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Abstract

Non-linear stochastic processes are notoriously difficult to model,
and inferring the dynamical equations from observations alone can
be extremely challenging. To address this, our work develops an
entirely data-driven Neural Network framework that learns a trans-
form to linearize the system’s dynamics. This is achieved by map-
ping the observations onto a latent space where the dynamical evo-
lution is of a linear form. The result is a highly interpretable model,
as the learned transformation can be related to known functions
and the dynamics to corresponding linear operators. While neural
network-based approaches have demonstrated considerable suc-
cess in modeling deterministic dynamical systems, extending them
to the stochastic regime represents a novel research frontier. We
develop new ideas and validate them on the Kardar-Parisi-Zhang
(KPZ) equation, a paradigmatic model for non-linear stochastic growth.
This system is of particular interest because there is a known an-
alytical solution, the Cole-Hopf transformation, which linearizes
the dynamics. This allows for a rigorous comparison between our
learnt components and the theoretical solution.
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Introduction

At the heart of many complex systems lies the challenging interplay between
non-linear dynamics and intrinsic randomness. A model for this class of phe-
nomena is the Kardar-Parisi-Zhang (KPZ) equation [1]:

∂th(x, t) = ν∂2
xh(x, t) +

λ

2
(∂xh(x, t))2 + η(x, t). (1)

The KPZ equation (1) is a cornerstone model in statistical mechanics for de-
scribing the kinetic roughening of growing interfaces and related non-equilibrium
phenomena. Its significance extends across various physical contexts, includ-
ing surface deposition [2], flame front propagation [3], colony growth in bi-
ology [4], directed polymers in random media [5], and even certain aspects
of Burgers turbulence [6]. The equation is particularly interesting because it
fundamentally captures the interplay between three competing physical ef-
fects: surface tension-driven smoothing (ν∂2

xh), non-linear growth dynamics
(λ(∂xh)2), and random fluctuations (η). As such, it serves as a paradigm for
a broad universality class, characterizing systems far from equilibrium whose
behavior exhibits universal scaling exponents.

Given its complexity, we take the KPZ equation as a typical example of a
class of systems where the interplay between non-linearity and stochasticity
makes their behavior difficult to model and predict, thus creating a need for
powerful analytical and numerical tools. To model timeseries governed by
complex dynamics, we propose a methodology that linearizes their evolution.
The approach consists of mapping the data, h⃗t ∈ RN (from a discretized KPZ
equation), onto a latent space, z⃗t ∈ RN, which is designed specifically so that
the dynamics within it are linear. For the KPZ equation, this can be done ex-
actly via the Cole-Hopf transformation, Z(x, t) = exp

(
λ
2ν h(x, t)

)
[7][8]. This

analytical, local transformation maps the KPZ process into a simpler, linear
(though with multiplicative noise) equation:

∂tZ(x, t) = ν∂2
xZ(x, t) + Z(x, t)η(x, t). (2)

We leverage the expressive power of Neural Networks as universal func-
tion approximators to discover the transformations Φ : h⃗t → z⃗ t and its in-
verse Φ−1 : z⃗ t → h⃗t, in a completely data driven way, without requiring prior
knowledge of the specific equations that generate h⃗t. These transformations
form an autoencoder structure [9], with Φ acting as the encoder and Φ−1 as
the decoder. Their purpose in this framework is not to advance the dynamics;
rather, the encoder learns the latent representation of the data, and the de-
coder learns to map latent variables back to the original space. The dynamical
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evolution is carried out by a separate linear module. This type of architecture
has been successful for non-linear deterministic systems [10]. We develop new
ideas to deal with the added challenge of stochasticity [11].

Initially, we aim to develop and validate our model within the framework
of the KPZ system, where the existence of an analytical solution allows for a
rigorous evaluation of its performance and limitations. The ultimate objective,
however, is to create a general methodology applicable to systems where such
simplifying transformations are not known, enabling the discovery of a lin-
earizing transformation purely from data. A key advantage of this approach
is that the resulting model is highly interpretable, as the learnt transformation
and latent dynamics can be directly analyzed to gain analytical insight into the
system.

Since the Cole-Hopf transform is local, i.e. the latent variable zt
i only de-

pends on the input ht
i and not the other components of the vector h⃗t, we choose

to employ scalar Neural Networks. These networks take as input a real value
ht

i and produce as output another real value zt
i . The model operates as follows:

• The initial conditions h⃗t=0 are mapped onto the latent space using a Neu-
ral Network, which acts as the encoder Φ. The encoding is performed
piece-wise, such that z⃗ t=0 = [Φ(ht=0

1 ), ..., Φ(ht=0
N )].

• A dedicated module then produces the trajectory [⃗z ∆t, ..., z⃗ t, z⃗ t+∆t, ...] in
the latent space. The choice of how to model this latent space evolution
is non-trivial. We propose a novel approach where the dynamics is rep-
resented as a linear Itô stochastic process [12].

• The latent states are then decoded using the decoder Φ−1, implemented

as another Neural Network. The statistics of the predictions ˆ⃗ht = [Φ−1(z t
1), ..., Φ−1(z t

N)]

should match those of the ground truth observations h⃗t.

This thesis begins by introducing the fundamentals of Neural Networks
(Chap. 1. We then introduce the physical system at the heart of our study in
Chap. 2, which details the key features of the KPZ equation (Sect. 2.1) and the
numerical procedure used to generate our dataset (Sect. 2.3).

Subsequently, in Chap. 3, we present the training of our model under two
distinct conditions. The first scenario (Sect. 3.4) involves providing the model
with the exact values of the noise η⃗ t used to generate the ground truth dataset,
effectively making the system’s evolution deterministic. In the second, more
challenging scenario (Sect. 3.5), we explore the case where these noise values
are not provided, and the model must infer both the coordinate transformation
and the latent dynamics in the presence of stochasticity.
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Chapter 1

Neural Networks as Universal
Function Approximators

1.1 Brief Introduction to Neural Networks

A Neural Network is a computational system designed to learn patterns and
relationships directly from data. Rather than being programmed with explicit,
task-specific rules, it learns by analyzing a large number of examples. This
makes it a powerful and flexible model that can learn to approximate almost
any relationship between a set of inputs and their corresponding outputs. The
theoretical underpinning for this capability is the Universal Approximation
Theorem [13], which states that a neural network with sufficient complexity
has the potential to represent any continuous function. This guarantees that a
suitable configuration of the network exists to solve a problem, and the chal-
lenge lies in finding it.

The fundamental building block of a neural network is the artificial neuron,
or node. These nodes are simple processing units organized into a series of lay-
ers. A typical network consists of an input layer, which receives the initial data,
one or more hidden layers, where the actual learning and feature abstraction
occurs, and an output layer, which produces the final result. The information,
often represented as a vector x⃗, flows from one layer to the next, undergoing a
transformation at each step (Fig.1.1).

Each neuron in a layer receives inputs from neurons in the preceding layer.
These connections are governed by weights, which are numerical values that
signify the importance of each connection. A high weight means the input
is considered more important, while a low weight means it is less so. The
neuron sums up all these weighted inputs. This weighted sum is then passed
through an activation function, which is a non-linear function that determines
the neuron’s output signal. This "firing" signal is then passed to the neurons
in the subsequent layer. The weights are the critical tunable parameters of the
network; the entire learning process is focused on finding the optimal values
for these weights [14].

The process of finding these optimal weights is called training. It begins
with the network making a guess, or prediction, for a given input. This guess
is then compared to the known correct answer. To quantify how "wrong" the
network’s guess is, we use a loss function. This function calculates a score,
known as the error or loss, which is high when the prediction is far from the
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FIGURE 1.1: A diagram of a feed-forward neural network. The
input vector x⃗ is passed to the input layer. Each node in the
subsequent hidden layers computes a weighted sum of the out-
puts from the previous layer, with the arrows representing the
weights. This sum is then passed through an activation function.
The process repeats until the output layer produces the final pre-

diction, ˆ⃗y.

true value and low when it is close. The ultimate goal of training is to adjust the
network’s weights to make this loss as small as possible across all the training
examples.

To minimize the loss, the network uses an automated process, most com-
monly an algorithm called backpropagation. This clever procedure works by
calculating the contribution of each individual weight to the total error. It then
adjusts each weight slightly in the direction that will most effectively reduce
the error. This cycle of making a guess, calculating the loss, and adjusting the
weights is repeated thousands or even millions of times. With each iteration,
the network’s predictions become progressively more accurate as its weights
converge towards an optimal configuration. Through this iterative process of
error minimization, the neural network learns the underlying mapping from
inputs to outputs without ever being told the explicit rules.

