-entropy
lossy

ŷ

Weights update

Figure 5.1: FeatureNet regularization

35

5 – Experiments

• The second step consists of regularizing MetricNet layers to obtain good
representations of images in the latent space. In this phase we only updated
weights of MetricNet, not updating the FeatureNet and, of course, loading
the weights obtained in the first step. This part ends when the loss on the
benchmark datasets stops decreasing. In this step we use the loss described in
Section 4.1.

FC layers

f1

f2

handling

[f1,f2]

FeatureNet MetricNet

z
....Input 1

Input 2

Frozen
layers

REGULARIZATION

Figure 5.2: MetricNet regularization

• In the third step the entire network is fine-tuned to achieve results comparable
to state-of-the-art. It is characterized by a very small learning rate since we
do not want to change too the network’s weights. This step ends when the
measured loss stops to decrease and the network becomes stable.

It is worth saying that the steps described above represent a generic pipeline. More
regularization steps can be required for each phase to reach an acceptable condition
of convergence and good performances.

5.1 Preliminary results
Before choosing the best model we conducted a lot of experiments to find the
configuration that guarantees best performances. For all the experiments we set
the following parameters for the target distributions:

• Mean of matching pairs target distribution µm = 0

• Mean of non-matching pairs target distribution µn = 40

• Same variance for both the distributions σm = σn = 1

36

5 – Experiments

We used Python 3.6.7 for writing the code, Tensorflow [1] as DL framework and a
single NVIDIA GeForce Titan X GPU (12GB) as hardware support, to improve
the performances and reducing the training time.
We have tracked the loss and accuracy on the LFW dataset every 500 or 1000 steps
through Tensorboard. Then we performed the testing phase on all the benchmark
datasets employing the trained network.

Table 5.1 reports the results achieved by the trained models when z1 (original
images only) is employed as metric value. Table 5.2 reports the results achieved
when z (all possible combinations of original and horizontally flipped images) is
employed as metric value.

Architecture A B C D E F
Dataset p = 1 p = 1 p = 1 p = 3 p = 16 p = 64
LFW 99.42 99.15 98.53 98.78 98.80 98.87
YTF 97.55 97.00 96.90 97.07 97.25 97.32
CFP-FP 98.43 97.98 96.58 96.45 97.28 96.78
CALFW 96.25 95.30 95.55 95.47 95.62 95.73
CPLFW 92.47 91.67 88.35 88.60 89.13 89.00

Table 5.1: Results achieved by using z1 (original images) as metric value

Architecture A B C D E F
Dataset p = 1 p = 1 p = 1 p = 3 p = 16 p = 64
LFW 99.47 99.23 98.88 98.97 99.03 99.17
YTF 97.48 96.92 97.32 97.45 97.60 97.67
CFP-FP 98.47 98.17 96.92 96.67 97.40 97.02
CALFW 96.15 95.47 95.98 95.98 96.00 96.23
CPLFW 92.77 92.30 89.28 89.20 89.90 89.83

Table 5.2: Results achieved by using z as metric value

37

5 – Experiments

5.2 Final model and comparisons
This section analyzes and discusses the model that achieves the best results in
general.

According to Table 5.1 and Table 5.2, Model A is the one that achieved better
results. It got higher results on all the benchmark dataset when z1 is used as a
metric, and higher results on three datasets out of five when z is employed as
a metric. For this reason, we report here a comparison between Model A and
state-of-the-art results. Nevertheless, you can look at the appendix A for a more
detailed description of other experiments, to reproduce and, maybe, outperform
our results.

A description of the architecture of Model A is reported below.

• FeatureNet

– Inception ResNet V1 [43]
– Embedding size: 512

• MetricNet.

– 6 fully connected layers of sizes {1024, 512, 256, 128, 64, 1}
– Feature vector: concatenation
– Latent space dimensionality(p) = 1
– Target distributions:

∗ Same user: mean 0, variance 1
∗ Different users: mean 40, variance 1

• Batch size (for each phase): 90/180/120

• This architecture consists of 25,244,369 training parameters.

In the first part of this experiment, we regularized FeatureNet to obtain a good
network for extracting features. We employed CASIA WebFace [20] as the training
set and ADAM as the optimizer. The starting learning rate was set to 0.05,
decreased to 0.005 at step 30000, to 0.001 at step 50000 and 0.0005 at step 80000
until step 100000, when the run was stopped. Moreover, we set the batch size
to 90, a dropout rate of 0.2, and a weight decay of 2e − 4. The training lasted
approximately 20 hours.

The second part consisted of regularizing MetricNet by keeping fixed the weights
of FeatureNet. We employed again CASIA WebFace [20] as the training set and
ADAM as the optimizer. This time we increased the batch size to 180. We set the

38

5 – Experiments

starting learning rate to 5e − 6, decreasing it by a factor 0.98 every 3000 steps.
The training was stopped at step 301,040, with a training time of approximately
1.5 days.

Finally, we load all weights got by the first two phases to regularize the entire
network by employing the covariance loss described in Section 4.1. Here we employed
MS1M-DeepGlint [21] as the training set and Momentum as the optimizer. We
set the batch size to 120 and a starting learning rate of 5e − 6, decreased by a
factor 0.98 every 3000 steps. The training was stopped after 646,799 steps, with a
training time of approximately 5 days.

