
POLITECNICO DI TORINO and
UNIVERSIDAD POLITÉCNICA DE MADRID

MASTER’s Double Degree in MECHATRONICS ENGINEERING
and INDUSTRIAL ENGINEERING

MASTER’s Degree Thesis

Development of a Proprietary AI Model for
Road Element Detection: A Comprehensive

Approach with Comparative Evaluation

SUPERVISORS

Prof. Roberto GARELLO

CO-SUPERVISOR

Caterina LIA

CANDIDATE

Ricardo SERRANO SANTA TERESA

JULY 2025

Development of a Proprietary AI Model for Road Element
Detection: A Comprehensive Approach with Comparative

Evaluation

Ricardo Serrano Santa Teresa

ABSTRACT

This thesis presents the design, development, and evaluation of a proprietary
object detection model tailored for road surface defect identification, with
a particular focus on potholes. Developed in collaboration with the Italian
startup LOKI s.r.l. in relation to its project Asfalto Sicuro, the work addresses
the limitations of relying on pre-trained third-party models by proposing a
fully customized deep learning architecture. Two pre-trained backbones —Mo-
bileNetV2 and Darknet-53— were integrated into a YOLO-inspired architecture
featuring a split detection head. The model was trained and evaluated on a
curated pothole detection dataset using extensive data augmentation techniques,
including translation, cropping, mosaic patterns, and perspective distortion.
Performance was benchmarked against state-of-the-art models (YOLOv8 and
Faster R-CNN).

I

ACKNOWLEDGMENTS

I would like to first thank professor Garello for giving me this opportunity to
work on a subject that aligns so much with my interests.

I am also really grateful for the help received from Caterina, who has guided
me along the whole process, giving me very valuable input for this work. Same
gratitude goes to Francesco and Giovanni, and to LOKI as a whole. They have
provided me with not only the time and resources necessary for the project,
but with a positive and welcoming attitude that is much appreciated.

II

Table of Contents

1 Introduction 1
1.1 Motivation of the project . 1

1.1.1 Control of the training process 2
1.1.2 Ownership and independence 3
1.1.3 Customization and flexibility 3

1.2 Goals and outline . 4
1.3 Thesis outline . 4

2 State of the art 6
2.1 Road defect detection . 6

2.1.1 Fields of interest/applications 6
2.1.2 Current established technologies 7

2.1.2.1 Traditional 2D image processing 7
2.1.2.2 Deep Learning 2D image processing 8
2.1.2.3 Stereo images 10
2.1.2.4 Depth sensors 10

2.2 Object detection background . 10
2.2.1 R-CNN . 11
2.2.2 YOLO models . 12
2.2.3 SSDs . 13

2.3 Belonging of current project . 14

3 Materials and methods 15
3.1 Architecture . 15

3.1.1 Design considerations . 17
3.1.2 Backbone selection . 19

3.1.2.1 MobileNetV2 19
3.1.2.2 Darknet-53 . 21

3.1.3 Common architecture blocks 22
3.1.3.1 Conv layer . 23

III

TABLE OF CONTENTS

3.1.3.2 Residual block 23
3.1.3.3 Bottleneck block 24
3.1.3.4 Activation stage 24

3.1.4 Head selection . 25
3.1.4.1 Split head . 25

3.1.5 Neck selection . 26
3.1.6 Post-processing . 27

3.1.6.1 Greedy NMS (Non-Maximum Suppression) . . 27
3.1.6.2 Containment filter 28

3.2 Training characteristics . 29
3.2.1 Loss function . 29

3.2.1.1 Coordinates loss Lcoord 30
3.2.1.2 Detected object loss Lobj 32
3.2.1.3 Not detected object loss Lnoobj 33
3.2.1.4 Class loss Lclass 33
3.2.1.5 Total Loss . 34

3.2.2 Learning rate . 35
3.2.3 Batch size . 36

3.3 Baseline Models . 37
3.3.1 YOLOv8 . 37
3.3.2 Faster R-CNN . 39

3.4 Datasets . 40
3.4.1 Potholes Detection Dataset 41
3.4.2 Data augmentation . 42

3.4.2.1 Horizontal flipping 42
3.4.2.2 Cropping . 42
3.4.2.3 Translation . 44
3.4.2.4 Mosaic pattern 45
3.4.2.5 Perspective distortion 45
3.4.2.6 Final padding 45

4 Results 47
4.1 Overview . 47

4.1.1 Performance metrics . 47
4.1.1.1 Precision . 48
4.1.1.2 Recall . 48
4.1.1.3 mAP@0.5 . 48

4.2 YOLOv8 . 49
4.3 Faster R-CNN . 49
4.4 Effect of data augmentation . 50

IV

TABLE OF CONTENTS

4.4.1 No augmentation . 51
4.4.2 Horizontal flipping . 51
4.4.3 Cropping . 52
4.4.4 Translation . 53
4.4.5 Mosaic . 53
4.4.6 All augmentations . 54

4.5 Final results with proprietary model 55
4.5.1 MobileNetv2 as backbone 56
4.5.2 DarkNet-53 as backbone 57

4.6 Examples and potential flaws discussion 59
4.6.1 Size and positioning . 59
4.6.2 Annotation criteria . 59
4.6.3 Loss of attention . 64

4.7 Clean test dataset . 66

5 Conclusions and future work 68

Bibliography 70

Dedications 77

V

List of Figures

2.1 Example of masking a Region of Interest by selecting a vanishing
point as reference.Taken from [12]. 8

2.2 Simple CNN architecture. Generated using NN-SVG [13]. 9
2.3 Comparison of R-CNN architectures. Taken from [33]. 12
2.4 Yolov1 architecture diagram. Taken from [35]. 13
2.5 Comparison of YOLO and SSD architectures. Taken from [36]. . 14

3.1 Diagram of YOLO’s core structure. Taken from [40]. 16
3.2 Bounding box coordinates, relative to grid cell. 17
3.3 Diagram of MobileNetV2’s blocks. Taken from [41]. 20
3.4 Architecture of Darknet-53 as used in YOLOv3. Taken from [42]. 22
3.5 Residual block diagram. 23
3.6 Bottleneck block diagram. 24
3.7 Split head structure diagram. 26
3.8 Example of box discarded by greedy NMS. 28
3.9 Example of boxes discarded based on containment. 28
3.10 Example of learning rate scheduler function with warm-up and

decay. 36
3.11 Structure of SPP and SPPF. Taken from [46]. 38
3.12 Original use of PANet. The bottom-up structure (b) shortens

the path for the layers coming from FPN backbone (a). Taken
from [47]. 38

3.13 Region Proposal Network (RPN) used in Faster R-CNN. Taken
from [53]. 39

3.14 Schemes for addressing scales and sizes. (a) Pyramids of images.
(b) Pyramids of filters. (c) Pyramids of anchor boxes, approach
used for Faster R-CNN. Taken from [53]. 40