1.2 The Mathematics of Neural Networks

To understand how a neural network learns, it’s essential to delve into the
mathematical operations that govern its behavior. The process can be broken
down into two main phases: the forward pass, where the network makes a pre-
diction, and the backward pass (backpropagation) [15], where it learns from its
mistakes.
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1.2.1 Forward Pass

The forward pass is the process of information flowing from the input layer
through the hidden layers to the output layer. For a given input vector x⃗, the
network computes an output, or prediction, ˆ⃗y. Let’s consider a single neuron
j in layer l. Each neuron processes the information from the previous layer
by first computing a weighted sum of all incoming signals to produce a value
z[l]j , and then passing this value through a non-linear activation function to

generate its own output signal, a[l]j = g(z[l]j ).
The first operation within the neuron is to compute a weighted sum of its

inputs. It is calculated as:

z[l]j = ∑
i

w[l]
ji a[l−1]

i + b[l]j

where:

• a[l−1]
i is the activation (output) of the i-th neuron in the previous layer,

l − 1. For the first hidden layer, a[0]i would be the i-th component of the
input vector x⃗.

• w[l]
ji is the weight of the connection from the i-th neuron in layer l − 1 to

the j-th neuron in layer l.

• b[l]j is the bias term for the j-th neuron in layer l. The bias allows the
activation function to be shifted to the left or right, which can be critical
for successful learning.

In a more compact vector notation, for the entire layer l, this can be written
as:

z⃗[l] = W[l] a⃗[l−1] + b⃗[l]

Here, W[l] is the weight matrix for layer l, where each entry Wji is the weight

w[l]
ji . a⃗[l−1] is the vector of activations from the previous layer, and b⃗[l] is the

bias vector for the current layer.
Once the weighted sum z⃗[l] is computed, it is passed through a non-linear

activation function, g(·), to produce the output of the layer, a⃗[l]:

a⃗[l] = g(⃗z[l])

This function is applied element-wise to the vector z⃗[l]. The choice of activation
function is crucial; common examples include the Sigmoid, ReLU (Rectified
Linear Unit), and Tanh functions. This process is repeated for each layer in the
network until the final output layer is reached. The activation of the final layer,
a⃗[L], is the network’s prediction, ˆ⃗y.
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1.2.2 Backpropagation

After the forward pass, the network’s prediction ˆ⃗y is compared to the true
target value y⃗ using a loss function, L( ˆ⃗y, y⃗). The goal of training is to minimize
this loss. Backpropagation is the algorithm that computes the gradient of the
loss function with respect to the network’s parameters (weights and biases),
allowing for their update in a direction that minimizes the loss.

At its core, backpropagation relies on the chain rule from calculus. The al-
gorithm starts at the output layer and propagates the error gradient backward
through the network. Let’s start by computing the derivative of the loss with
respect to the pre-activation of the output layer, z⃗[L]:

∂L
∂⃗z[L]

=
∂L

∂⃗a[L]
⊙ g′ (⃗z[L])

where ⊙ denotes the element-wise product, and g′ (⃗z[L]) is the derivative of the
activation function evaluated at z⃗[L]. This term, often denoted δ[L], represents
the "error" originating at each neuron in the output layer.

From this error term, we can find the gradients for the weights and biases
of the final layer L. To find the gradient for a single weight w[L]

ji , we use the
chain rule:

∂L

∂w[L]
ji

=
∂L

∂z[L]j

∂z[L]j

∂w[L]
ji

The first part, ∂L/∂z[L]j , is simply the j-th component of the error vector δ[L].

The second part, ∂z[L]j /∂w[L]
ji , is the derivative of the weighted sum with re-

spect to that weight, which is just the corresponding input activation from the
previous layer, a[L−1]

i . This means ∂L/∂w[L]
ji = δ

[L]
j a[L−1]

i .

To compute this for the entire weight matrix W[L], we perform this opera-
tion for all j and i. This is captured concisely by the outer product of the error
vector and the activation vector from the previous layer:

∂L
∂W[L]

=
∂L

∂⃗z[L]
(⃗a[L−1])T

For the biases, the derivation is simpler. The gradient of the loss with respect
to the bias vector b⃗[L] is:

∂L
∂⃗b[L]

=
∂L

∂⃗z[L]
∂⃗z[L]

∂⃗b[L]
=

∂L
∂⃗z[L]

· 1 =
∂L

∂⃗z[L]

Since the bias is simply added to the weighted sum, its derivative is 1. There-
fore, the gradient for the biases is just the error vector itself.
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Next, the error is propagated to the previous layer, L − 1. We compute the
derivative of the loss with respect to the activation of layer L − 1:

∂L
∂⃗a[L−1]

= (W[L])T ∂L
∂⃗z[L]

This allows us to find the derivative with respect to the pre-activations of layer
L − 1:

∂L
∂⃗z[L−1]

=
∂L

∂⃗a[L−1]
⊙ g′ (⃗z[L−1])

This process is repeated, moving backward through the network. For any
layer l, the general equations for backpropagation are:

∂L
∂⃗z[l]

=
∂L

∂⃗a[l]
⊙ g′ (⃗z[l]) =

(
(W[l+1])T ∂L

∂⃗z[l+1]

)
⊙ g′ (⃗z[l])

And the gradients for the parameters of layer l are:

∂L
∂W[l]

=
∂L

∂⃗z[l]
(⃗a[l−1])T

∂L
∂⃗b[l]

=
∂L

∂⃗z[l]

Once these gradients have been computed for every layer, the network’s pa-
rameters are updated to minimize the loss. The gradients point in the direc-
tion of the steepest ascent of the loss function, so to decrease the loss, the pa-
rameters are adjusted in the opposite direction. This is the core principle of
optimization algorithms like Gradient Descent. Specifically, each parameter is
updated according to the following rules:

W[l] := W[l] − α
∂L

∂W[l]

b⃗[l] := b⃗[l] − α
∂L

∂⃗b[l]

where α is a hyperparameter known as the learning rate that controls the size
of the update step. This iterative cycle of forward pass, backpropagation, and
parameter updates is what allows the network to learn from the data.

1.3 Optimizing the Learning Process

The gradient descent update rule described previously provides a solid foun-
dation for how a network learns. However, applying it naively presents a
significant challenge in practice. The gradients are calculated by averaging the
loss over the entire training dataset. For modern datasets, which can contain
millions of examples, performing a full forward and backward pass over all
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data just to make a single update to the parameters is computationally pro-
hibitive. This method, known as Batch Gradient Descent, is therefore too slow
for most real-world applications.

1.3.1 Mini-Batching

To solve this problem, we use a technique called Mini-Batch Gradient Descent
[16]. Instead of using the entire dataset for each update, we compute the gra-
dient on a small, random subset of the data called a "mini-batch" (e.g., 32, 64,
or 128 examples). This provides an estimate, or a "noisy" approximation, of
the true gradient. While this approximation isn’t perfect, it’s good enough to
guide the parameters in the right general direction, and it’s vastly more com-
putationally efficient.

However, even with mini-batching, standard gradient descent has limita-
tions. It uses a single, fixed learning rate (α) for all parameters, which can be
difficult to tune. Furthermore, it can struggle with certain types of loss land-
scapes, such as long, narrow ravines, where it oscillates without making much
progress toward the minimum.