5.2.1 Performances comparison

Method LFW YTF CFP-FP CALFW CPLFW
SphereFace [35] 99.42 95.00 94.38 90.30 81.40
SphereFace+ [44] 99.47 - - - -

FaceNet [32] 99.63 95.10 - - -
VGGFace [45] 98.95 97.30 - 90.57 84.00
DeepID [46] 99.47 93.20 - - -
ArcFace [18] 99.82 98.02 98.37 95.45 92.08

CenterLoss [47] 99.28 94.90 - 85.48 77.48
DeepFace [31] 97.35 91.40 - - -
Baidu [48] 99.13 - - - -

RangeLoss [49] 99.52 93.70 - - -
MarginalLoss [37] 99.48 95.98 - -

CosFace [17] 99.73 97.60 95.44 - -
BiometricNet 99.47 97.48 98.47 96.15 92.77

Table 5.3: Verification accuracy of different methods on benchmark datasets
LFW, YTF, CFP-FP, CALFW, CPLFW. These results refer to z metric.

Dataset TP FP TN FN Total
LFW 2984 16 2984 16

6000
YTF 2923 74 2926 77

CFP-FP 2947 39 2961 53
CALFW 2873 104 2896 127
CPLFW 2722 156 2844 278

Table 5.4: Confusion Matrix of BiometricNet on LFW, YTF, CFP-FP, CALFW
and CPLFW. These results refer to z metric.

39

5 – Experiments

In Table 5.3 are reported the verification accuracies obtained by different methods
tested on benchmark datasets we described in Section 3.2.2. Table 5.4 shows the
confusion matrix of BiometricNet.

The results on LFW and YTF are comparable to state-of-the-art results. On the
other hand, we outperformed state-of-the-art results on more challenging datasets
like CFP-FP, CALFW, CPLFW. We decreased the error rate by 0.1%, 0.7%, and
0.69% on CFP-FP, CALFW, and CPLFW datasets respectively.

5.2.2 Analysis of BiometricNet: ROC curves

ROC curves allow us to visualize the Genuine Acceptance Rate (GAR), i.e. the
relative number of correctly accepted matching pairs as a function of the False
Acceptance Rate (FAR), i.e. the relative number of incorrectly accepted non-
matching pairs.

Employing the ROC curves we can understand how the model is capable of
generalizing across different datasets. While the results showed in Table 5.3 refers
to a binary classification using a specified threshold, as described in Section 4.4,
here we can see the behavior of our models if we impose a value for FAR.

10
-2

10
-1

10
0

0.8

0.85

0.9

0.95

LFW

YTF

CFP-FP

CALFW

CPLFW

Figure 5.3: ROC curves of BiometricNet on LFW, YTF, CFP-FP, CALFW,
CPLFW

40

5 – Experiments

Dataset GAR@10−1FAR% GAR@10−2FAR%
LFW 99.97 99.67
YTF 99.00 95.50

CFP-FP 99.80 97.70
CALFW 97.73 92.07
CPLFW 94.53 79.40

Table 5.5: Genuine Acceptance Rate (GAR) obtained by BiometricNet for LWF,
YTF, CFP-FP, CALFW and CPLFW if False Acceptance Rate (FAR) is set to
10−2 and 10−1

5.2.3 Discussion about metrics distribution
BiometricNet maps matching and non-matching pairs onto well behaved Gaus-
sian distributions. Figure 5.4 and Figure 5.5 show how BiometricNet maps the
benchmark datasets onto those distributions, for z1 and z metrics respectively.

At first sight, it is noticeable that both blue distributions and red distributions
have a Gaussian shape, meaning that the approach of BiometricNet works and it can
efficiently separate pairs according to their category. More precisely, if we look at
non-matching distributions we can observe that they have both mean and variance
that follow the ones we imposed. On the other hand, matching distributions do
have the right mean we impose, but with a slightly lower variance. This could
be possible since the number of non-matching pairs is higher than the number of
matching pairs in such a dataset, and so matching and non-matching pairs exhibit
different variability, leading to a difficulty in imposing the same variance in the
latent space.

Another thing we can notice is that, for more challenging datasets like CALFW
or CPLFW, the matching distributions have heavier tails.

0 20 40
0

0.05

0.1

lfw
1 z1

(a) LFW
0 20 40

0

0.02

0.04

0.06

0.08

ytf
1 z1

(b) YTF
0 20 40

0

0.05

0.1

0.15

cfp
1 z1

(c) CFP-FP
0 20 40

0

0.05

0.1

calfw
1 z1

(d) CALFW
0 20 40

0

0.02

0.04

0.06

cplfw
1 z1

(e) CPLFW

Figure 5.4: Distribution of z1 metric for each dataset. The blue area refers to
matching pairs, the red area refers to non-matching pairs.

Figure 5.6 and Figure 5.7 show the pairs of LFW misclassified by BiometricNet.
It is worth noting that some of the false accepted pictures could be misclassified by

41

5 – Experiments

0 20 40
0

0.05

0.1

0.15

lfw
1 zm

(a) LFW
0 20 40

0

0.02

0.04

0.06

0.08

ytf
1 zm

(b) YTF
0 20 40

0

0.05

0.1

0.15

cfp
1 zm

(c) CFP-FP
0 20 40

0

0.05

0.1

calfw
1 zm

(d) CALFW
0 20 40

0

0.02

0.04

0.06

0.08

cplfw
1 zm

(e) CPLFW

Figure 5.5: Distribution of z metric for each dataset. The blue area refers to
matching pairs, the red area refers to non-matching pairs.