3.15 Examples of images from Pothole Detection Dataset [55]. 41
3.16 Examples of transformations used for data augmentation, applied

on the same base image (Perspective distortion is hard to notice
by sight). 43

VI

LIST OF FIGURES

4.1 Precision-Recall curve obtained for Faster R-CNN. 50
4.2 Loss evolution when trained with no augmentation techniques. . 51
4.3 Loss evolution when trained just with horizontal flip. 52
4.4 Loss evolution when trained just with cropping. 52
4.5 Loss evolution when trained just with translation. 53
4.6 Loss evolution using all augmentation techniques. 55
4.7 Metrics obtained by each augmentation technique. 55
4.8 Performance from models with different heads. Split head with

bottlenecks (left) and split head with convolutions (right). . . . 56
4.9 Performance from models with different backbones. 58
4.10 Comparison of best performing models against baseline. 58
4.11 Examples of "good" predictions with few potholes. 60
4.12 Examples of "bad" predictions with multiple potholes. 61
4.13 Effect of annotation criteria (1). Ground truth on the left,

predictions on the right. 62
4.14 Effect of annotation criteria (2). Ground truth on the left,

predictions on the right. 63
4.15 Examples of lost attention with a clear pothole present. Ground

truth (blue) and predictions (red). 65
4.16 Comparison of best performing custom models with the updated

cleaner test dataset against baseline performances. 67

VII

Introduction

Chapter 1

Introduction

This thesis aims to explore and evaluate the potential of a proprietary object
detection model trained to detect road defects, in comparison with pre-trained
model available online. The work was done in collaboration with LOKI s.r.l., a
young Italian startup, in relation to its project Asfalto Sicuro, which intends to
improve the safety of the roads by automatically detecting and mapping the
main road defects, as potholes, cracks, and alligator cracks.

1.1 Motivation of the project

As previously outlined, the Asfalto Sicuro project is dedicated to the detection
and geolocation of road surface anomalies, such as potholes and cracks. The
primary data source for this task consists of road images acquired through a
camera system mounted on a moving vehicle. To enable automatic identification
of surface defects from these images, an object detection algorithm is employed.
Currently, the detection pipeline leverages pre-trained models developed by
third parties.

In the following section, we examine the technical and strategic motivations for
pursuing the development of a proprietary object detection model tailored to
the specific requirements of the project. Some of the main concerns are shown
in the Table 1.1.

1

Introduction

Aspect Custom Model Pre-trained Model
(e.g. YOLOs)

Ownership &
Licensing

Full control, no external de-
pendencies or license restric-
tions.

AGPL or commercial li-
censes, usage may require at-
tribution or fees. [1]

Cost High initial cost (R&D, com-
pute, validation).

Low upfront cost, recur-
ring license fees may apply
(e.g. Enterprise license for
YoloV8).

Flexibility &
Customization

Fully adaptable architecture
and feature set.

Limited to provided struc-
ture, customization con-
strained.

Optimization Tuned for specific data/hard-
ware, supports pruning,
quantization, etc.

Pre-optimized for general
cases, adaptation needed for
custom deployments.

Deployment Can target edge/mobile effi-
ciently.

Often requires conversion or
simplification.

Maintenance Updates fully managed inter-
nally.

Dependent on third-party up-
dates and support.

Vendor Lock-in None, infrastructure indepen-
dent.

Risk of dependency on
providers or APIs.

Legal Risks Lower risk, licensing is fully
controlled.

Higher risk, misuse of open
licenses can have legal impli-
cations. [2] [3]

Table 1.1: Pros and cons of developing a custom object detection model versus
using a pre-trained model, such as the available YOLO versions.

1.1.1 Control of the training process

First of all, the task of detecting road defects inherently requires a customizable
model, one that can be trained on domain-specific data and fine-tuned to
achieve the desired performance. This is true for most object detection tasks
that aim at detecting a specific element or set of elements which are not included
in the generic datasets. The most common technique for this kind of task is to
take a network that was trained on a generic dataset and retrain it using the
new data that the model is supposed to learn from. This is done by unfreezing
either some or all of the layers of the Neural Network, so that the weights can
change and adapt to the new data.

Building a proprietary model allows not only to retrain it if needed, but also
to change the whole architecture of the model. In this way, it is much easier
to implement new features if needed further down the line. Some possible

2

Introduction

examples of these changes are: adapting the model for a new type of data,
adding other kinds of predictions, using the trained parts for other purposes,
or adding custom filters in any of the stages. It also has the potential to be
fine-tuned with full control of the process.

1.1.2 Ownership and independence

From a company’s perspective, full ownership of the model used provides
significant strategic advantages. It allows the company to be much more
independent from any change in the environment, reducing its reliance on
third-party providers. Machine Learning has long been characterized by a
strong open-source culture, but there has been a shift towards a more closed
approach in recent years. This is mainly due to the presence of more and more
complex models, which employ significant resources to develop. One of the
consequences is that most advanced detection models are licensed under fees for
commercial use. Owning a proprietary model would not only eliminate these
costs but also mitigate the risk of any change in said fees. The availability of
these models can also change, limiting their use or making it more opaque to
the user, which leads to less control of the model.

For instance, Table 1.2 shows the licenses that apply to some of the most
common YOLO models. The first models are generally less restrictive in their
use compared to the new ones.

YOLO Version License Commercial Use Allowed
YOLOv1–v3 Public Domain Yes
YOLOv4 GPLv3 No (copyleft, must open-

source your code)
YOLOv5 AGPLv3 (code), Ultralytics

License (models)
Limited (requires license for
SaaS or closed-source use)

YOLOv6 Apache 2.0 Yes
YOLOv7 GPLv3 No (copyleft)
YOLOv8 AGPLv3 (code), Ultralytics

License (models)
Limited (same as YOLOv5)

Table 1.2: License types and commercial use allowance for YOLO models

1.1.3 Customization and flexibility

Another significant advantage of developing a custom detection model lies in the
increased flexibility and independence from any specific third-party platform.
Relying on pre-trained models often entails constraints related to the underlying

3

Introduction

infrastructure, software compatibility, or licensing restrictions. In contrast, a
proprietary model can be adapted and optimized to suit various deployment
environments, regardless of their computational characteristics.

For example, if the goal is to perform inference on edge devices —such as
embedded systems or mobile hardware with limited processing power— the
model architecture can be modified accordingly. Techniques such as model
quantization, pruning, and knowledge distillation can be employed to reduce the
computational load and memory footprint without substantially compromising
performance. This enables efficient real-time processing even in resource-
constrained environments.

Considering these advantages, the development of a proprietary object detec-
tion model represents a compelling direction that aligns with both technical
requirements and long-term system adaptability.

1.2 Goals and outline

The main goal of this project is to develop the custom model and be able to
compare it to other related models, such as R-CNN and YOLOv8. Therefore,
here are the points that should be achieved:

• Designing and implementing a custom, trainable model architecture.

• Identifying and/or constructing suitable datasets to enable comparative
evaluation, specifically for the task of pothole detection.

• Training state-of-the-art models on the curated dataset for benchmarking
purposes.

• Training the proposed model using the same dataset to assess its perfor-
mance.

• Comparing the performance of the developed model against existing
approaches.

1.3 Thesis outline

This report will take the following structure:

• State of the Art: This section presents an overview of the different
technologies involved in this thesis. It mainly addresses methods of road

4

Introduction

defect analysis and the field of object detection.