1.3.2 The Adam Optimizer

To address the challenges of standard gradient descent, more sophisticated
optimization algorithms have been developed. One of the most successful and
widely used is the Adam optimizer [17], which stands for Adaptive Moment Es-
timation. Adam adapts the learning rate for each parameter individually and
leverages past gradients to accelerate convergence. It achieves this by main-
taining two exponentially decaying moving averages for each parameter:

1. The First Moment (Momentum): This is the moving average of the gra-
dients, which acts like a ball rolling down a hill, accumulating momen-
tum. It is represented by a vector m⃗ and updated at each timestep t as:

m⃗t = β1m⃗t−1 + (1 − β1)
∂L

∂Wt

2. The Second Moment (Adaptive Learning Rate): This is the moving av-
erage of the squared gradients, which scales the learning rate on a per-
parameter basis. It is represented by a vector v⃗:

v⃗t = β2v⃗t−1 + (1 − β2)

(
∂L

∂Wt

)2

In these equations, β1 and β2 are hyperparameters that control the decay rates
of the moving averages (typically close to 1, e.g., 0.9 and 0.999 respectively).
The term ∂L

∂Wt
is the gradient of the loss with respect to the weights at the cur-

rent timestep t. The squaring in the second moment equation is performed
element-wise.
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Because these moving averages are initialized as vectors of zeros, they are
biased towards zero during the initial steps of training. Adam corrects for this
bias by computing:

ˆ⃗mt =
m⃗t

1 − βt
1

and ˆ⃗vt =
v⃗t

1 − βt
2

Finally, these bias-corrected estimates are used in the parameter update rule.
The update for the weight matrix W is:

Wt+1 := Wt − α
ˆ⃗mt√

ˆ⃗vt + ϵ

Here, the division is performed element-wise: each component of the momen-
tum vector ˆ⃗mt is divided by the square root of the corresponding component
of the adaptive learning rate vector ˆ⃗vt. The hyperparameter α is the initial
learning rate, and ϵ is a very small number (e.g., 10−8) to prevent division by
zero. This combination of momentum and per-parameter learning rates makes
Adam robust, efficient, and a default choice for training deep neural networks.

1.4 Higher-Order Derivatives and Automatic Dif-
ferentiation

While first-order gradients are the foundation of network training, higher-
order derivatives can also provide crucial insights.

A practical solution to compute them is Automatic Differentiation (AD) [18].
AD works by first deconstructing any computation into a sequence of elemen-
tary operations (e.g., addition, multiplication, exponential) stored in a compu-
tational graph. It then computes derivatives by systematically applying the
chain rule to this graph. There are two primary modes:

1. Forward Mode: This mode computes the derivative by traversing the
graph from inputs to outputs. It calculates how a small change in a single
input affects every node in the graph. It is efficient for functions with few
inputs and many outputs.

2. Reverse Mode: This mode traverses the graph from the final output back
to the inputs. It efficiently calculates how a single output (like the loss)
is affected by every input and parameter. Backpropagation is an applica-
tion of reverse-mode AD.

The power of AD frameworks is that the function that computes the gradi-
ent is itself just another function within the computational graph. This means
we can re-apply AD to the gradient computation itself to get second-order
derivatives. For example, by running reverse-mode AD on the loss function,
we obtain the gradient vector. By then running another pass of AD on the
gradient computation, we can obtain second-order information.
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Crucially, the power of AD is not limited to derivatives with respect to pa-
rameters. It can also compute derivatives of the network’s output with re-
spect to its inputs (e.g., ∂ŷ

∂x ). This capability is the foundation for advanced ap-
plications like Physics-Informed Neural Networks (PINNs) [19], where a model
is trained to satisfy a known differential equation by directly penalizing its
derivatives’ behavior in the loss function.
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Chapter 2

Integrating the KPZ equation

2.1 Theoretical overview

In 1+1 dimensions (one spatial dimension x and one temporal dimension t),
the Kardar-Parisi-Zhang (KPZ) equation [1] describes the evolution of an in-
terface height h(x, t) as:

∂th(x, t) = ν∂2
xh(x, t) +

λ

2
(∂xh(x, t))2 + η(x, t). (2.1)

Here, h(x, t) is the height of the interface at position x and time t (Fig. 2.1) .
The term ν > 0 is a coefficient related to surface tension, promoting smoothing
of the interface, analogous to viscosity. The parameter λ is the prefactor of the
non-linear term, λ

2 (∂xh(x, t))2. This term is crucial as it represents the growth
component normal to the interface [20]. If λ = 0 the average height of the
interface remains constant, and (2.1) reduces to the Edward-Wilkinson (EW)
equation [21]. Finally, η(x, t) is a stochastic noise term, typically assumed to
be Gaussian white noise, uncorrelated in space and time, with zero mean and
correlator:

⟨η(x, t)⟩ = 0, ⟨η(x, t)η(x′, t′)⟩ = 2Tδ(x − x′)δ(t − t′),

where ⟨. . . ⟩ denotes the average over thermal fluctuations, and T quantifies
the noise strength.

A central theme of this work is to map non-linear stochastic processes onto
linear ones. In the case of the KPZ equation, this can be done exactly via the
Cole-Hopf transformation [7][8]:

Z(x, t) = exp
(

λ

2ν
h(x, t)

)
, (2.2)

which maps 2.1 onto a stochastic diffusion process with multiplicative noise:

∂tZ(x, t) = ν∂2
xZ(x, t) + Z(x, t)η(x, t). (2.3)

In this report, we investigate the evolution of an ensemble {[h(x, t)]t=τ
t=0}B

of B trajectories, each evolving from t = 0 to t = τ. Every trajectory starts
from a flat initial condition, i.e., h(x, t = 0) = 0, ∀x. We consider the case
of interfaces of finite length L, x ∈ [0, L], and we employ Periodic Boundary
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FIGURE 2.1: Example evolution of a discretized KPZ interface h⃗t,
starting from a flat initial condition h⃗t=0 = 0⃗. As the non-linearity
is present (λ = 1), the average level of the interface grows in time.
In the early stages, the width (variance) grows as a power-law.

The interface was discretized using N = 64 lattice points.

Conditions (P.B.C), h(0, t) = h(L, t). As the equation has a stochastic nature,
our primary focus is on statistically relevant quantities that characterize the
growth process.

We define the spatial average of the height at a given time t of an interface
as: h(x, t) = 1

L

∫ L
0 h(x, t) dx. The centered moments of the height distribution

for a given interface are defined as:

wn[h(x, t)] =
1
L

∫ L

0
(h(x, t)− h(x, t) )n dx

.
To obtain robust statistics, we perform an ensemble average over the B dif-

ferent interface realizations at time t: h(t) = ⟨h(x, t)⟩ , wn(t) = ⟨wn [⃗ht]⟩. This
ensemble (thermal) averaging procedure smooths out the stochastic fluctua-
tions inherent in a single growth process, revealing the underlying universal
behavior.

We are mainly interested in the evolution of the interface width, or rough-
ness, which is the second moment w2(t) (Fig. 2.2). This quantity captures the
dynamics of the interface fluctuations. The early time behavior of the width
is expected to follow a power law in time, w2(t) ∼ t2β, where β is the growth
exponent. The value of β depends on the underlying growth mechanism. For
the KPZ equation β = 1/3, resulting in a width that scales as w2(t) ∼ t2/3.
This value is universal, holding for a wide variety of models that share the
KPZ equation’s essential stochastic growth character.

At long times, for a finite system with periodic boundary conditions, the
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interface width saturates to a steady-state value, wsat
2 , which depends on the

system size L. The saturation time, tsat, also scales with L. For the KPZ equa-
tion tsat ∼ L3/2. For the specific parameters ν = T = 1/2, the saturation value
of the KPZ process is expected to plateau at w2(t −→ +∞) = wsat

2 = L/12. [22].

FIGURE 2.2: Simulation: evolution of the width w2(t) (variance)
for KPZ interfaces with different lengths L. The early time evolu-
tion is characterized by a power-law with exponent 2/3. As the
simulated systems have finite size, w2 eventually saturates to a
plateau value wsat

2 , which depends on the system size. The time
tsat to reach the plateau is also proportional to the system’s size,
scaling as L3/2. The time axis is measured in arbitrary units (a.u.),

where one a.u. corresponds to 1/∆t timesteps.

2.2 Tracy-Widom distribution

The Tracy–Widom distribution, first derived in the context of random matrix
theory by Tracy and Widom [23], plays a fundamental role in the study of the
Kardar–Parisi–Zhang (KPZ) universality class. In the one-dimensional KPZ
equation, the height fluctuations under proper rescaling have been shown to
follow a Tracy–Widom distribution [24, 25]. Unlike the Gaussian distribution,
which exhibits symmetric exponential decay in its tails, the Tracy–Widom dis-
tribution is highly non-Gaussian and features strongly asymmetric tails [26].
Specifically, the left tail (corresponding to rare, unusually low values) exhibits
super-exponential decay, given by ≈ exp

(
−|x|3

)
whereas the right tail (corre-

sponding to extreme positive fluctuations) follows a slower stretched exponen-
tial decay of the form ≈ exp

(
−x

3
2

)
This asymmetry and deviation from Gaus-

sian behavior reflect the underlying non-equilibrium nature of the KPZ growth
process and its deep connection to random matrix theory [27]. The emergence
of the Tracy–Widom distribution in KPZ systems highlights the universality of
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extreme fluctuations in correlated stochastic processes. The random variable
∆h = h(x, t)− h(x, t′) should exhibit these peculiar tail features [28].