Figure 5.6: LFW: False Accept

a human since the people involved look alike. Looking at the false rejected images,
we can notice that most of them contain such occlusion or distortion elements, such
as sunglasses, hats, profile pictures, and people with closed eyes.

42

5 – Experiments

Figure 5.7: LFW: False Reject

43

Chapter 6

Conclusions

In this thesis, we proposed a novel approach to address the face verification problem
with neural networks. Instead of learning a complex classification boundary, our
method aims at mapping input images onto well-behaved statistical distributions,
allowing us to perform a threshold-based classification. We demonstrated that
our approach works by partially outperforming the state-of-the-art results on face
benchmarks and achieving high GAR values.

Future work will focus on improving the performances of the model, both by
trying different settings for the architecture and different distributions for the
latent space. A further improvement for BiometricNet will be its usage in 3D face
verification and authentication based on different biological features, such as iris,
retina, and fingerprint.

44

Appendix A

Settings and results of other
models

In this section we report settings and results of models we did not take into account
in the previous chapter. The reason is that other researchers could be interested
in repeating experiments and looking for other configurations that can improve
performances. For each model the following information is reported:

• Architecture of FeatureNet;

• Architecture of MetricNet;

• Experimental setting for each training phase.

A.1 Model B
• FeatureNet.

– Inception ResNet V2 [43]
– Embedding size: 512

• MetricNet.

– 6 fully connected layers of sizes {1024, 512, 256, 128, 64, 1}
– Feature vector: concatenation
– Latent space dimensionality(p) = 1
– Target distributions:

∗ Same user: mean 0, variance 1

45

A – Settings and results of other models

∗ Different users: mean 40, variance 1

• Batch size (for each phase): 90/180/120

• This architecture consists of 56,871,649 training parameters.

We first regularized FeatureNet for 90,000 steps (approximately 4 days) on CASIA
WebFace [20]. We employed an ADAM optimizer and a starting learning rate of
0.05, decreased to 0.005 at step 60,000, to 0.0005 at step 80,000. The batch size
was set to 90. We set a weight decay of 5e− 4 and a dropout rate of 0.2.

For regularizing MetricNet we used again CASIA WebFace as the training set
and ADAM as the optimizer. We increased the batch size to 180. The training
lasted 130,903 steps (approximately 23 hours). We set the initial learning rate to
0.001, decreasing it by a factor 0.98 every 2000 steps.

Finally, we performed a regularization by updating the entire network. We em-
ployed the dataset obtained by mixing MS1M-DeepGlint [21] and Asian-DeepGlint
[21] sets and ADAGRAD optimizer. We set the batch size to 120 and a dropout
rate onto FeatureNet of 0.2. This phase lasted 90,291 steps (approximately 1 day).
The starting learning rate was set to 5e− 5 and decreased by a factor of 0.98 every
2000 steps.

Below are reported the results achieved by employing this architecture.

Dataset State-of-the-art BiometricNet (Model B) Difference
LFW 99.83 99.15 -0.68
YTF 98.02 97.00 -1.02
CFP-FP 98.37 97.98 -0.39
CALFW 95.45 95.30 -0.15
CPLFW 92.08 91.67 -0.41

Table A.1: Comparison between state-of-the-art and BiometricNet (Model B)
performances when z1 metric value is used

46

A – Settings and results of other models

Dataset State-of-the-art BiometricNet (Model B) Difference
LFW 99.83 99.23 -0.60
YTF 98.02 96.92 -1.10
CFP-FP 98.37 98.17 -0.20
CALFW 95.45 95.47 +0.02
CPLFW 92.08 92.30 +0.22

Table A.2: Comparison between state-of-the-art and BiometricNet (Model B)
performances when z metric value is used

Dataset TP FP TN FN Total
LFW 2970 16 2984 30

6000
YTF 2875 60 2940 125

CFP-FP 2950 60 2940 50
CALFW 2832 104 2896 168
CPLFW 2764 226 2774 236

Table A.3: Confusion Matrix of BiometricNet (Model B) on LFW, YTF, CFP-FP,
CALFW and CPLFW. These results refer to z metric.

A.2 Model C
• FeatureNet.

– ResNet-101 [14]
– Embedding size: 512

• MetricNet.

– 6 fully connected layers of sizes {1024, 512, 256, 128, 64, 1}
– Feature vector: concatenation
– Latent space dimensionality(p) = 1
– Target distributions:

∗ Same user: mean 0, variance 1
∗ Different users: mean 40, variance 1

• Batch size (for each phase): 90/90/180

• This architecture consists of 45,243,521 training parameters.

47

A – Settings and results of other models

In the first part of the training we only regularized FeatureNet for 210,000 steps
(approximately 4 days) on MS1M-DeepGlint [21]. We employed ADAM optimizer
and a starting learning rate of 0.05, decreased to 0.01 at step 50,000, to 0.005 at
step 100,000, 0.001 at step 150,000, 0.0005 at step 198,000. The batch size was set
to 90.