• Materials and methods: This section describes in detail the charac-
teristics of the models both used and developed, as well as the resources
employed for it.

• Results: Here all the data obtained will be presented and discussed,
focusing on the comparison between models and their suitability.

• Conclusions: Some brief conclusions about the whole project and future
related work.

5

State of the art

Chapter 2

State of the art

2.1 Road defect detection

2.1.1 Fields of interest/applications

Road conditions play a critical role in ensuring traffic safety for all users. Among
the various types of surface degradation, potholes are some of the most frequent
and hazardous defects. They can cause significant damage to vehicles and pose
a heightened risk of accidents, especially for road users with less stability and
protection, such as cyclists and motorcyclists. According to Cycling UK, 15%
of the cyclists they assist after crash-related injuries were involved in incidents
caused by road surface defects [4]. Additionally, potholes are a leading cause
of suspension and tire damage in passenger vehicles, often resulting in costly
repairs and increased accident risk during evasive maneuvers or braking [5].

However, safety is not the only concern related to road defects. Any road
incidence affects traffic flow, resulting in higher delays, bigger road jams, slower
traffic, and lower efficiency. Some research suggests that poor road conditions
result in a decrease of vehicle speed by 55% and the average exhausted emission
increases by 2,49% [6].

These are some of the reasons why authorities and maintenance companies
have focused on identifying these defects to later fix them. This maintenance
has typically been reparatory, usually needing a report of an accident or strong
disturbance of the road to then take note of the incident and repair it. This
process is slow and inefficient, which has led the sector to gradually adopt
a more preventive approach. However, prevention relies on early assessment
of road conditions and timely detection of relevant defects. Performing this

6

State of the art

task manually through human labor is not feasible, which is why automatic
detection technologies have emerged as a valuable tool.

These detection systems are also employed in other fields. For instance, the rise
of self-driving vehicles has created a demand for real-time detection capabilities,
which has significantly driven the advancement of these technologies. They are
valuable not only in fully autonomous vehicles [7], but also in driver-assistance
systems. When fast enough, such systems can serve as active safety mechanisms,
identifying defects that may pose a risk to the vehicle and enabling appropriate
responses.

2.1.2 Current established technologies

After reviewing the importance of defect detection in ensuring road safety, the
next step is to examine the technologies and approaches currently available
to support this process. This work focuses on the detection of potholes, as
they are among the most common pavement defects and have a considerable
impact on overall road conditions. Nevertheless, the approaches reviewed also
include other types of defects, given the significant overlap in the underlying
technologies, many of which are designed for multipurpose detection.

Most methods discussed in the literature adopt an image-based approach,
relying on 2D visual data in either RGB or grayscale format. These images
are often captured using mobile cameras, which are both widely available and
cost-effective. Additionally, the abundance of well-established image detection
techniques and pre-trained models makes it possible to adapt existing solutions
to this task, providing a strong foundation for further development.

2.1.2.1 Traditional 2D image processing

There is a wide range of methods that can be used to detect defects based
on just image data. The review at [8] provides an analysis of some of the
traditional image-based methods used for pavement assessment, showcasing
their advantages and limitations. As an example, the work done in [9] focuses
on three of these techniques and it portrays how they can be used for difficult
tasks such as road fine-defect detection.

Traditional image processing usually includes thresholding algorithms, which
consist of applying a composition of filters to the image’s pixels and then
introducing a threshold to determine the most probable areas where the image
would show defects. These areas can then be used to perform detection or
segmentation in the image. Those filtering functions are mostly hand-crafted

7

State of the art

or chosen between options that have been proven to be effective. Some of the
most common thresholding algorithms are Otsu’s thresholding [10], triangle
thresholding [11], and adaptive thresholding [12].

In the review [8] there is also a thorough analysis of many classification methods
and their performance for pavement defects. The majority of them are super-
vised machine learning algorithms such as Support Vector Machine (SVM) or
simple Linear Regression (LR), but it also includes some unsupervised learning
methods such as k-means clustering. It even mentions some use of dynamic
neural networks used for threshold selection.

However, most of these methods have one limitation in common: they are
very sensitive to foreign objects. Therefore, the images used for these studies
rarely include anything other than the pavement. Some works propose a pre-
processing solution for this limitation by first isolating the road with a crafted
mask, feeding then to the algorithm only the pavement region. An example of
this masking is shown in Figure 2.1.

Figure 2.1: Example of masking a Region of Interest by selecting a vanishing
point as reference.Taken from [12].

They are also quite sensible to lighting conditions, which adds complexity to
the pre-processing stage. When the images come from a moving vehicle in
a real traffic scenario, both foreign objects and different lighting conditions
are present. Therefore, a more robust method is required to avoid a large
pre-processing step to isolate and adapt the pavement part of the image.

2.1.2.2 Deep Learning 2D image processing

Some of the traditional image processing approaches reviewed earlier include
machine learning algorithms such as SVM and LR. A subset of machine learn-

8

State of the art

ing methods that has shown remarkable performance in tasks such as image
classification and object detection is known as Deep Learning (DL). DL models
are composed of multiple layers of neural networks capable of learning complex,
hierarchical patterns from raw input data. For image-based tasks, Convolu-
tional Neural Networks (CNNs) are the most commonly used architecture, as
they are specifically designed to handle spatially structured data such as images.
CNNs use convolutional layers with learnable filters to automatically extract
relevant features from the input while preserving spatial relationships. These
filters are typically followed by non-linear activation functions, pooling layers,
and normalization steps, progressively increasing the level of abstraction. This
enables CNNs to capture low-level features such as edges in early layers, and
high-level semantic features such as shapes and objects in deeper layers, making
them highly effective for image classification, detection, and segmentation tasks.
An example of a simple CNN diagram is shown in Figure 2.2.

Figure 2.2: Simple CNN architecture. Generated using NN-SVG [13].

The inclusion of these methodologies made substantial progress in pothole
detection [14]. For instance, in [15] a mean average precision of 0.75 is obtained
for pothole detection with the use of CNN based models. The images used for
the training are street shots, which contain foreign objects such as vehicles,
street signs and pedestrians. They were even capable of deploying the detection
in real-time scenarios, given how efficient these kinds of models can be. One
of the key advantages of these models is their versatility. They often learn to
identify multiple types of objects, which makes them able to discern irrelevant
data present in the images.

Given the huge development of DL object detection in recent years, their use
in the field of road defect detection has also grown, adapting some of the latest
models to the task. There are many examples of the use of the three main
technologies, which are Single Shot Multibox Detectors (SSD) [16] [17], YOLO

9

State of the art

models [18] [19] [20] [21] [22], and Region based CNNs (R-CNN) [23] [24] [25].

Since this is the technology that will be employed for the project, its details
will be covered later, mainly in Section 2.2 and Section 3.

2.1.2.3 Stereo images

Still using an image-based approach, the use of stereo cameras provides better
3D information, resulting in higher robustness in detection and better precision
for depth estimation [26] [27].