(A) Empirical distribution of standardized ∆h
with tail fits

(B) Semi-log plot of the distribution of the stan-
dardized ∆h

FIGURE 2.3: Simulation: distribution of the variable ∆h, stan-
dardized to have a mean of 0 and a variance of 1. This proce-
dure preserves the characteristic asymmetric shape of the Tracy-
Widom distribution found in the KPZ universality class. The
distribution exhibits asymmetric tails, with the left tail decaying
faster than the right. This is consistent with the expected asymp-
totic behaviors, which follow the form ≈ exp

(
−c1|x|3

)
for the left

tail and ≈ exp
(
−c2x3/2) for the right.

2.3 Numerical Integration

For numerical integration, Eq. (2.1) must be discretized in both space and time.
We consider the interface at a set of N discrete points xi = (i − 1)∆x for i =
1, . . . , N, where ∆x = L/N is the spatial discretization step. The height at these
points at time t is denoted by ht

i ≡ h(xi, t). We therefore denote the (column)
state vector of the interface at time t as h⃗t = [ht

1, . . . , ht
N] ∈ RN. The spatial

averages are computed by summing over the lattice points, h(x, t) ≈ 1
N ∑N

i=1 ht
i ,

while ensemble averages are computed by summing over the interfaces which
share the same time index t, wn(t) = ⟨wn [⃗ht]⟩ ≈ 1

B ∑h⃗t wn [⃗ht]. For an explicit
time-stepping scheme, all spatial derivatives and terms on the right-hand side
of the discretized equation (which determine the evolution from t−∆t to t) are
evaluated at the previous time step, t − ∆t.

The Laplacian, ∂2
xh, acting on the discretized height ht−∆t

i is approximated
using a standard central difference scheme:

∂2
xht−∆t

i =
ht−∆t

i+1 + ht−∆t
i−1 − 2ht−∆t

i
∆x2 .

The discretization of the non-linear term (∂xh)2 is more delicate. We consider
two alternatives:
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• Standard central discretization:

(∂xht−∆t
i )2 =

(
ht−∆t

i+1 − ht−∆t
i−1

2∆x

)2

(2.4)

• Symmetric three-point discretization, proposed by Marguet et al. [29], to
better preserve underlying symmetries of the KPZ plateau state:

(∂xht−∆t
i )2 =

1
3∆x2

[
(ht−∆t

i+1 − ht−∆t
i )2 + (ht−∆t

i − ht−∆t
i−1 )2 + (ht−∆t

i+1 − ht−∆t
i )(ht−∆t

i − ht−∆t
i−1 )

]
(2.5)

These two discretizations yield different numerical behaviors. For instance, if
ht−∆t

i−1 = ht−∆t
i+1 , the central approximation (Eq. 2.4) interprets ht−∆t

i as an ex-
tremum, resulting in a zero derivative. The three-point scheme (Eq. 2.5) gen-
erally yields a non-zero value by averaging backward and forward derivative
contributions. From our tests, the central discretization scheme often captures
the KPZ t2/3 behavior more accurately, even for shorter chains. Conversely, the
three-point discretization tends to better represent the correct plateau statistics,
independently of simulation parameters.

Finally, for time discretization, we employ an explicit Euler-Maruyama scheme
[30]. The update rule for ht

i from ht−∆t
i is:

ht
i = ht−∆t

i + ∆t
(

ν∂2
xht−∆t

i +
λ

2
(∂xht−∆t

i )2
)
+

√
2T∆t

∆x
Ni(0, 1), (2.6)

where Ni(0, 1) are independent Gaussian random variables with zero mean
and unit variance, sampled for each site i and each time step ∆t. The coef-
ficient

√
2T∆t/∆x ensures that the discrete noise correctly approximates the

continuous noise η(x, t).

2.4 Numerical results

We numerically investigate the Kardar-Parisi-Zhang (KPZ) equation. Unless
otherwise specified, simulations use parameters ∆x = 1, ∆t = 0.02, ν = T =
0.5, under periodic boundary conditions.

Discretization of the non-linear term We investigate the differences between
the Central discretization scheme (2.4) and the Three point approximation (2.5).
A direct comparison of the two schemes, using identical parameters (L =
1024, λ = 2), reveals a fundamental trade-off (Figure 2.4).

The Three-Point Symmetric scheme excels at reproducing plateau statis-
tics. As shown in Figure 2.4, the interface width w2(t) correctly saturates at the
expected theoretical value wsat

2 = L/12. In contrast, the standard central differ-
ence scheme systematically underestimates this saturation plateau; increasing
the value of λ leads to an even lower estimate of the saturation value, which
should be independent of λ. Conversely, the standard scheme more faithfully
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captures the KPZ t2/3 regime. It consistently reproduces the expected early-
time growth exponent even for shorter system sizes. The Three-Point scheme,
while superior for plateau properties, shows less consistent early-time behav-
ior, often exhibiting different effective exponents before potentially converging
to the KPZ scaling regime.

(A) Linear scale (B) Log-log scale

FIGURE 2.4: Time evolution of the interface width w2(t) (vari-
ance) for the standard Central difference (2.4) and Three-Point
Symmetric (2.5) discretization schemes. The Three-Point scheme
correctly predicts the saturation value, while the standard
scheme better captures the early-time t2/3 growth. The time axis
is measured in arbitrary units (a.u.), where one a.u. corresponds

to 1/∆t timesteps.

Effect of System Size (L): As expected, longer chains are better suited for
studying scaling laws, as they provide a wider time window for the KPZ
growth regime. Simulations with L = 1024 and L = 4096 (Figure 2.5) confirm
that, in the case of the Three Point discretization (2.5), the saturation plateau is
correctly reproduced regardless of system size. The data collapses well when
rescaling the axes by w2/L and t/L3/2, consistent with theoretical scaling pre-
dictions.

Effect of Non-linearity (λ): For the standard central difference scheme, in-
creasing λ was observed to lower the saturation plateau, an unexpected arti-
fact. The Three-Point scheme corrects this, as the plateau value remains inde-
pendent of λ. However, for large systems (L = 4096) and strong non-linearity
(λ = 2), we observe an anomalous initial growth regime with an effective ex-
ponent greater than 2/3.

Numerical Stability: Stability tests show that for λ ≤ 2, the results are robust
for the time steps used (∆t = 0.02, ∆t = 0.001). However, as λ approaches 3,
simulations with the larger time step (∆t = 0.02) become unstable and diverge,
highlighting the limits of the numerical scheme.
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(A) Linear Plot

(B) Rescaled plot

FIGURE 2.5: Interface width w2(t) for system sizes L = 1024
and L = 4096 using the Three-Point scheme. The rescaled plot
(b) shows excellent data collapse, confirming the scaling relation

w2 ∼ L and t ∼ L3/2.
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Chapter 3

Machine Learning Results

3.1 Main Goals and Learning Philosophy

In this chapter we detail the specifics of the model and how to train it. The
model is comprised of two Feed Forward Neural Networks (FFNs) [31], which
form our autoencoder structure, and a linear module, which evolves the states
in latent space. We construct this module to be compatible with the expected
analytical solution (2.3) given by the Cole-Hopf transform (2.2). The linear
update rule in latent space is therefore given by

z⃗ t+∆t = K⃗z t + M(⃗z t ⊙ η⃗ t). (3.1)

K and M represent learnable linear weights (matrices), while η⃗ t is a vector of
i.i.d. gaussian variables. ⊙ denotes piece-wise product z⃗ t ⊙ η⃗ t = [z t

1η t
1 , ..., z t

Nη t
N].

The learnt values of these matrices directly affect the statistics of the generated
trajectories. Specifically the matrix K − I (where I is the Identity) is the drift
matrix, determining the expected value of the increment ∆⃗z, while the diffu-
sion matrix M affects the covariance structure of the increments.