To improve the ability to generate features, we run a finetuning phase on
FeatureNet, by using triplet loss on a dataset obtained by mixing MS1M-DeepGlint
[21] and Asian-DeepGlint [21] for 146,212 steps (approximately 1 day) and using
ADAM optimizer. The starting learning rate was set to 2e− 4, decreased by 98%
every 4000 steps. The batch size was set to 90.

At this point we run three finetuning stages onto the entire network (FeatureNet
+ MetricNet) by employing loss 4.3, ADAM optimizer, batch size 180, randomly
cropped and randomly flipped input images.
For the first stage, we set the learning rate to 0.001, decreased by 98% every 4000
steps. The training took 61,127 steps (approximately 12 hours).
For the second stage, we set the learning rate to 0.00005, decreased by 98% every
4000 steps. The training took 112,545 steps (approximately 2 days).
For the third stage, we set the learning rate to 2.84e− 5, decreased by 98% every
4000 steps. We set a dropout rate of 0.2 between each fully connected layer of
MetricNet. The training took 292,417 steps (approximately 5 days).

A comparison between BiometricNet (Model C) and state-of-the-art is reported
below.

Dataset State-of-the-art BiometricNet (Model C) Difference
LFW 99.83 98.53 -1.30
YTF 98.02 96.90 -1.12
CFP-FP 98.37 96.58 -1.79
CALFW 95.45 95.55 +0.10
CPLFW 92.08 88.35 -3.73

Table A.4: Comparison between state-of-the-art and BiometricNet (Model C)
performances when z1 metric value is used

48

A – Settings and results of other models

Dataset State-of-the-art BiometricNet (Model C) Difference
LFW 99.83 98.88 -0.95
YTF 98.02 97.32 -0.70
CFP-FP 98.37 96.92 -1.45
CALFW 95.45 95.98 +0.53
CPLFW 92.08 89.28 -2.80

Table A.5: Comparison between state-of-the-art and BiometricNet (Model C)
performances when z metric value is used

Dataset TP FP TN FN Total
LFW 2972 39 2961 28

6000
YTF 2911 72 2928 89

CFP-FP 2936 121 2879 64
CALFW 2883 124 2876 117
CPLFW 2614 257 2743 386

Table A.6: Confusion Matrix of BiometricNet (Model C) on LFW, YTF, CFP-FP,
CALFW and CPLFW. These results refer to z metric.

A.3 Model D
• FeatureNet

– ResNet-152 [14]
– Embedding size: 512

• MetricNet.

– 6 fully connected layers of sizes {512, 256, 128, 64, 32, 3}
– Feature vector: difference
– Latent space dimensionality(p) = 3
– Target distributions:

∗ Same user: mean 0, variance 1
∗ Different users: mean 40, variance 1

• Batch size (for each phase): 90/90/90

• This architecture consists of 59,554,499 training parameters.

49

A – Settings and results of other models

In the first phase, only FeatureNet is regularized by building a softmax classifier
on MS1M-DeepGlint dataset [21] and by using cross-entropy loss. We set ADAM
optimizer, weight decay to 5e− 4, and run for 173,000 steps (approximately 4 days).
Starting learning rate was set to 0.05, decreased to 0.01 at step 50,000, to 0.005
at step 150,000. The batch size was set to 90 and input images were provided
randomly flipped.

In the second phase, we only regularized MetricNet on the MS1M-DeepGlint
dataset [21], employing ADAM optimizer, batch size 90 and loss 4.2. Starting
learning was set to 5e − 3, decreased by 90% every 4000 steps. This phase took
158,935 steps (approximately 20 hours).

As the last finetuning phase, we employed MOMENTUM (SGD + momentum
regularization) optimizer, updating the entire network. The starting learning rate
was set to 5e− 6 and decreased every 2000 steps by 98%. The batch size was set
to 90.

The results are reported below.

Dataset State-of-the-art BiometricNet (Model D) Difference
LFW 99.83 98.78 -1.05
YTF 98.02 97.07 -0.95
CFP-FP 98.37 96.45 -1.92
CALFW 95.45 95.47 +0.02
CPLFW 92.08 88.6 -3.48

Table A.7: Comparison between state-of-the-art and BiometricNet (Model D)
performances when z1 metric value is used

Dataset State-of-the-art BiometricNet (Model D) Difference
LFW 99.83 98.97 -0.86
YTF 98.02 97.45 -0.57
CFP-FP 98.37 96.67 -1.70
CALFW 95.45 95.98 +0.53
CPLFW 92.08 89.20 -2.88

Table A.8: Comparison between state-of-the-art and BiometricNet (Model D)
performances when z metric value is used

50

A – Settings and results of other models

Dataset TP FP TN FN Total
LFW 2978 40 2960 22

6000
YTF 2894 47 2953 106

CFP-FP 2908 108 2892 92
CALFW 2853 94 2906 147
CPLFW 2655 303 2697 345

Table A.9: Confusion Matrix of BiometricNet (Model D) on LFW, YTF, CFP-FP,
CALFW and CPLFW. These results refer to z metric.

A.4 Model E
• FeatureNet

– ResNet-152 [14]
– Embedding size: 512

• MetricNet.

– 6 fully connected layers of sizes {512, 256, 128, 64, 32, 16}
– Feature vector: difference
– Latent space dimensionality(p) = 16
– Target distributions:

∗ Same user: mean 0, variance 1
∗ Different users: mean 40, variance 1

• Batch size (for each phase): 90/90/90

• This architecture consists of 59,554,928 training parameters.