However, this method has its drawbacks, such as the difficulty in handling
reflective or texture-less surfaces. For this technology to be accurate, the
images must have some features to use as references for the 3D estimation. The
deployment of a stereo camera also often requires manual calibration, which
is case-dependent and would need periodic maintenance. Regardless, stereo
cameras remain a popular choice for depth estimation due to their affordability,
simplicity, and effectiveness within their limitations [28].

2.1.2.4 Depth sensors

In recent years, there has been a growing interest in using depth maps or point
clouds, which are usually less sensitive to changes in illumination conditions [28].
These alternatives give a better 3D understanding of the elements detected,
which help evaluate how severe a defect can be.

However, these approaches require other kind of hardware, such as laser scanners
[29] [30] or LiDARs [31], which can render them impractical for certain projects
due to constraints like cost, device complexity, and operational considerations.
For instance, LiDAR systems often involve high equipment and maintenance
costs, while laser scanners may require precise calibration and stable envi-
ronmental conditions to function effectively. Additionally, the deployment of
such systems may not be feasible in projects with limited budgets, challenging
terrain, or tight portability requirements.

2.2 Object detection background

Object detection is a field of Computer Vision (CV) where the goal is to
determine instances of objects (road defects in this case), figuring out their
location inside an image. It is exploited in many applications such as robot
vision, autonomous driving and video surveillance. CNNs have played a vital
role in the development of CV, and especially in Object Detection tasks [32].

10

State of the art

Its flourishing has greatly benefited from the emergence of parallel computing
systems, allowing to perform intense training tasks more efficiently.

The most common use of CNNs for object detection tasks can be grouped in
three types of models: R-CNNs, YOLO models, and SSDs.

2.2.1 R-CNN

Region based CNNs are the most common region-based architectures. They
are a three-step process:

• Selective Search process is first used to propose a number of regions,
potential locations where the image is more probable to have an object
to detect.

• After that, a CNN extracts features from each of the proposed regions.
The proposed areas must be adapted to the expected size of the CNN to
be able to take them as input, usually achieved by warping and resizing
each region.

• Finally, SVMs are applied to determine if an object is or not present in
each region. In the case of a multiclass model, there would be a SVM for
each of the classes to detect. A regressor is used to adjust the coordinates
of the detected box in each region.

Once the model has selected which boxes contain an object, some post-processing
is used, being Non-Maximum Suppression (NMS) the most common as well as
some containing filters.

Some variations of this architecture were later developed to improve either
accuracy, efficiency or sensibility. Figure 2.3 shows a diagram of some of the
various R-CNN architectures. For instance, Fast R-CNN introduces a region of
interest pooling layer before the CNN. This makes it possible to directly feed
the image into the CNN, instead of feeding each of the proposed regions.

11

State of the art

Figure 2.3: Comparison of R-CNN architectures. Taken from [33].

Both the original R-CNN and Fast R-CNN use selective search to propose
regions, which acts as a bottleneck for fast computation. This caused the
development of Faster R-CNN, which carries the task of proposing regions
by using another network: Region Proposal Network, a fully convolutional
network.

Mask R-CNN [34] is quite similar to Faster R-CNN, adding a third branch to
the output of the network. Instead of having just a class label and a bounding-
box offset, it also includes a mask that represents the object, providing more
information on the detection.

2.2.2 YOLO models

YOLO (You Only Look Once) takes its name from the fact that the image only
passes once through the network, therefore being a single-stage detector. The
input image is split into a square grid of equal size cells (commonly 13x13),
and it predicts the same number of bounding boxes for each of them. Along
with the box coordinates, the model also outputs a confidence score and a class
prediction for each of the boxes, as shown in Figure 2.4. A threshold is set to
only take the most confident predictions, thus obtaining the detected boxes.

All of these predictions come from the CNNs feature extractor, which is then
fed into another network to predict at the same time the confidence and the
coordinates of the boxes.

12

State of the art

Figure 2.4: Yolov1 architecture diagram. Taken from [35].

One of the main limitations of the original YOLO architecture is its difficulty
in accurately detecting small objects. This issue arises from the coarse spatial
resolution of the final feature maps used for prediction, which may not capture
fine-grained details necessary for identifying small targets. To address this, later
versions of YOLO introduced multi-scale prediction strategies. These involve
generating outputs from multiple grid sizes, each corresponding to different
stages of the feature extraction pipeline. Using intermediate feature maps with
higher spatial resolution alongside deeper, more abstract representations, the
model improves its ability to detect objects of varying sizes, particularly smaller
ones.

2.2.3 SSDs

Single Shot multibox Detectors are also single-stage, but they aim at solving
the issue of YOLO in relation to small objects. They make use of multiple
feature maps at different resolutions, similar to some of the later versions of
YOLO. However, they focus on matching the predictions to predefined anchor
boxes at each of the feature maps, instead of letting the model predict boxes
in each of the predefined gridcells. They are slightly slower than YOLO, and
they add a couple of extra convolutional layers due to the multiple detection.
A comparison of both architectures is shown in Figure 2.5, taken from the
publication where this technology was first presented [36].

13

State of the art

Figure 2.5: Comparison of YOLO and SSD architectures. Taken from [36].

2.3 Belonging of current project

As previously mentioned, this project relies on RGB images as the primary
data source.

To perform pothole detection, a version of the YOLO algorithms will be
employed. The goal is to investigate the capabilities of YOLO’s architecture
in this context, evaluate its performance on the available dataset, and explore
strategies for data adaptation to maximize the model’s effectiveness.

14

Materials and methods

Chapter 3

Materials and methods

Building a DL model requires defining two main elements: the architecture
of the neural network and the data on which it will be trained. Another key
aspect is the method used to train the model, which will depend on both the
data used and the structure of the system.

• The architecture defines how each layer and component —such as
convolutions, activation functions, or pooling layers— of the CNN is con-
nected. It is the core of the system, and it will determine the complexity,
capabilities, efficiency, and overall suitability for the task.

• The data used to train and evaluate the model determines how much
information it will be exposed to, being even more important when some
part of the network has not been trained before. It is essential to take
into account not only the amount, but also the quality of the data that is
fed into the model. As it will be later discussed, there are techniques to
improve the exposure of the model to this data, so that it can extract as
much information as possible.

3.1 Architecture

As previously stated, the model developed in this work was inspired by the
architecture of the YOLO family of object detectors. Therefore, it is relevant
to briefly examine the evolution and core components of the original YOLO
architecture.

YOLOv1, introduced in 2016 [35], proposed a novel approach to object detection
by framing it as a single regression problem, directly predicting bounding

15

Materials and methods

boxes and class probabilities from full images in one evaluation. Its backbone
was inspired by GoogLeNet [37], but replaced the inception modules with
a combination of 1×1 convolutions followed by 3×3 convolutional layers, as
detailed in [38]. The feature extraction pipeline also included max-pooling
layers to progressively reduce spatial dimensions while preserving semantic
information.

In its original design, YOLOv1 concluded with two fully connected layers,
responsible for producing the final predictions. However, later versions aban-
doned these dense layers in favor of a fully convolutional design, which improved
generalization and allowed variable input sizes. This shift not only enhanced
efficiency but also aligned with modern deep learning practices favoring convolu-
tional operations throughout the network. Another key characteristic common
in the YOLO family is the use of LeakyReLU as an activation function for
convolutional layers. The difference with the standard ReLU is that it has a
slope in the negative part, in opposition to the standard ReLU which maps
any negative input to zero. This feature avoids neurons "dying" and becoming
useless when a section of the network goes to negative numbers during training.
By introducing a small slope, the neuron remains active improving gradient
flow and therefore obtaining a better convergence.