Our goal is to learn the invertible transformation z⃗ t = Φ(⃗ht), its inverse
h⃗t = Φ−1(⃗z t) and the latent matrices K and M. We assume that the dataset D is
comprised of B timeseries which are τ steps long {[⃗ht=0, ..., h⃗t=τ∆t]}B, h⃗t ∈ RN.
In its fully trained state the model is given the B initial conditions {⃗ht=0}B, and

is able to reproduce a new dataset D̂ of predicted trajectories {[ ˆ⃗ht=0, ..., ˆ⃗ht=τ∆t]}B, ˆ⃗ht ∈
RN whose statistics should be close to those of D.
The dataset represents the evolution of an ensemble of KPZ trajectories (Sect.
2.1).
We propose a novel loss function, L, specifically designed to focus on learning
increments: ∆⃗ht = h⃗t+∆t − h⃗t. The idea is that the overall statistical patterns ob-
served in the dataset (its global statistics) emerge from these local, step-by-step
dynamics. Therefore, by studying the evolution of these increments, we focus
the learning procedure on uncovering the fundamental process that generates
the data.

The training procedure deliberately places greater emphasis on the decoder
Φ−1. This choice is justified by how trajectories are generated: the encoder is
used only once to process the initial conditions of a trajectory. Following this,
the system’s dynamics are evolved for τ steps directly within the latent space,
without requiring additional encoding. The decoder, however, must be used
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at each of these τ steps to reconstruct the state for comparison with the ground
truth dataset D.

3.2 Architecture, Algorithms and Initialization

The choice of neural network architecture is critical for successfully finding a
mapping which is consistent with the imposed latent dynamics. In our case,
the Cole-Hopf transformation (Eq. 2.2) provides strong analytical guidance,
allowing us to make a more informed choice. Since this transformation is local
(point-wise) we employ a scalar Feed-Forward Network (FFN) [32] that maps
a single input value to one output value. Our network is built of 15 hidden
layers with 5 neurons each.
The selection of the activation function [33] is equally important. Given that
the target transformation is exponential, we employed a function that can rep-
resent unbounded values while maintaining non-zero gradients for effective
training. For this reason, we chose the Sigmoid Linear Unit (SiLU)defined as
SiLU(x) = x

1+e−x . This function behaves similarly as the ReLU (Fig.3.1) but has
the advantages of being smooth and continuously differentiable. This property
is crucial as it has a direct impact on the derivatives of the network, which play
an important role in the loss definition.

FIGURE 3.1: Differences between the ReLU (blue) and SiLU (or-
ange) functions. While the ReLU derivative is 0 for all negative
inputs the smoother SiLU function maintains a non-zero deriva-
tive. This allows for more consistent gradient flow and enables
the network to more accurately represent derivatives of func-

tions.

Trajectories were generated using a timestep ∆t = 0.05. This choice is also
significant, as too small a timestep would result in minimal change between
consecutive states, potentially hindering the model’s ability to learn the dy-
namics.
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The model’s parameters were trained using the Adam (Sect.1.3.2) optimiza-
tion algorithm, with a learning rate that was dynamically adjusted via a sched-
uler [34]; the rate was reduced whenever the total loss metric plateaued, al-
lowing for more refined convergence. The training data, consisting of multiple
time-series trajectories, was first decomposed into a large set of one-step state
transitions, where each transition is a pair (⃗ht, h⃗t+dt). Mini-batches (of size 32)
were employed during training to estimate the gradient of the loss functions
(Sect. 1.3.1).

The model’s feed-forward network weights are initialized using the Kaim-
ing He uniform method [35]. The latent matrix K (Eq. 3.1) is initialized to
an identity matrix I, and the latent diffusion matrix M to a gaussian random
matrix with 0 mean and standard deviation 0.1 ≈ O(

√
∆t).

3.3 Itô’s Lemma

The dynamics of the observable process hi must be consistent with the dy-
namics of the latent process zi as they are linked by the transformation hi =
Φ−1(zi). Given our scalar transformation Φ−1, Itô’s lemma [12] states that the
infinitesimal increment dhi is related to the increment dzi by:

dhi =
dΦ−1

dz

∣∣∣∣
z=zi

dzi +
1
2

d2Φ−1

dz2

∣∣∣∣
z=zi

(dzi)
2 (3.2)

where the derivatives of our learned mapping are evaluated at zi. The inclu-
sion of the second-order term, (dzi)

2, is the key feature of Itô calculus, as it is
of order O(dt) and cannot be neglected.

This equation provides a powerful, model-independent consistency check,
imposing a strict mathematical relationship between the observed dynamics of
the ground truth increments (dhi), the learned dynamics in latent space (dzi),
and the learned transformation itself (Φ−1 and its derivatives). This principle
motivates the formulation of a key component of our loss function, which pe-
nalizes violations of Itô’s Lemma.
A similar equation could be derived for the encoder, using the definition zi =
Φ(hi). However, we opted against this approach. Our primary concern was
that formulating the objective this way would result in the ground truth incre-
ments being multiplied by parameters of our model, i.e. the first and second
derivatives of the encoder, potentially making the learning target less direct.
Note that these equations are not mutually exclusive, and could be potentially
implemented simultaneously.

3.4 Training with the noise as input: Deterministic
Regime

The network is trained in a deterministic regime. This is achieved by providing
the model with the exact sequence of the noise, η⃗, that was used to generate the
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training data. This allows for direct comparison between the model’s one-step
predictions and the true next state of the system.
While this represents a simplified regime, it holds potential for useful real-
world applications. For instance, it can be employed to identify transforma-
tions that effectively (or at least approximately) linearize the dynamics of non-
linear stochastic processes for which the dynamical equations are known.
In this simplified regime, the dataset D is therefore comprised of B trajec-
tories of τ steps {[⃗ht=0, ..., h⃗t=τ∆t]}B as well as the normal gaussian vectors
{[⃗η t=0, ..., η⃗ t=(τ−1)∆t]}B used to generate the states h⃗t.

3.4.1 Loss definition

The total training loss is a weighted sum of the following components, calcu-
lated over a minibatch of trajectories denoted by B. For each sample (⃗ht, h⃗t+∆t) ∈
B, the corresponding loss terms are computed and then summed.

• Reconstruction Loss (Lrecon): This term enforces that the encoder Φ and
the decoder Φ−1 are functional inverses of each other. This is an impor-
tant constraint, as the decoder should not contribute to forwarding the
dynamics (the integration wouldn’t be linear if it did). It is defined as the
mean squared error (MSE) between the original input vector h⃗t and its

reconstruction ⃗̂ht = Φ−1(Φ(⃗ht)). The loss over a minibatch B is:

Lrecon = ∑
h⃗t∈B

∑
i

(
ht

i − ĥt
i

)2
(3.3)

• Prediction Loss (Lpred): This loss directly penalizes errors in the one-step
prediction of the system’s state. A direct comparison is possible because
the exact noise vector η⃗ t used to generate h⃗t+∆t is provided as an input to
the model. The loss is the MSE between the true next state h⃗t+∆t and the
prediction ⃗̂ht+∆t. The predicted state is generated by evolving the latent

state z⃗ t = Φ(⃗ht) and decoding the result: ⃗̂ht+∆t = Φ−1 (K⃗z t + M
(⃗
z t ⊙ η⃗ t)).

The prediction loss is thus:

Lpred = ∑
h⃗t∈B

∑
i

(
ht+∆t

i − ĥt+∆t
i

)2
(3.4)

• Itô Consistency Loss (LIto): This loss matches the true state increment,
∆⃗h = h⃗t+∆t − h⃗t, with a predicted increment derived from an Itô expan-
sion at order O(∆t). The predicted increment for each component, ∆ĥi,
is:

∆ĥi =
dΦ−1

dz

∣∣∣∣
z=zt

i

∆zi +
1
2

d2Φ−1

dz2

∣∣∣∣
z=zt

i

(∆zi)
2 (3.5)
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Where ∆⃗z = z⃗ t+∆t − z⃗ t. The loss LIto is the MSE between the true and
predicted increments:

LIto = ∑
h⃗t∈B

∑
i

(
∆hi − ∆ĥi

)2
(3.6)

The total training loss, Ltotal, is the weighted sum of these three components:

Ltotal = wreconLrecon + wpredLpred + wItoLIto (3.7)

The weights used in the final model are wpred = wIto = 1 and wrecon = 0.1.
It is important to note that all loss components contribute to the training

of both the encoder and the decoder. Even in losses that only apparently fea-
ture the decoder Φ−1 (like LIto), the dependence on the encoder’s parameters
is contained within the latent state vector z⃗ t. Therefore, during backpropaga-
tion, gradients flow through the entire network, ensuring all parts of the model
are optimized concurrently. All required gradients, including the derivatives
of the decoder Φ−1 needed for the Itô loss, are calculated efficiently via the au-
tomatic differentiation (autograd) [18] capabilities of the deep learning frame-
work (Sect. 1.4.)

