Luca Panichi
Diffusion models for synthetic generation of tabular data: a case study.
Rel. Francesco Vaccarino. Politecnico di Torino, Corso di laurea magistrale in Ingegneria Matematica, 2025
|
PDF (Tesi_di_laurea)
- Tesi
Licenza: Creative Commons Attribution Non-commercial No Derivatives. Download (4MB) | Preview |
| Abstract: |
This thesis presents a case study on the application of diffusion models for the synthetic generation of tabular data. Generative models have shown remarkable results in producing synthetic data, and diffusion models are currently one of the most popular generative models . After a brief introduction to the main generative models including Generative adversarial networks, Variational autoencoders and Diffusion models, the thesis shows a case study of a comparison of two diffusion models, TabDDPM and FinDiff. These are applied to two different datasets, and the results are analysed using various metrics, considering statistical properties and privacy aspects. The study demonstrates very high quality in synthetic generation and robust results for privacy protection for mixed tabular data. |
|---|---|
| Relatori: | Francesco Vaccarino |
| Anno accademico: | 2025/26 |
| Tipo di pubblicazione: | Elettronica |
| Numero di pagine: | 56 |
| Soggetti: | |
| Corso di laurea: | Corso di laurea magistrale in Ingegneria Matematica |
| Classe di laurea: | Nuovo ordinamento > Laurea magistrale > LM-44 - MODELLISTICA MATEMATICO-FISICA PER L'INGEGNERIA |
| Aziende collaboratrici: | DATA Reply S.r.l. con Unico Socio |
| URI: | http://webthesis.biblio.polito.it/id/eprint/38163 |
![]() |
Modifica (riservato agli operatori) |



Licenza Creative Commons - Attribuzione 3.0 Italia