The architecture of YOLO algorithms varies throughout versions, but the
core structure and design components have remained the same. As shown in
Figure 3.1, it is composed by a backbone, a neck and a head [39]:

Figure 3.1: Diagram of YOLO’s core structure. Taken from [40].

• Backbone: It is a CNN that performs the feature extraction, obtaining
different scale feature maps from the input images. It heavily uses the
1 × 1 and 3 × 3 convolutional block mentioned before. Some of the main
backbones used throughout the models are the DarkNet19, first employed
in YOLOv2 and Darknet-53, used in YOLOv3 to improve precision.

• Neck: A network that fuses and merges the extracted features from the

16

Materials and methods

backbone to obtain spatial information, which can later be used for the
detection or segmentation task. Depending on the version, it can take
input from various stages of the backbone, or just from the last feature
map output.

• Head: The head is responsible for refining the object detection, taking
the feature map information and giving the final shape to the predictions.
Depending on the model, there can be multiple detection heads that
predict objects at different grid sizes.

3.1.1 Design considerations

Before exploring the selection of each component in the network and properly
understanding the structure, the shape of the predictions must be described.

The proposed models follow the YOLO-style bounding box structure, where
the output consists of a grid over the input image, and each cell predicts a fixed
number of bounding boxes. Each bounding box encodes the spatial coordinates,
an objectness score —which reflects the confidence that an object is present—,
and a predicted class label for the detected object.

Figure 3.2: Bounding box coordinates, relative to grid cell.

17

Materials and methods

Each bounding box prediction can be therefore seen as an array with the
structure:

{cx, cy, w, h, conf , label}

• cx and cy encode the center coordinates, ranging [0, 1]. These coordinates
are relative to the grid cell, so that the spatial representation of each cell
is the same. As shown in Figure 3.2, (cx = 0, cy = 0) would mean the
box is in the top left of the cell and (cx = 1, cy = 1) would be the bottom
right.

• w and h represent the width and height of the bounding box, where
(w = 1, h = 1) refers to a bounding box with the size of the full picture.

• The objectness term —conf— also ranges [0, 1], as commonly done in
these models.

• The label term can be encoded as a one-hot array, where each class has a
confidence prediction ranging [0, 1] and the one with the higher activation
is assigned to the bounding box.

Once the structure of each predicted bounding box has been defined, it is
important to consider other design elements that shape the model’s output
behavior. Some of those key aspects are discussed below.

• Although the developed model structure allows multiclass detection, the
tests have been done using it as a single-class detector, focusing only on
potholes.

• The size of the output grid is set at 7 × 7, just like the first version in
YOLOv1. Although later versions make use of larger grid sizes —varying
from 13 × 13 in YOLOv2 up to 80 × 80 in YOLOv8—, the single-class
nature of the model implies that fewer objects are expected per image,
reducing the need for widely distributed spatial attention.

• A total number of 2 boxes is predicted in every grid cell. Relying again
on the fewer objects expected in each image, the need for a larger number
of predicted boxes is not supposed to be a concern.

• Since the experiments have been done using a single class, the feature of
the one-hot class encoding remains inactive.

• To define which are the final predicted boxes, a threshold must be chosen.

18

Materials and methods

Any box whose objectness is higher than the threshold will be considered
a predicted object. However, the definition of this parameter is done after
the training, so it belongs closer to the testing stage.

3.1.2 Backbone selection

For the backbone used in this work’s model, there have been two main paths
explored: MobileNetV2 and Darknet-53.

3.1.2.1 MobileNetV2

MobileNetV2 was presented in 2018, where the authors discuss how a simple
network architecture allowed them to build a family of highly efficient mobile
models [41]. Their basic building block —the bottleneck depth-separable
convolution with residuals— allows for memory-efficient inference while relying
on using standard operations present in most neural frameworks.

Understanding the architecture begins with the depthwise separable convolu-
tions, which decompose a standard convolution into two simpler operations: a
depthwise convolution followed by a pointwise convolution.

In a standard convolution, each output channel is computed by applying a
k × k filter across all input channels, resulting in a computational cost of:

H · W · Cin · Cout · k2

In contrast, a depthwise separable convolution first applies a k × k filter to
each input channel independently (depthwise convolution), followed by a 1 × 1
convolution that combines these outputs across channels (pointwise convolution).
The combined cost is:

H · W · C · (k2 + Cout)

This results in a significant computational reduction at only a small accuracy
trade-off. The key difference lies in separating spatial filtering (depthwise) from
channel mixing (pointwise), making this approach highly efficient for lightweight
networks.

The term bottleneck refers to the architectural pattern within this block. Unlike
traditional bottleneck layers that first reduce dimensionality, MobileNetV2
blocks initially expand the number of channels, apply depthwise separable

19

Materials and methods

convolution, and then project the result back to a lower-dimensional space.
This expansion–compression structure preserves model expressiveness while
keeping the computational cost low.

Figure 3.3: Diagram of MobileNetV2’s blocks. Taken from [41].

The residual connection is a skip path that directly adds the input of a block
to its output. This technique is used to enable better gradient flow during
training and to preserve information across layers. For a residual connection
to be used, the input and output of the block must have the same spatial and
channel dimensions. Therefore, as shown in Figure 3.3, MobileNetV2 only uses
the residuals when the stride is s = 1.

Putting all of these design concepts together, the structure of the block is the
one shown in Table 3.1.

Input Operator Output

h × w × k 1 × 1 conv2d, ReLU6 h × w × (tk)
h × w × (tk) 3 × 3 dwise s = s, ReLU6 h

s
× w

s
× (tk)

h
s

× w
s

× (tk) linear 1 × 1 conv2d h
s

× w
s

× k′

Table 3.1: Bottleneck residual block, transforming from k to k′ channels, with
stride s, and expansion factor t. Adapted from [41].

The whole MobileNetV2 architecture is the one described in Table 3.2, where
each line describes a sequence of 1 or more identical layers, repeated n times.
The first layer is a standard convolution composed of 32 filters. All layers in the
same sequence have the same number c of output channels. The first layer of
each sequence has a stride s and all others use stride 1. All spatial convolutions
use 3 × 3 kernels. The expansion factor t is applied as described in Table 3.2.

20

Materials and methods

Input Operator t c n s

2242 × 3 conv2d - 32 1 2
1122 × 32 bottleneck 1 16 1 1
1122 × 16 bottleneck 6 24 2 2
562 × 24 bottleneck 6 32 3 2
282 × 32 bottleneck 6 64 4 2
142 × 64 bottleneck 6 96 3 1
142 × 96 bottleneck 6 160 3 2
72 × 160 bottleneck 6 320 1 1
72 × 320 conv2d 1 × 1 - 1280 1 1
72 × 1280 avgpool 7 × 7 - - 1 -

1 × 1 × 1280 conv2d 1 × 1 - k - -

Table 3.2: MobileNetV2 architecture. Adapted from [41].