3.4.2 Results

Dataset Configuration. Various training datasets were generated using the
fixed parameters λ = 1, ν = T = 1/2, ∆x = 1, ∆t = 0.05 and N = 32.
The datasets differ in four key aspects: the numerical discretization scheme
used for the non-linear term (see Equations 2.4 and 2.5 ), the total trajectory
length τ, the number of trajectories B, and the number of initial time steps D
discarded. These initial steps were discarded to provide a more challenging
setting, were the system has evolved from its initial flat condition. Varying
the discretization of the non-linear terms assesses the model’s robustness, as
different approaches yield trajectories with distinct statistical properties (Sect.
2.4).
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(A) t=0 to t=50 (B) t=0 to t=500

FIGURE 3.2: Comparison of the ground truth displacement,

h⃗t − h⃗0 (blue), versus the model’s prediction, ˆ⃗ht − ˆ⃗h0 (red), at rep-
resentative time steps. To generate the prediction, the model was
given the true initial conditions and the entire corresponding se-
quence of stochastic noise used to generate the test dataset. The
results show that while point-wise error grows over time, the pre-
diction correctly reproduces the key structural features of the true

state.

Model Evaluation. We evaluated the model’s prediction capabilities on novel
test sets, prepared in a similar fashion as the training set. The model is pro-
vided with the initial states {⃗ht=0}B and the complete sequence of noise vec-
tors, {[⃗η 0, . . . , η⃗ (τ−1)∆t]}B, which were used to generate every trajectory in
the test set. The model first encodes the initial state onto the latent space,
z⃗ 0 = Φ(⃗h 0) = [Φ(ht

1), ..., Φ(ht
N)], and then predicts the entire latent trajec-

tory [⃗z ∆t, . . . , z⃗ τ∆t] using the learnt matrices K and M and the noise inputs
[⃗η 0, . . . , η⃗ (τ−1)∆t]. This latent trajectory is subsequently decoded back to the

ground truth space to obtain the predictions, [ ˆ⃗h ∆t, . . . , ˆ⃗h τ∆t]. Performance is
then quantified by the Mean Squared Error (MSE) between the predicted and
ground truth trajectories. This calculation is performed for every trajectory in
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the test set; the resulting MSEs are then sorted. The results presented corre-
spond to the median MSE value. Figure 3.2 shows snapshots comparing the
model’s predictions to the true state values at several time horizons.

Mapping and Latent Dynamics. We first evaluate the transformations learnt
by the feed-forward networks: the encoder Φ and the decoder Φ−1. While
the Cole-Hopf transformation (2) suggests analytical forms of Φ(hi) = ehi and
Φ−1(zi) = ln(zi), our learnt functions are not these exact solutions. Never-
theless, after rescaling and shifting, they exhibit a close resemblance in shape
and behavior (Fig. 3.3). Specifically, the learned encoder Φ maps the input
data h⃗ to a more constrained codomain (values of z⃗) compared to the expo-
nential function, which grows rapidly over the dataset’s domain (Fig. 3.3a).
This compression likely facilitates the decoder’s task, allowing it to more accu-
rately approximate the analytical target function (Fig. 3.3b). When examining
the derivatives, we find that the encoder’s first and second derivatives, dΦ

dh and
d2Φ
dh2 , are approximately 10 and 100 times smaller, respectively, than the output
values of the encoder. Despite this, derivatives maintain a shape consistent
with the analytical solution (Fig. 3.4), though accuracy diminishes for higher-
order derivatives. Models trained on datasets with longer trajectories (higher
value of τ) seem to show better agreement with the analytical transformation,
after rescaling. Although the model sometimes finds an encoding transforma-
tion closer to Φ(hi) = − exp(hi), this is not problematic, because the latent
dynamic (Eq. 3.1) is invariant under the transformation z⃗ → −z⃗.

(A) Encoder Output Φ (B) Decoder output Φ−1

FIGURE 3.3: Comparison of the learned (red) encoder Φ and
decoder Φ−1 with their analytical counterparts (blue) from the
Cole-Hopf transform (2). The plots use a dual y-axis to show that
the learned functions were rescaled for comparison. The encoder
maps input values to a significantly smaller codomain (z ) than its
analytical counterpart. The learned decoder closely approximate
the shape of the analytical function after rescaling. The values
on the x-axis are representative of those in the test set and corre-
spond to ensemble averages of h⃗t (for the encoder) or z⃗ t (for the

decoder) at different timestesp t.
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(A) Decoder First derivative d Φ−1

dz (B) Decoder Second derivative d2 Φ−1

dz2

FIGURE 3.4: Comparison of the learned derivatives of the de-
coder, d Φ−1

dz and d2 Φ−1

dz2 with their analytical counterparts from
the Cole-Hopf transform (2). The plots use a dual y-axis to show
that the learned functions were rescaled for comparison. The de-
coder’s derivative, after rescaling, have the same shape as the
expected analytical solution. The values on the x-axis are rep-
resentative of those in the test and correspond to the ensemble

average of the latent states z⃗ t at different timestep t.

We also analyzed the latent dynamical matrices, observing that the drift
matrix, K − I, approximates a discrete Laplacian rescaled by ν = 1/2, and the
diffusion matrix, M, is proportional to the identity matrix (Fig. 3.5). This is
consistent to what we expect from the analytical solution (2.3). The diagonal
entries of M are less than 1, a characteristic that may be linked to the properties
of the learned encoder Φ and the ratio between its derivatives and its output.
The model is able to understand the boundary conditions, as the values on the
corners of the drift matrix (Fig. 3.5) are non 0.
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FIGURE 3.5: Heatmap visualization of the learned latent matri-
ces: the drift K − I and diffusion M, rescaled by ∆t and

√
∆t re-

spectively. The structure aligns with the analytical solution; the
drift matrix closely resembles a discrete Laplacian scaled by 1/2,
while the diffusion matrix is diagonal with constant entries that
are less than one. This is not problematic and is consistent with
the properties of the learnt transformations Φ and Φ−1. The non-
zero values in the top right and bottom left corners of the drift
matrix highlight the ability of the model to understand the peri-

odic boundary conditions

Prediction Task. We evaluate the predictive performance of models trained
on datasets generated with different discretization schemes and parameters by

measuring the Mean Squared Error (MSE) between the model’s prediction, ˆ⃗ht,
and the ground truth, h⃗t. Table 3.1 summarizes the median MSE at various
timesteps (t) for different discretization schemes, trajectory length (τ), initial
discards (D), and number of trajectories (B). Our results indicate that increas-
ing the number of trajectories B from 1000 to 10 000 improves performance,
though at the cost of significantly slower training times. The number of ini-
tial discards, D, appears to have a negligible effect on the model’s predictive
accuracy. We observe a substantial performance gap between the Central and
Three-point schemes for τ = 1000 and τ = 5000, with the Central scheme
performing better. However, for τ = 2000, the models exhibit similar per-
formance. The choice of τ values was informed by the observation that the
width (variance) w2 of the chains plateaus at approximately 1000 timesteps for
a chain length of L = 32. The overall performance is consistent with findings
in related literature [10].
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TABLE 3.1: Median Mean Squared Error (MSE) Across Dis-
cretization Schemes and Parameters. The table displays the me-
dian MSE for trajectories generated with different discretization
schemes, timesteps (τ), initial discards (D), and number of tra-
jectories (B). The model more accurately reproduces trajectories
from the Central discretization scheme. Both D and B have a min-

imal impact on model performance.

Scheme τ D B Median MSE at Timestep (t)

50 100 500 1000

Central 1k 50 1k 5.47 × 10−2 1.30 × 10−1 7.25 × 10−1 1.25
Central 1k 50 10k 5.12 × 10−2 1.24 × 10−1 6.71 × 10−1 1.24
Three-point 1k 50 1k 1.06 × 10−1 2.37 × 10−1 1.14 1.96

Central 2k 0 1k 7.15 × 10−2 1.76 × 10−1 8.68 × 10−1 1.40
Central 2k 50 1k 7.99 × 10−2 1.92 × 10−1 1.06 1.79
Three-point 2k 50 1k 7.82 × 10−2 1.86 × 10−1 9.44 × 10−1 1.64

Central 5k 50 1k 6.40 × 10−2 1.54 × 10−1 7.91 × 10−1 1.58
Three-point 5k 50 1k 1.04 × 10−1 2.47 × 10−1 1.28 2.21

Figure 3.6 illustrates the evolution of the accuracy and relative accuracy of
the model as a function of the timesteps. The relative MSE seems to decrease
as the width (variance) w2(t) begins to saturate.
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FIGURE 3.6: Temporal evolution of the model’s prediction error.
The red curve shows the absolute Mean Squared Error (MSE) be-

tween the network’s prediction, ˆ⃗ht, and the ground truth, h⃗t. The
blue curve presents the MSE normalized by the mean squared

displacement from the initial state, ⟨ (⃗ht − h⃗0)2 ⟩, which serves as
a baseline for predictive skill. The normalized error remains well
below 1.0 across all timesteps, demonstrating that the model con-
sistently makes skillful predictions and maintains long-term sta-

bility.