FeatureNet was regularized as done for Model D, so we do not report here the
settings. The regularization of MetricNet is pretty equal to the second phase of
Model D. For the third phase (regularization of the entire network by employing
loss 4.2) we used the same settings of Model D, but with a different learning rate
schedule. In fact, the starting learning rate was set to 1e− 6, decreased by 98%
every 5000 steps. This phase took 881,266 steps (approximately 11 days).

The results are reported below.

51

A – Settings and results of other models

Dataset State-of-the-art BiometricNet (Model E) Difference
LFW 99.83 98.80 -1.03
YTF 98.02 97.25 -0.77
CFP-FP 98.37 97.28 -1.09
CALFW 95.45 95.62 +0.17
CPLFW 92.08 89.13 -2.95

Table A.10: Comparison between state-of-the-art and BiometricNet (Model E)
performances when z1 metric value is used

Dataset State-of-the-art BiometricNet (Model E) Difference
LFW 99.83 99.03 -0.80
YTF 98.02 97.60 -0.42
CFP-FP 98.37 97.40 -0.97
CALFW 95.45 96.00 +0.55
CPLFW 92.08 89.90 -2.18

Table A.11: Comparison between state-of-the-art and BiometricNet (Model E)
performances when z metric value is used

A.5 Model F
• FeatureNet

– ResNet-152 [14]
– Embedding size: 512

• MetricNet.

– 6 fully connected layers of sizes {512, 384, 256, 192, 128, 64}
– Feature vector: difference
– Latent space dimensionality(p) = 64
– Target distributions:

∗ Same user: mean 0, variance 1
∗ Different users: mean 40, variance 1

• Batch size (for each phase): 90/90/90

• This architecture consists of 59,757,696 training parameters.

52

A – Settings and results of other models

Dataset TP FP TN FN Total
LFW 2967 25 2975 33

6000
YTF 2927 71 2929 73

CFP-FP 2908 64 2936 92
CALFW 2815 55 2945 185
CPLFW 2783 389 2611 217

Table A.12: Confusion Matrix of BiometricNet (Model E) on LFW, YTF, CFP-
FP, CALFW and CPLFW. These results refer to z metric.

FeatureNet was regularized following the very same steps performed for other
models, so we skip to talk about it. For MetricNet, we used six fully connected
layers with different sizes for previous models, increasing the number of parameters.
The starting learning rate was set at 1e− 7, decreased by 98% every 7500 steps.
This model was regularized for 800,719 steps (approximately 11 days).

The results are reported below.

Dataset State-of-the-art BiometricNet (Model F) Difference
LFW 99.83 98.87 -0.96
YTF 98.02 97.32 -0.70
CFP-FP 98.37 96.78 -1.59
CALFW 95.45 95.73 +0.28
CPLFW 92.08 89.00 -3.08

Table A.13: Comparison between state-of-the-art and BiometricNet (Model F)
performances when z1 metric value is used

53

A – Settings and results of other models

Dataset State-of-the-art BiometricNet (Model F) Difference
LFW 99.83 99.17 -0.66
YTF 98.02 97.67 -0.35
CFP-FP 98.37 97.02 -1.35
CALFW 95.45 96.23 +0.78
CPLFW 92.08 89.83 -2.25

Table A.14: Comparison between state-of-the-art and BiometricNet (Model F)
performances when z metric value is used

Dataset TP FP TN FN Total
LFW 2977 27 2973 23

6000
YTF 2902 42 2958 98

CFP-FP 2894 73 2927 106
CALFW 2840 66 2934 160
CPLFW 2732 342 2658 268

Table A.15: Confusion Matrix of BiometricNet (Model F) on LFW, YTF, CFP-FP,
CALFW and CPLFW. These results refer to z metric.

54

Bibliography

[1] Martın Abadi et al. TensorFlow: Large-Scale Machine Learning on Hetero-
geneous Systems. Software available from tensorflow.org. 2015. url: https:
//www.tensorflow.org/ (cit. on pp. 3, 37).

[2] Adam Paszke et al. «PyTorch: An Imperative Style, High-Performance Deep
Learning Library». In: Advances in Neural Information Processing Systems
32. Ed. by H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E.
Fox, and R. Garnett. Curran Associates, Inc., 2019, pp. 8024–8035. url:
http : / / papers . neurips . cc / paper / 9015 - pytorch - an - imperative -
style-high-performance-deep-learning-library.pdf (cit. on p. 3).

[3] François Chollet et al. Keras. https://keras.io. 2015 (cit. on p. 3).
[4] https://github.com/topics/machine-learning, updated at 04/21/20

(cit. on p. 3).
[5] https://github.com/topics/deep-learning, updated at 04/21/20 (cit. on

p. 3).
[6] Shane Legg and Marcus Hutter. A Formal Measure of Machine Intelligence.

2006. arXiv: cs/0605024 [cs.AI] (cit. on p. 3).
[7] Kevin P. Murphy. Machine Learning: A Probabilistic Perspective. The MIT

Press, 2012, p. 1 (cit. on p. 3).
[8] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. «Deep Learning». In:

Nature 521.7553 (2015), pp. 436–444. doi: 10.1038/nature14539. url:
https://doi.org/10.1038/nature14539 (cit. on p. 5).

[9] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http:
//www.deeplearningbook.org. The MIT Press, 2016 (cit. on pp. 8, 9, 11).