This network was considered as an option for the custom architecture based on
simplicity, efficiency and proven ability to extract relevant features of images
to perform object detection. Efficiency would become particularly useful if the
model if it is ever used for inference on edge devices.

3.1.2.2 Darknet-53

Darknet-53 was first introduced in 2018 as the backbone for YOLOv3. As
explained in the original paper [42], it is a hybrid approach between the Darknet-
19 used in YOLOv2 [43] and the new residual network designs that were coming
up at that time. It uses the successive 3 × 3 and 1 × 1 convolutional layers
characteristic of the YOLO family, while adding some shortcut connections.
The whole structure is shown in Figure 3.4 and results in a network much larger
than the Darknet-19, but also much more powerful at feature extraction. It
allowed YOLOv3 to perform on par with the models that were state of the art
at that time while better utilizing the GPU structure and, for instance, being 3
times faster than the SSD variants.

21

Materials and methods

Figure 3.4: Architecture of Darknet-53 as used in YOLOv3. Taken from [42].

Although more recent YOLO versions have shifted toward alternative backbone
architectures, Darknet-53 remains a foundational component in the evolution
of YOLO models. YOLOv4 further built upon this structure with CSPDarknet-
53, incorporating Cross Stage Partial connections to enhance efficiency while
preserving representational power.

While later models such as YOLOv5, YOLOv6, YOLOv7, and YOLOv8 adopted
new design paradigms, the legacy of Darknet-53 is evident in their shared focus
on optimizing both performance and computational cost.

In this project, Darknet-53 was selected as an option for the backbone due to
its proven ability to extract multi-scale features effectively, its compatibility
with YOLO-style detection heads, and its relative simplicity compared to newer
architectures. This makes it a practical and reliable choice for road defect
detection, particularly in scenarios where computational resources are limited.

3.1.3 Common architecture blocks

There are some building blocks common the architectures employed that will
be later referenced when explaining each option, so they must be first described

22

Materials and methods

in detail.

3.1.3.1 Conv layer

Any convolutional layer mentioned in the custom architecture refers to a 2D
convolution with n filters and stride s = 1 as default. If not stated otherwise,
the kernel size is 3 × 3. They include a weight regularizer (L2) and sometimes
include a dropout to avoid overfitting, but it will be specified when it is in use.
Just like most YOLO models, LeakyRELU is applied as an activation function
after every convolutional layer (except for the last one, which will be explained)
with a slope of α = 0.1 for the negative range.

Normalization is applied before the activation function, although some of the
last layers do not include this part. The normalization chosen is the Layer
Normalization present in the tensorflow framework, even though YOLO models
commonly use batch normalization for this purpose. The reasoning behind
this choice is the computational limitation for the training stage. To fully
exploit the computational power of the GPU used, the models are trained in a
batch of n = 1. This would make a batch normalization useless, so the layer
normalization is chosen as its performance is not dependent on batch size.

3.1.3.2 Residual block

This structure is very similar to the one used in Darknet-53, composed by a
block of two convolution layers that is repeated N times. The first one has a
kernel of 1 × 1 and n

2 filters, while the second one has the standard 3 × 3 kernel
and n filters. The result these convolutions is latter added to the input of the
block, which is what gives it the residual character, as shown in Figure 3.5.

Input

Output

Figure 3.5: Residual block diagram.

23

Materials and methods

3.1.3.3 Bottleneck block

A similar approach is followed in the custom bottleneck block used in the
proposed architecture, which aims at changing the dimensionality of the input
from c1 to c2 in the output while reducing the computation needed. As shown
in Figure 3.6, this block also consists of two consecutive convolutional layers:
the first one applies a 1 × 1 kernel to reduce the number of channels from c1

to a smaller intermediate value c′ = e · c2, and the second one uses a 3 × 3
kernel to project the features back to c2 channels. If the number of input and
output channels match (c1 = c2), the input is added to the output of the two
convolutions, forming a residual connection that facilitates gradient flow during
training.

Input

Output

Optional
residual
shortcut

Figure 3.6: Bottleneck block diagram.

3.1.3.4 Activation stage

The last layer of any of the heads is where the final activation functions are
placed. It takes the output of the previous convolution layers and gives it
the final shape. It splits the final array to perform the following activation
functions:

• Sigmoid to the (c1, c2) center coordinates, so that it favors movement of
the box center inside each cell.

• Exponential function for the width and height, so that the scale of
change remains the same no matter the size of the box.

• Sigmoid to the objectness as it is common practice for any value that rep-
resents confidence of a prediction (also used for class labels if a multiclass

24

Materials and methods

model is employed).

3.1.4 Head selection

The detection head is the last part of the model, where predictions are given
their final shape taking as input the extracted feature maps. It takes the feature
map already with the final grid size (7 × 7) and a high depth —measured as
number of filters coming from the feature map—, reducing its depth until it
has the desired final shape. In case of single-class detection, this last size is:

nGridCells · nBoxesP erCell · nP arametersP erBox = (7 · 7) · 2 · 5

Throughout the work, different architectures for the detection head have been
considered. Based on the YOLO family, the main consideration is to keep a
simple architecture that can be efficient, making use of the building blocks that
have been proven great performance in other models.

3.1.4.1 Split head

This architecture first reduces the depth with two Bottleneck blocks and then
with a convolution with kernel 3 × 3, decreasing the number of filters at each
stage. It then splits the result to perform different operations to the coordinates
and to the confidence, as shown in Figure 3.7.

It uses three convolutional layers for both cases. The first two convolutions
employ a kernel size 1 × 1 for the confidence to favor isolation of prediction
in terms of which cell gets contains an object. For the coordinates, these two
first convolutions have a kernel size 3 × 3 and only the last one has kernel
1 × 1. This aims to retain spatial awareness, supposing that information of the
surroundings of the cell will remain relevant to predict the position and size.

In this case, the first four convolution layers use a small dropout. It goes from
0.01 in the first one to 0.005 for the rest. The last two convolutions both
for coordinates and for confidence do not include normalization, so that the
network has freedom to predict different results depending on the input picture,
not forcing the range of predictions.

25

Materials and methods

e=0.5

e=0.5

Input

Concatenate

Output

Figure 3.7: Split head structure diagram.

3.1.5 Neck selection

Early versions of YOLO (v1 and v2) used minimal or no explicit neck structure
to connect the feature map to the detecting head, relying instead on direct
connections between feature maps and the output layers. These architectures
performed detection on a single scale, limiting their ability to capture objects of
varying sizes. Subsequent versions, beginning with YOLOv3, introduced more
sophisticated neck designs, such as Feature Pyramid Networks (FPN) and later
Path Aggregation Networks (PANet), enabling multi-scale feature fusion for
improved performance, particularly in detecting small objects. Recent versions,
such as YOLOv7 and YOLOv8, have further refined neck structures to enhance
efficiency and adaptability.

