polito.it
Politecnico di Torino (logo)

Development of a Proprietary AI Model for Road Element Detection: A Comprehensive Approach with Comparative Evaluation

Ricardo Serrano Santa Teresa

Development of a Proprietary AI Model for Road Element Detection: A Comprehensive Approach with Comparative Evaluation.

Rel. Roberto Garello. Politecnico di Torino, Corso di laurea magistrale in Mechatronic Engineering (Ingegneria Meccatronica), 2025

[img] PDF (Tesi_di_laurea) - Tesi
Licenza: Creative Commons Attribution Non-commercial No Derivatives.

Download (18MB)
Abstract:

This thesis presents the design, development, and evaluation of a proprietary object detection model tailored for road surface defect identification, with a particular focus on potholes. Developed in collaboration with the Italian startup LOKI s.r.l. in relation to its project Asfalto Sicuro, the work addresses the limitations of relying on pre-trained third-party models by proposing fully customized deep learning architectures. Two pre-trained backbones —MobileNetV2 and Darknet-53— were each integrated into a YOLO-inspired architecture featuring a split detection head. Each model was trained and evaluated on a curated pothole detection dataset using extensive data augmentation techniques, including translation, cropping, mosaic patterns, and perspective distortion. Performance was benchmarked against state-of-the-art models (YOLOv8 and Faster R-CNN).

Relatori: Roberto Garello
Anno accademico: 2024/25
Tipo di pubblicazione: Elettronica
Numero di pagine: 86
Soggetti:
Corso di laurea: Corso di laurea magistrale in Mechatronic Engineering (Ingegneria Meccatronica)
Classe di laurea: Nuovo ordinamento > Laurea magistrale > LM-25 - INGEGNERIA DELL'AUTOMAZIONE
Aziende collaboratrici: LOKI S.R.L.
URI: http://webthesis.biblio.polito.it/id/eprint/36533
Modifica (riservato agli operatori) Modifica (riservato agli operatori)