[10] Sebastian Ruder. «An overview of gradient descent optimization algorithms».
In: arXiv preprint arXiv:1609.04747 (2016) (cit. on pp. 9, 24).

[11] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Opti-
mization. 2014. arXiv: 1412.6980 [cs.LG] (cit. on p. 9).

55

https://www.tensorflow.org/
https://www.tensorflow.org/
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://keras.io
https://github.com/topics/machine-learning
https://github.com/topics/deep-learning
https://arxiv.org/abs/cs/0605024
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://arxiv.org/abs/1412.6980

BIBLIOGRAPHY

[12] Yann LeCun, Yoshua Bengio, et al. «Convolutional networks for images,
speech, and time series». In: The handbook of brain theory and neural networks
3361.10 (1995), p. 1995 (cit. on pp. 9, 10).

[13] David H. Hubel and Torsten N. Wiesel. «Receptive Fields and Functional
Architecture of Monkey Striate Cortex». In: Journal of Physiology (London)
195 (1968), pp. 215–243 (cit. on p. 10).

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual
Learning for Image Recognition. cite arxiv:1512.03385Comment: Tech report.
2015. url: http://arxiv.org/abs/1512.03385 (cit. on pp. 11, 47, 49, 51,
52).

[15] Sean Gallagher. Why facial recognition tech failed in the Boston bombing
manhunt. url: https://arstechnica.com/information- technology/
2013 / 05 / why - facial - recognition - tech - failed - in - the - boston -
bombing-manhunt (cit. on p. 13).

[16] YUXI PENG, Luuk Spreeuwers, and Raymond Veldhuis. «Low-resolution
face recognition and the importance of proper alignment». In: IET Biometrics
8 (Jan. 2019). doi: 10.1049/iet-bmt.2018.5008 (cit. on p. 15).

[17] Hao Wang, Yitong Wang, Zheng Zhou, Xing Ji, Dihong Gong, Jingchao
Zhou, Zhifeng Li, and Wei Liu. «CosFace: Large Margin Cosine Loss for
Deep Face Recognition.» In: CVPR. IEEE Computer Society, 2018, pp. 5265–
5274. url: http://dblp.uni-trier.de/db/conf/cvpr/cvpr2018.html#
WangWZJGZL018 (cit. on pp. 15, 16, 22, 25, 33, 39).

[18] Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos Zafeiriou. «ArcFace: Ad-
ditive Angular Margin Loss for Deep Face Recognition.» In: CVPR. Computer
Vision Foundation / IEEE, 2019, pp. 4690–4699. url: http://dblp.uni-
trier.de/db/conf/cvpr/cvpr2019.html#DengGXZ19 (cit. on pp. 15, 16, 26,
39).

[19] K. Zhang, Z. Zhang, Z. Li, and Y. Qiao. «Joint Face Detection and Align-
ment Using Multitask Cascaded Convolutional Networks». In: IEEE Signal
Processing Letters 23.10 (Oct. 2016), pp. 1499–1503. issn: 1070-9908. doi:
10.1109/LSP.2016.2603342 (cit. on p. 15).

[20] Dong Yi, Zhen Lei, Shengcai Liao, and Stan Z. Li. «Learning Face Representa-
tion from Scratch.» In: CoRR abs/1411.7923 (2014). url: http://dblp.uni-
trier.de/db/journals/corr/corr1411.html#YiLLL14a (cit. on pp. 16, 38,
46).

[21] http://trillionpairs.deepglint.com/overview (cit. on pp. 16, 39, 46,
48, 50).

56

http://arxiv.org/abs/1512.03385
https://arstechnica.com/information-technology/2013/05/why-facial-recognition-tech-failed-in-the-boston-bombing-manhunt
https://arstechnica.com/information-technology/2013/05/why-facial-recognition-tech-failed-in-the-boston-bombing-manhunt
https://arstechnica.com/information-technology/2013/05/why-facial-recognition-tech-failed-in-the-boston-bombing-manhunt
https://doi.org/10.1049/iet-bmt.2018.5008
http://dblp.uni-trier.de/db/conf/cvpr/cvpr2018.html#WangWZJGZL018
http://dblp.uni-trier.de/db/conf/cvpr/cvpr2018.html#WangWZJGZL018
http://dblp.uni-trier.de/db/conf/cvpr/cvpr2019.html#DengGXZ19
http://dblp.uni-trier.de/db/conf/cvpr/cvpr2019.html#DengGXZ19
https://doi.org/10.1109/LSP.2016.2603342
http://dblp.uni-trier.de/db/journals/corr/corr1411.html#YiLLL14a
http://dblp.uni-trier.de/db/journals/corr/corr1411.html#YiLLL14a
http://trillionpairs.deepglint.com/overview

BIBLIOGRAPHY

[22] Gary B Huang, Marwan Mattar, Tamara Berg, and Eric Learned-Miller.
«Labeled faces in the wild: A database forstudying face recognition in uncon-
strained environments». In: 2008 (cit. on pp. 17, 22).

[23] Lior Wolf, Tal Hassner, and Itay Maoz. «Face recognition in unconstrained
videos with matched background similarity». In: CVPR 2011. IEEE. 2011,
pp. 529–534 (cit. on p. 17).