However, in this work, the model architecture follows a simpler approach akin
to the original YOLO versions, with only minimal adaptation layers bridging
the backbone and detection head. Their main purpose is to adapt the backbone

26

Materials and methods

output dimension to the input of the detecting head (7×7×512) while avoiding
to lose feature information, by using either bottleneck or residual blocks to
reduce the depth and some convolutional layer with stride of 2 or an average
pooling layer to reduce grid size if needed.

3.1.6 Post-processing

To obtain the final predictions, a final stage processes the network’s output.
As previously noted, only the bounding boxes with confidence scores above
a specified threshold are retained. This threshold can therefore control the
sensitivity of the model.

In models such as YOLO, where there are many predictions for each region
of the picture, it is common to find boxes that belong to the same object.
To avoid redundant predictions, two functions are included to the end of the
predicting pipeline: greedy NMS and a containment filter. These functions
are not trainable, they both depend on a threshold parameter that set either
manually or by evaluating the best performing for each case.

3.1.6.1 Greedy NMS (Non-Maximum Suppression)

Non-Maximum Suppression removes boxes with a high overlap between them,
assuming that two boxes with a high IoU (Intersection over Union) are probably
reacting to the same instance of an object.

Greedy NMS is the most straight-forward method of this kind, and its logic is
performed as follows:

• All selected boxes are sorted in descending order based on their confidence
score.

• The first box is kept. The algorithm then computes the IoU between
that box and the rest. Any box with a value higher than the threshold is
removed, like the one shown in Figure 3.8.

• The same step is then performed until every box is either kept or discarded.

It is common to set the IoU threshold at 0.5, but for this case the value is set
at 0.4. Based on the nature of the detection, where two conjoined defects can
either be considered as one or two distinct potholes, it would be expected that
two boxes with some overlapping are referring to the same defect. That is the
reasoning behind using a stronger NMS.

27

Materials and methods

𝐼𝑜𝑈 > 0.4

𝐶𝑜𝑛𝑓 = 0.9

𝐶𝑜𝑛𝑓 = 0.8

𝐶𝑜𝑛𝑓 = 0.8

Figure 3.8: Example of box discarded by greedy NMS.

3.1.6.2 Containment filter

NMS is able to discard many redundant predictions, but there are some clear
cases that it fails to identify, like the ones shown in Figure 3.9. For instance,
there could be a box fully contained in another one with a significant difference
in size. If the smaller box is a fraction of the bigger one lower than the NMS
threshold, it would remain after applying greedy NMS. A containment filter is
applied to filter those kinds of cases.

𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑚𝑒𝑛𝑡 > 0.6

𝐶𝑜𝑛𝑓 = 0.9

𝐶𝑜𝑛𝑓 = 0.8

𝐶𝑜𝑛𝑓 = 0.8

𝐶𝑜𝑛𝑓 = 0.7

Figure 3.9: Example of boxes discarded based on containment.

Containment refers to the fraction of the inner box’s area that is inside an
outer box. This filter checks the containment ratio for every pair of boxes. If
the fraction is higher than a set threshold, the bounding box with the highest
confidence is kept.

Although it is common to use high threshold values for the containment, ranging
from 0.8 to 0.85, for this work the threshold was set at 0.6. The stronger filter

28

Materials and methods

follows the same reasoning as the one chosen for the NMS.

3.2 Training characteristics

This section provides a detailed overview of the training characteristics and
parameters used in the development of the proposed model. Key elements of
the training configuration are discussed, including the choice of loss function,
learning rate scheduling strategies, optimizer settings, and other hyperparame-
ters critical to the model’s convergence and performance. These aspects were
selected and adjusted with the aim of promoting robust learning while avoiding
overfitting and optimizing generalization capabilities. The criteria behind these
choices are outlined in the following subsections.

CNNs are trained like like most neural networks, by exposing the network to
labeled data that serves as ground truth, consisting of the input data —the
image— and the expected output the network should produce —the bounding
boxes—. For every batch of data, the network predicts an output that is
compared to the ground truth. A loss function then computes a scalar that
quantifies how far the prediction is from the ground truth. This loss is used
to guide the adjustment of the network’s weights through the gradient descent
algorithm, which updates each weight in proportion to its contribution to the
overall error.

The term hyperparameters refers to variables that can be varied to tune the
training process. For this type of model, the most critical hyperparameters
include the batch size, the learning rate, and the loss function weights, which
can influence the model’s convergence and performance.

3.2.1 Loss function

In object detection tasks, the loss function plays a critical role in guiding
the learning process by quantifying the discrepancy between the predicted
bounding boxes and the ground truth. Most object detectors, including region-
based and single-stage models, employ composite loss functions that combine
multiple objectives, such as bounding box regression, objectness scoring, and
classification accuracy.

Specifically, YOLO models utilize a multi-part loss function comprising:

• Localization loss: Measures the difference between predicted and true
bounding box coordinates. Early YOLO versions (e.g., YOLOv1) used
mean squared error (MSE), but this was later refined to better handle

29

Materials and methods

scale invariance and overlapping boxes.

• Confidence loss: Penalizes incorrect objectness predictions.

• Classification loss: Quantifies the difference between predicted class
probabilities and the true class labels, typically using cross-entropy.

Later YOLO versions introduced anchor boxes and used more robust loss
functions like binary cross-entropy (BCE) for confidence and classification, and
IoU-based metrics (e.g., GIoU, DIoU, CIoU) for localization. These advanced
loss functions help the model better capture the overlap between predicted and
ground truth boxes and improve performance on small or overlapping objects.

For this work, the loss is computed by summing the weighted contributions of
the following terms: coordinates loss, detected object loss, not detected object
loss, and class loss. Each of these terms has an associated term λi:

Loss = λcoord ∗ L̃coord + λobj ∗ L̃obj + λnoobj ∗ L̃noobj + λclass ∗ L̃class

3.2.1.1 Coordinates loss Lcoord

This term computes how different the localization of the predicted boxes is
from the ground truth. Although the first versions of YOLO models used
simple approaches such as MSE, this work focused on IoU-based approaches.
The final loss function uses Complete Intersection over Union (CIoU), which is
considered one of the best options to promote effectiveness and convergence.
CIoU is computed between a predicted box and a true box as follows:

CIoU = 1 − IoU + ρ2(b, bgt)
c2 + αv

where:

• IoU represents the Intersection over Union between the predicted bounding
box b and the ground truth bounding box bgt.

IoU = Area of Overlap
Area of Union

• ρ(b, bgt) denotes the Euclidean distance between the centers of the pre-

30

Materials and methods

dicted and ground truth boxes.

ρ2(b, bgt) = (bx − bgt
x)2 + (by − bgt

y)2

• c is the diagonal length of the smallest enclosing box covering both b and
bgt.

c2 = (cw)2 + (ch)2

• v measures the similarity of aspect ratios between the two boxes.

v = 4
π2

A
arctan wgt

hgt − arctan w

h

B2

• α is a positive trade-off parameter that balances the aspect ratio term.

α = v

(1 − IoU) + v

CIoU combines overlap area, distance between box centers, and aspect ratio
similarity providing a more comprehensive localization loss. This makes it more
effective than traditional IoU or even generalized IoU (GIoU), particularly in
promoting stable and efficient convergence during training.

The coordinates term is only added to the loss at the cells where at least one
true box exists, since there are no boxes to compare for the rest of the cells.

