
Ricardo Serrano Santa Teresa
Development of a Proprietary AI Model for Road Element Detection: A Comprehensive Approach with Comparative Evaluation.
Rel. Roberto Garello. Politecnico di Torino, Corso di laurea magistrale in Mechatronic Engineering (Ingegneria Meccatronica), 2025
![]() |
PDF (Tesi_di_laurea)
- Tesi
Licenza: Creative Commons Attribution Non-commercial No Derivatives. Download (18MB) |
Abstract: |
This thesis presents the design, development, and evaluation of a proprietary object detection model tailored for road surface defect identification, with a particular focus on potholes. Developed in collaboration with the Italian startup LOKI s.r.l. in relation to its project Asfalto Sicuro, the work addresses the limitations of relying on pre-trained third-party models by proposing fully customized deep learning architectures. Two pre-trained backbones —MobileNetV2 and Darknet-53— were each integrated into a YOLO-inspired architecture featuring a split detection head. Each model was trained and evaluated on a curated pothole detection dataset using extensive data augmentation techniques, including translation, cropping, mosaic patterns, and perspective distortion. Performance was benchmarked against state-of-the-art models (YOLOv8 and Faster R-CNN). |
---|---|
Relatori: | Roberto Garello |
Anno accademico: | 2024/25 |
Tipo di pubblicazione: | Elettronica |
Numero di pagine: | 86 |
Soggetti: | |
Corso di laurea: | Corso di laurea magistrale in Mechatronic Engineering (Ingegneria Meccatronica) |
Classe di laurea: | Nuovo ordinamento > Laurea magistrale > LM-25 - INGEGNERIA DELL'AUTOMAZIONE |
Aziende collaboratrici: | LOKI S.R.L. |
URI: | http://webthesis.biblio.polito.it/id/eprint/36533 |
![]() |
Modifica (riservato agli operatori) |