[24] Soumyadip Sengupta, Jun-Cheng Chen, Carlos Castillo, Vishal M Patel,
Rama Chellappa, and David W Jacobs. «Frontal to profile face verification in
the wild». In: 2016 IEEE Winter Conference on Applications of Computer
Vision (WACV). IEEE. 2016, pp. 1–9 (cit. on p. 17).

[25] Tianyue Zheng, Weihong Deng, and Jiani Hu. «Cross-age lfw: A database
for studying cross-age face recognition in unconstrained environments». In:
arXiv preprint arXiv:1708.08197 (2017) (cit. on p. 17).

[26] Tianyue Zheng and Weihong Deng. «Cross-pose lfw: A database for study-
ing cross-pose face recognition in unconstrained environments». In: Beijing
University of Posts and Telecommunications, Tech. Rep 5 (2018) (cit. on
p. 17).

[27] Matthew Turk and Alex Pentland. «Eigenfaces for recognition». In: Journal
of cognitive neuroscience 3.1 (1991), pp. 71–86 (cit. on p. 19).

[28] Mei Wang and Weihong Deng. «Deep Face Recognition: A Survey.» In: CoRR
abs/1804.06655 (2018). url: http://dblp.uni-trier.de/db/journals/
corr/corr1804.html#abs-1804-06655 (cit. on pp. 19, 20).

[29] Zhimin Cao, Qi Yin, Xiaoou Tang, and Jian Sun. «Face recognition with
learning-based descriptor.» In: CVPR. IEEE Computer Society, 2010, pp. 2707–
2714. isbn: 978-1-4244-6984-0. url: http://dblp.uni-trier.de/db/conf/
cvpr/cvpr2010.html#CaoYTS10 (cit. on p. 19).

[30] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. «Imagenet classifica-
tion with deep convolutional neural networks». In: Advances in neural infor-
mation processing systems. 2012, pp. 1097–1105. url: http://papers.nips.
cc/paper/4824-imagenet-classification-with-deep-convolutional-
neural-networks (cit. on p. 20).

[31] Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and Lior Wolf. «Deepface:
Closing the gap to human-level performance in face verification». In: Proceed-
ings of the IEEE conference on computer vision and pattern recognition. 2014,
pp. 1701–1708 (cit. on pp. 22, 23, 39).

57

http://dblp.uni-trier.de/db/journals/corr/corr1804.html#abs-1804-06655
http://dblp.uni-trier.de/db/journals/corr/corr1804.html#abs-1804-06655
http://dblp.uni-trier.de/db/conf/cvpr/cvpr2010.html#CaoYTS10
http://dblp.uni-trier.de/db/conf/cvpr/cvpr2010.html#CaoYTS10
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks

BIBLIOGRAPHY

[32] Florian Schroff, Dmitry Kalenichenko, and James Philbin. FaceNet: A Unified
Embedding for Face Recognition and Clustering. cite arxiv:1503.03832Comment:
Also published, in Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition 2015. 2015. doi: 10.1109/CVPR.
2015.7298682. url: http://arxiv.org/abs/1503.03832 (cit. on pp. 23,
24, 39).

[33] John Duchi, Elad Hazan, and Yoram Singer. «Adaptive subgradient methods
for online learning and stochastic optimization». In: Journal of machine
learning research 12.Jul (2011), pp. 2121–2159 (cit. on p. 24).

[34] Jian Wang, Feng Zhou, Shilei Wen, Xiao Liu, and Yuanqing Lin. «Deep
Metric Learning with Angular Loss.» In: CoRR abs/1708.01682 (2017). url:
http://dblp.uni-trier.de/db/journals/corr/corr1708.html#abs-
1708-01682 (cit. on p. 24).

[35] Weiyang Liu, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha Raj, and Le Song.
«SphereFace: Deep Hypersphere Embedding for Face Recognition.» In: CoRR
abs/1704.08063 (2017). url: http://dblp.uni-trier.de/db/journals/
corr/corr1704.html#LiuWYLRS17 (cit. on pp. 24, 25, 39).

[36] Raia Hadsell, Sumit Chopra, and Yann LeCun. «Dimensionality reduction by
learning an invariant mapping». In: 2006 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR’06). Vol. 2. IEEE. 2006,
pp. 1735–1742 (cit. on p. 24).

[37] Jiankang Deng, Yuxiang Zhou, and Stefanos Zafeiriou. «Marginal loss for
deep face recognition». In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition Workshops. 2017, pp. 60–68 (cit. on pp. 26,
39).

[38] Matteo Testa, Arslan Ali, Tiziano Bianchi, and Enrico Magli. «Learning
mappings onto regularized latent spaces for biometric authentication.» In:
MMSP. IEEE, 2019, pp. 1–6. isbn: 978-1-7281-1817-8. url: http://dblp.
uni-trier.de/db/conf/mmsp/mmsp2019.html#TestaABM19 (cit. on p. 28).

[39] Matteo Testa, Arslan Ali, Tiziano Bianchi, and Enrico Magli. «Learning
mappings onto regularized latent spaces for biometric authentication.» In:
CoRR abs/1911.08764 (2019). url: http : / / dblp . uni - trier . de / db /
journals/corr/corr1911.html#abs-1911-08764 (cit. on p. 28).

[40] Radford M Neal. Bayesian learning for neural networks. Vol. 118. Springer
Science & Business Media, 2012 (cit. on p. 30).

