
Lorenzo Mensi
Learning KPZ Dynamics.
Rel. Alfredo Braunstein, Alberto Rosso, Sergio Chibbaro, Cyril Furtlehner. Politecnico di Torino, Corso di laurea magistrale in Physics Of Complex Systems (Fisica Dei Sistemi Complessi), 2025
![]() |
PDF (Tesi_di_laurea)
- Tesi
Licenza: Creative Commons Attribution Non-commercial No Derivatives. Download (3MB) |
Abstract: |
Non-linear stochastic processes are notoriously difficult to model, and inferring the dy- namical equations from observations alone can be extremely challenging. To address this, our work develops an entirely data-driven Neural Network framework that learns a trans- form to linearize the system’s dynamics. This is achieved by mapping the observations onto a latent space where the dynamical evolution is of a linear form. The result is a highly interpretable model, as the learnt transformation can be related to known functions and the dynamics to corresponding linear operators. While neural network-based approaches have demonstrated considerable success in modeling deterministic dynamical systems, ex- tending them to the stochastic regime represents a novel research frontier. We develop new ideas and validate them on the Kardar-Parisi-Zhang (KPZ) equation, a paradigmatic model for non-linear stochastic growth. This system is of particular interest because there is a known analytical solution, the Cole-Hopf transformation, which linearizes the dynamics. This allows for a rigorous comparison between our learnt components and the theoretical solution. |
---|---|
Relatori: | Alfredo Braunstein, Alberto Rosso, Sergio Chibbaro, Cyril Furtlehner |
Anno accademico: | 2024/25 |
Tipo di pubblicazione: | Elettronica |
Numero di pagine: | 44 |
Soggetti: | |
Corso di laurea: | Corso di laurea magistrale in Physics Of Complex Systems (Fisica Dei Sistemi Complessi) |
Classe di laurea: | Nuovo ordinamento > Laurea magistrale > LM-44 - MODELLISTICA MATEMATICO-FISICA PER L'INGEGNERIA |
Aziende collaboratrici: | Université Paris Saclay |
URI: | http://webthesis.biblio.polito.it/id/eprint/36689 |
![]() |
Modifica (riservato agli operatori) |