Trajectory Generation and Generalization Beyond Training Range We eval-
uated the model’s ability to generate novel trajectories by sampling the noise
increments, η⃗ t, from a standard Gaussian distribution. The statistical proper-
ties of the generated trajectories matched those of the ground truth data, with
lower accuracy on higher order cumulants. We also assessed the model’s per-
formance on trajectories longer than the training horizon, τ. As illustrated
in Figure 3.7, the model demonstrated a degree of generalization beyond the
training data. However, as the time extended further outside the training
range (the red-shaded region), the decoder’s predictions eventually diverged
from the expected analytical behavior. While the learned matrices, K and M,
should correctly evolve the latent variables z⃗ t beyond τ, the decoder itself is
not trained to function outside this range. Therefore, the extent of success-
ful generalization depends on how quickly the latent variables evolve into a
region unfamiliar to the decoder.
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(A) Decoder Output Φ−1(z)

(B) Mean of generated trajectories

FIGURE 3.7: Performance outside the training range. The blue-
shaded area (t < τ) represents the domain seen during training,
while the red-shaded area (t > τ) indicates the region beyond it.
The model shows some generalization until the decoder can no

longer reproduce the analytical curve accurately.
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3.5 Training without the noise as input: Stochastic
Regime

In the stochastic training regime, the model receives only the time-series {[⃗ht=0, ..., h⃗t=τ∆t]}B

as input and has no knowledge of the exact values of the stochastic noise, η⃗ t,
used to generate the data. To propel the system forward, the model must draw
its own noise at each step from i.i.d. standard normal variables.

The primary challenge in this regime is that a direct comparison between
predictions and the ground truth observations is no longer as meaningful. We
define the expectation operator E[...] which denotes a type of ensemble aver-
aging over all possible realizations of the drawn noise at a given step t. This
can be thought as averaging over the distribution P(⃗ht+∆t |⃗ht). The state at time
t is considered as given, hence it is not a random quantity. While we can analyt-
ically compute these averages for our latent dynamics, as its form (Eq. 3.1) is
known, this cannot be done for the ground truth observations; we only have a
single sample of the pair (⃗h t+∆t |⃗ht). This distinction informs our loss function
design, as it affects the implementation of the constraint given by Itô’s Lemma
(3.2).
We modify our consistency equation ∆hi = ∆ĥi (3.5) and apply the expectation
operator E[...] to the right hand side (r.h.s.) only. Averaging only one side of
the equation is not ideal but without knowledge of the equations that generate
∆hi, the type of averaging we require cannot be performed on the l.h.s.
As we are in a situation were the signal is dominated by noise, because of the
stochastic square root scaling ∝

√
∆t which dominates over the deterministic

term ∝ ∆t, it is important to find strategies to avoid overfitting the noise, like
adopting a frugal architecture (an architecture with less parameters).
From our latent dynamics model, we can analytically compute the target mo-
ments of the latent increment, ∆⃗z t. The mean is given by E[∆⃗z t] = (K − I)⃗z t,
and the covariance matrix is: E[∆⃗z t∆⃗z tT

] = M diag(⃗z t)2 MT + O(∆t2), where
diag(⃗z t) is a diagonal matrix with the elements of z⃗ t on its diagonal. T denotes
transposition.

3.5.1 Loss definition

The total training loss is a weighted sum of the following components, calcu-
lated over a minibatch of trajectories denoted by B.

• Reconstruction Loss (Lrecon): Unchanged. This loss remains crucial as it
ensures the encoder Φ and decoder Φ−1 are one the inverse of the other.
Denoting the model’s reconstruction with⃗̂ht = Φ−1(Φ(⃗ht)), its definition
remains:

Lrecon = ∑
h⃗t∈B

∑
i

(
ht

i − ĥt
i

)2
(3.8)

• Mean Itô Consistency Loss (LIto-mean): This loss adapts the Itô consis-
tency to align the true, single-instance increment with the ensemble av-
erage of the predicted increment. For each datapoint h⃗t in the batch,
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the loss penalizes the squared difference between the true observed state
change, ∆hi, and its expected value predicted by the model, E[∆ĥi]. The
predicted mean increment is defined as: E[∆ĥi] = dΦ−1

dz

∣∣∣
z=z t

i

E[∆zi] +

1
2

d2Φ−1

dz2

∣∣∣
z=z t

i

E[(∆zi)
2]. The loss is the mean squared error between the

true and predicted mean increments:

LIto-mean = ∑
h⃗t∈B

∑
i

(
∆hi − E[∆ĥi]

)2
(3.9)

To provide a more stable training signal, an additional term (LIto-mean)
compares the spatial (feature) averages of the true and predicted incre-
ments:

LIto-mean = ∑
h⃗t∈B

(
1
N ∑

i
∆hi −

1
N ∑

i
E[∆ĥi]

)2

(3.10)

• Covariance Itô Consistency Loss (LIto-cov): This loss ensures that the
model captures the correlation structure of the state increments. The loss
function is designed to match the empirical outer product from the data,
∆⃗htrue∆⃗hT

true, with the expectation of its model-generated counterpart.
Using the leading-order approximation, the predicted expectation of the
covariance is given by: E[∆hi∆hj]pred = dΦ−1

dz

∣∣∣
z=z t

i

dΦ−1

dz

∣∣∣
z=z t

j

E[∆zi∆zj].

The latent covariance E[∆zi∆zj] is the (i, j)-th element of the matrix M diag(⃗zt)2 MT.
The loss penalizes the element-wise difference between the true and pre-
dicted covariance matrices:

LIto-cov = ∑
h⃗t∈B

∑
i,j

(
(∆hi∆hj)true − E[∆hi∆hj]pred

)2

A spatially-averaged (feature-averaged) version of this loss (LIto-cov) is
also used. It compares the average value of the covariance matrices to
provide a more stable training signal:

LIto-cov = ∑
h⃗t∈B

(
1

N2 ∑
i,j
(∆hi∆hj)true −

1
N2 ∑

i,j
E[∆hi∆hj]pred

)2

(3.11)

The total training loss, Ltotal, is the weighted sum of these five components:

Ltotal = wreconLrecon +wIto-meanLIto-mean +wIto-meanLIto-mean +wIto-covLIto-cov +wIto-covLIto-cov

The weights are set to wrecon = 0.1, wIto-mean = wIto-mean = 1, and wIto-cov =
wIto-cov = 100.

The loss terms LIto-mean and LIto-cov should plateau at a non 0 value, as it’s
unreasonable to expect exact matching between a single random realization
and an average. The plateau value is given respectively by the variance of ∆hi
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and ∆hi∆hj. Therefore the theoretical lower bound for the loss terms is O(∆t)
for LIto-mean and O(∆t2) for LIto-cov.

3.5.2 Results

Dataset Configuration and Model Evaluation. The model was trained on
the same datasets used in the deterministic regime (Sect. 3.4). The noise vec-
tors η⃗ used to generate the dataset were not provided as input to the model
during training or testing. The model was evaluated by first initializing the la-
tent state z⃗ t=0 with the initial conditions {⃗ht=0}B, then generating a full latent
trajectory {[⃗z ∆t, . . . , z⃗ τ∆t]}B by sampling noise at every step from a standard
normal distribution. This trajectory was subsequently decoded back into the

physical space to form a generated dataset D̂ of trajectories {[ ˆ⃗h ∆t, . . . , ˆ⃗h τ∆t]}B.
Finally, the statistics of the generated dataset were compared with those of the
original dataset D.

Generative Task: Statistical Moments In the stochastic regime, the perfor-
mance of the models exhibits greater variability compared to the deterministic
case. Consequently, while successful convergence to a high-performance state
is observed in some instances, it is not consistently guaranteed. We are actively
investigating strategies to enhance the stability and reliability of the training
process.