[41] S. Kullback and R. A. Leibler. «On Information and Sufficiency». In: Ann.
Math. Statist. 22.1 (Mar. 1951), pp. 79–86. doi: 10.1214/aoms/1177729694.
url: https://doi.org/10.1214/aoms/1177729694 (cit. on p. 31).

58

https://doi.org/10.1109/CVPR.2015.7298682
https://doi.org/10.1109/CVPR.2015.7298682
http://arxiv.org/abs/1503.03832
http://dblp.uni-trier.de/db/journals/corr/corr1708.html#abs-1708-01682
http://dblp.uni-trier.de/db/journals/corr/corr1708.html#abs-1708-01682
http://dblp.uni-trier.de/db/journals/corr/corr1704.html#LiuWYLRS17
http://dblp.uni-trier.de/db/journals/corr/corr1704.html#LiuWYLRS17
http://dblp.uni-trier.de/db/conf/mmsp/mmsp2019.html#TestaABM19
http://dblp.uni-trier.de/db/conf/mmsp/mmsp2019.html#TestaABM19
http://dblp.uni-trier.de/db/journals/corr/corr1911.html#abs-1911-08764
http://dblp.uni-trier.de/db/journals/corr/corr1911.html#abs-1911-08764
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1214/aoms/1177729694

BIBLIOGRAPHY

[42] John Duchi. «Derivations for linear algebra and optimization». In: () (cit. on
p. 31).

[43] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alex Alemi. Inception-
v4, Inception-ResNet and the Impact of Residual Connections on Learning.
2016. arXiv: 1602.07261 [cs.CV] (cit. on pp. 38, 45).

[44] Weiyang Liu, Rongmei Lin, Zhen Liu, Lixin Liu, Zhiding Yu, Bo Dai, and
Le Song. «Learning towards Minimum Hyperspherical Energy.» In: NeurIPS.
Ed. by Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman,
Nicolò Cesa-Bianchi, and Roman Garnett. 2018, pp. 6225–6236. url: http:
//dblp.uni-trier.de/db/conf/nips/nips2018.html#LiuLLLYDS18 (cit.
on p. 39).

[45] Omkar M Parkhi, Andrea Vedaldi, and Andrew Zisserman. «Deep face recog-
nition». In: (2015) (cit. on p. 39).

[46] Yi Sun, Yuheng Chen, Xiaogang Wang, and Xiaoou Tang. «Deep Learning
Face Representation by Joint Identification-Verification.» In: NIPS. Ed. by
Zoubin Ghahramani, Max Welling, Corinna Cortes, Neil D. Lawrence, and
Kilian Q. Weinberger. 2014, pp. 1988–1996. url: http://dblp.uni-trier.
de/db/conf/nips/nips2014.html#SunCWT14 (cit. on p. 39).

[47] Yandong Wen, Kaipeng Zhang, Zhifeng Li, and Yu Qiao. «A Discriminative
Feature Learning Approach for Deep Face Recognition.» In: ECCV (7). Ed. by
Bastian Leibe, Jiri Matas, Nicu Sebe, and Max Welling. Vol. 9911. Lecture
Notes in Computer Science. Springer, 2016, pp. 499–515. isbn: 978-3-319-
46477-0. url: http://dblp.uni- trier.de/db/conf/eccv/eccv2016-
7.html#WenZL016 (cit. on p. 39).

[48] Jingtuo Liu, Yafeng Deng, Tao Bai, Zhengping Wei, and Chang Huang.
«Targeting ultimate accuracy: Face recognition via deep embedding». In:
arXiv preprint arXiv:1506.07310 (2015) (cit. on p. 39).

[49] Xiao Zhang, Zhiyuan Fang, Yandong Wen, Zhifeng Li, and Yu Qiao. «Range
loss for deep face recognition with long-tailed training data». In: Proceedings
of the IEEE International Conference on Computer Vision. 2017, pp. 5409–
5418 (cit. on p. 39).

59

https://arxiv.org/abs/1602.07261
http://dblp.uni-trier.de/db/conf/nips/nips2018.html#LiuLLLYDS18
http://dblp.uni-trier.de/db/conf/nips/nips2018.html#LiuLLLYDS18
http://dblp.uni-trier.de/db/conf/nips/nips2014.html#SunCWT14
http://dblp.uni-trier.de/db/conf/nips/nips2014.html#SunCWT14
http://dblp.uni-trier.de/db/conf/eccv/eccv2016-7.html#WenZL016
http://dblp.uni-trier.de/db/conf/eccv/eccv2016-7.html#WenZL016

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Structure of the paper

	Introduction to Machine Learning and Deep Learning
	Definition and basic concepts about Machine Learning
	Types of machine learning

	Deep learning
	Introduction to Neural Networks
	Convolutional Neural Networks
	ResNet: an overview

	Introduction to Face Recognition
	Some famous applications of face recognition
	Preprocessing of the data
	Detection and alignment
	Datasets

	Face verification steps
	Literature review
	Related works

	Introduction to BiometricNet
	Proposed method
	Architectural details
	Pairs selection
	Verification

	Experiments
	Preliminary results
	Final model and comparisons
	Performances comparison
	Analysis of BiometricNet: ROC curves
	Discussion about metrics distribution

	Conclusions
	Appendix
	Settings and results of other models
	Model B
	Model C
	Model D
	Model E
	Model F

	Bibliography