We present the instances in which convergence to a satisfying performance
was obtained. In theses cases the model performs as well in the generative task
as models trained in the deterministic case (Sect 3.4). The time evolution of the
uncentered moments generated by the model align closely with the of the test
set data (Figure 3.8). Similarly, the interface width w2(t) (variance), shows
excellent agreement in its initial growth phase. As illustrated in Figure 3.9, the
model consistently captures the characteristic KPZ dynamics, w2(t) ∼ t2/3.

However, a discrepancy emerges in the long-time behavior, where the satu-
ration plateau of the width, wsat

2 , tends to be overestimated. The magnitude of
this overestimation varies in the range 2% − 10%. Furthermore, the generated
saturation plateau is imperfect, sometimes displaying a slight positive slope
rather than being completely flat.

We suspect the overestimation of the saturation plateau may be an arti-
fact of the learned coordinate transformation. It is plausible that our current
latent dynamics model cannot fully accommodate all the properties of this
transformed space. Therefore, we are actively investigating more flexible la-
tent dynamic structures to address this limitation.
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(A) Mean interface height ⟨h(t)⟩. (B) Second uncentered moment ⟨h2(t)⟩.

FIGURE 3.8: Comparison of statistical moments from model-
generated trajectories (red) and ground truth test data (blue). The
plots show the evolution of the first (left) and second (right) un-
centered moments. To produce these statistics, the model au-
tonomously evolved a set of initial conditions, sampling new
noise at every step and using the dynamics it learnt from train-
ing with the Three–Point scheme (2.5). A strong agreement is ob-
served between the statistical moments generated by the model

and those from the ground truth data.

(A) w2(t) for a model trained on a Central
Discretization dataset.

(B) w2(t) for a model trained on a Three-
Point Discretization dataset.

FIGURE 3.9: Time evolution of the interface width, w2(t), for
models trained on datasets from the (a) Central (2.4) and (b)
Three-Point (2.5) discretization schemes. The models encode the
initial conditions and generate new trajectories by drawing novel
noise at every step. In both cases, the model-generated statistics
(red) accurately reproduce the early-time KPZ growth exponent
(w2 ∼ t2/3) observed in the test data (blue). However, the model

consistently overestimates the final saturation width, wsat
2 .

Generative Task: Two-Point Correlations To further assess the model’s per-
formance, we evaluated its ability to reproduce the spatio-temporal correla-
tions of the process. We computed the spatial two-point connected correlation
function,

Gx,t(ξ) = ⟨h(x, t)h(x + ξ, t)⟩ − ⟨h(x, t)⟩⟨h(x + ξ, t)⟩, (3.12)
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and the temporal autocorrelation function,

Fx,t(τ̃) = ⟨h(x, t)h(x, t + τ)⟩ − ⟨h(x, t)⟩⟨h(x, t + τ̃)⟩ (3.13)

For our analysis, we used the discretized versions of these functions. The spa-
tial correlation is given by Gt

ij = ⟨ht
i h

t
j⟩ − ⟨ht

i⟩⟨ht
j⟩, with j = i + ξ for a given

integer distance ξ. The temporal correlation is Ft
i (τ̃) = ⟨ht

i h
t+τ̃
i ⟩ − ⟨ht

i⟩⟨h
t+τ̃
i ⟩.

Given the translational symmetry of our flat initial condition, we evaluated
these correlations at the central point of the lattice, i = 0. The results were
consistent for models trained on different discretization schemes.

As shown in Figure 3.10, the spatial correlations Gt
0ξ generated by our model

closely match the dataset during the initial phase of the dynamics (t < 100).
However, as time progresses, the model’s predictions for the correlations be-
come progressively smaller than the target values. This is an interesting out-
come, especially considering that the interface width w2 (variance) tends to be
larger in the later stages of the dynamics.

FIGURE 3.10: The spatial two-point correlation function Gt
0ξ at

three different times (t = 50, 200, 500). The x-axis represents the
distance ξ from the central point. The model’s predictions (red)
are compared against the dataset (blue). While the initial corre-
lations are well-matched, the model increasingly underestimates
the correlations at later times. The model was trained on the Cen-

tral approximation scheme (2.4).

In contrast, the temporal autocorrelation F0(τ), shown in Figure 3.11, are
well-reproduced by the model throughout the simulation, with only minor
deviations at the very end.
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FIGURE 3.11: The temporal two-point correlation function F0(τ)
evaluated at position i = 0. The model’s predictions (red) show
excellent agreement with the ground truth (blue), accurately cap-
turing the decay of temporal correlations. Th model was trained

on the Central approximation scheme (2.4).

Mapping and Latent Dynamics. Results are less consistent then the deter-
ministic regime. for what concerns the transformations Φ and Φ−1, with re-
sults often diverging from what we would expect from theory. The output
of the encoder Φ is more consistent with a decaying exponential than an in-
creasing one. Nevertheless, the found mapping is self-consistent; each loss
component approaches the theoretical lower bound meaning that Itô’s Lemma
is approximately satisfied, and the generated trajectories have close statistics
to those of the original dataset. The found dynamical matrices have a close re-
semblance to the structure found in the training regime with given noise (Fig.
3.5). As a consequence, they are consistent with the expected theoretical pre-
dictions.

Tracy-Widom distribution We compared the distributions of the variables
∆hi = ht

i − ht′
i to check wether the trajectories generated by our model exhibit

the characteristic asymmetric tails of the Tracy-Widom distribution (Sect.2.2).
The generated trajectories reproduce bot the left and right tail behaviours.
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(A) Probability density. (B) Probability density in semi-log scale.

FIGURE 3.12: Probability density of the variable ∆h = ht
i − ht′

i
sampled using t − t′ = 10∆t. Samples are gathered once the
width has already plateaued. Variables were rescaled to have 0
mean and unitary variance. The decays of both tails are consis-
tent with the expected analytical form of ≈ exp

(
−c1|∆h|3

)
for the

left tail and ≈ exp
(
−c2|∆h| 3

2

)
for the right tail.

Higher-Order Moments and Cumulants We also analyzed the 3rd and 4th
order moments and cumulants of the generated trajectories. The uncentered
moments show excellent agreement with the test data (Fig. 3.13).

(A) Third uncentered moment ⟨h3(t)⟩. (B) Fourth uncentered moment ⟨h4(t)⟩.

FIGURE 3.13: Comparison of statistical moments from model-
generated trajectories (red) and ground truth test data (blue). The
plots show the evolution of the third (left) and fourth (right) un-
centered moments. To produce these statistics, the model au-
tonomously evolved a set of initial conditions, sampling new
noise at every step and using the dynamics it learnt from train-
ing with the Three–Point scheme (2.5). A strong agreement is ob-
served between the statistical moments generated by the model

and those from the ground truth data.

An analysis of higher-order cumulants reveals a more nuanced performance.
The model successfully captures the general qualitative trends for skewness
(S = w3/w3/2

2 ) and kurtosis (K = w4/w2
2), as depicted in Figure 3.14. Never-

theless, the model struggles to replicate their behaviours quantitatively, espe-
cially for the early-time dynamics of the skewness.
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(A) Skewness evolution. (B) Kurtosis evolution.

FIGURE 3.14: Time evolution of skewness (left) and kurtosis
(right) for a model trained with the Three-Point scheme (2.5).
While the model-generated statistics (red) reproduce the correct
qualitative trends seen in the test data (blue), they deviate quan-
titatively. The discrepancy is most pronounced in the early-time

evolution of skewness.
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Conclusion

We propose a Neural Network model that linearizes the dynamics of non-
linear stochastic processes by mapping them onto a latent space. This enables
the efficient creation of a novel dataset which is statistically similar to the orig-
inal. We defined a new training strategy focused on matching the statistical
properties of the predictions to those of the original dataset. We validated
our approach on datasets generated via the KPZ equation, where an exact lin-
earization is known to exist. The model’s performance converged to a high
level of accuracy, though we note that guaranteed convergence is not yet es-
tablished and is a subject of ongoing research. Training stability could po-
tentially be enhanced through a more informed approach similar to Physics-
Informed Neural Networks (PINNs) [19], where prior knowledge of the under-
lying equations governing the dataset generation process is incorporated into
the model architecture. Furthermore, a significant direction for future work
would be to extend this framework to discover non-local transformations; this
could be done with a similar framework with a more complex architecture and
by adapting the Itô consistency terms in the loss design.
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