To improve the accuracy of the localization penalty, a box matching technique is
employed. This approach begins by computing the IoU between each predicted
box and all the true boxes associated with the same grid cell. Among these,
the true box with the highest IoU is selected, and only the CIoU computed for
this best-matching box is used in the loss calculation. This strategy effectively
compares each predicted box to its most similar true box, ensuring that the
model is not penalized for diverse predictions that may occur among different
boxes within the same cell.

A term is later added that computes the center distance. That is, the euclidean
distance between the center of the predicted box and its assigned true box. This
term is weighted by a constant λcenter, which is set at a low value compared to
the rest of the terms. The aim of this term is to add a constant "pull" towards
the correct localization, no matter what the intersection is.

Both the relevant CIoUs and the center terms are then squared and summed,

31

Materials and methods

obtaining the coordinates loss Lcoord as showed in Equation 3.1

Lcoord =
Ø
i∈C

1
CIoU2

i + λcenter · ρ2
i

2
(3.1)

where:

• C denotes the set of grid cells that contain at least one ground truth
bounding box.

• CIoUi represents the Complete Intersection over Union between the
predicted box and the best-matching ground truth box in cell i.

• ρ2
i denotes the squared Euclidean distance between the center of the

predicted box and the center of its matched ground truth box in cell i:

ρ2
i = (bx,i − bgt

x,i)2 + (by,i − bgt
y,i)2

• λcenter is a weighting factor for the center distance term, typically set to
a small constant value.

3.2.1.2 Detected object loss Lobj

The detected object loss, denoted as Lobj, penalizes incorrect objectness confi-
dence predictions. It combines two components: one based on assigned predic-
tions, and one as a fallback for unmatched ground-truth slots. Specifically, the
loss is computed as:

Lobj =
Ø

i

1
mi(1 − ĉi)2 + oi(1 − ri)(1 − ĉi)2

2
(3.2)

where:

• i indexes grid cells and predicted boxes.

• ĉi is the predicted objectness confidence for box i.

• mi is the assigned mask, indicating whether box i has been matched to a
ground truth box.

• oi is the object mask, indicating whether box i corresponds to a location
where a ground truth object exists.

32

Materials and methods

• ri = maxk ri,k represents the maximum responsibility score over potential
matches for box i, indicating whether it was assigned any responsibility
for matching.

The first term, mi(1 − ĉi)2, penalizes incorrect confidence for matched boxes
(i.e., those with a clear assignment to ground truth). The second term, oi(1 −
ri)(1 − ĉi)2, supervises unmatched ground truth boxes, acting as a fallback by
penalizing low confidence in locations where ground truth objects exist but
no assigned match was found. This hybrid approach ensures robustness by
supervising both matched and unmatched predictions, thereby improving the
model’s objectness prediction capabilities.

3.2.1.3 Not detected object loss Lnoobj

The loss associated with predictions at locations where no object is present is
denoted as Lnoobj . This term penalizes high objectness confidence scores in grid
cells or boxes that have not been assigned to any ground truth object. It is
computed as:

Lnoobj =
Ø

i

1
(1 − mi)ĉ2

i

2
(3.3)

where:

• i indexes grid cells and predicted boxes.

• mi is the assigned mask, indicating whether box i has been matched to a
ground truth object.

• ĉi is the predicted objectness confidence for box i.

This loss applies to boxes where mi = 0 (i.e., not matched to any ground truth
box) and penalizes predictions with high confidence scores in regions where
no object exists. This encourages the model to minimize false positives by
suppressing incorrect predictions in empty areas of the image.

3.2.1.4 Class loss Lclass

Although class loss is not used for the experiments of this work given the
single-class nature, it is included in the model in case of a multiclass detection
is desired. The associated term is noted as Lclass and, as most classification
models, it would use a categorical cross-entropy loss, computed as:

33

Materials and methods

Lclass =
Ø

i

oi · LCE (yi, p̂i) (3.4)

where:

• i indexes grid cells and predicted boxes.

• oi is the object mask, indicating whether a true object is present in box i.

• yi is the one-hot encoded ground truth class vector for box i.

• p̂i is the predicted class probability vector for box i.

• LCE represents the categorical cross-entropy loss:

LCE (yi, p̂i) = −
Ø

c

yi,c log p̂i,c

3.2.1.5 Total Loss

After computing each individual loss term, they are normalized and combined
into the total loss Ltotal, as expressed in Equation 3.5. The terms corresponding
to object-containing boxes (e.g., Lcoord, Lobj , Lclass) are normalized by dividing
by the total number of grid cells containing at least one true box, denoted
as Nobj. Conversely, the term associated with background (i.e., Lnoobj) is
normalized by dividing by the total number of grid cells without any true
box, denoted as Nnoobj. This normalization ensures that each predicted box,
whether for an object or background, contributes proportionally to the total
loss, regardless of the number of boxes present in a particular image.

The total loss is computed as:

Loss = λcoord
Lcoord

Nobj

+ λobj
Lobj

Nobj

+ λnoobj
Lnoobj

Nnoobj

+ λclass
Lclass

Nobj

(3.5)

where:

• Lcoord is the coordinate (localization) loss, as defined in Equation 3.1.

• Lobj is the object confidence loss, as defined in Equation 3.2.

• Lnoobj is the background (no-object) confidence loss, as defined in Equa-
tion 3.3.

34

Materials and methods

• Lclass is the classification loss, as defined in Equation 3.4 (set to zero in
this case).

• λcoord, λobj, λnoobj, and λclass are weighting coefficients that balance the
contributions of each loss component.

• Nobj denotes the total number of grid cells containing at least one ground
truth object, ensuring proper normalization.

• Nnoobj denotes the total number of grid cells without any ground truth
object.

This formulation maintains a balance between the contributions of different
loss components, ensuring that no single aspect disproportionately influences
the total loss due to variations in the number of objects or background cells
across images.

3.2.2 Learning rate

Another key parameter that affects the training process is the learning rate. It
determines the size of the step taken by the gradient descent algorithm when
updating the network’s weights. Specifically, the learning rate defines how
significantly the weights are adjusted in response to the computed gradient of
the loss function for each batch of data.

It is common practice to use a learning rate scheduler, which defines the
evolution of the training rate value throughout the epochs (the term "epoch"
refers to each cycle where the network is trained using all the data). The error
is expected to be high at the beginning and diminish as the model improves.
Therefore, a high rate is employed at first and decay throughout the training,
letting the model explore the solution space in the beginning and using a more
precise tuning at the end.

35

Materials and methods

Figure 3.10: Example of learning rate scheduler function with warm-up and
decay.

For this training, an exponential decay is used, which is one of the most common
functions to use as an scheduler. It updates the learning rate for each batch,
decaying in each epoch to 97% of the value of the previous one. Additionally, a
warm-up phased is used for the first epochs, which slowly brings the learning
rate from 0 to the initial value, using a linear function. This warm-up is
particularly useful when a network has not been previously trained preventing
the weights from diverging to extreme values, slowly exposing the network to
the data. The result scheduler function follows the shape shown in Figure 3.10.

3.2.3 Batch size

Another fundamental parameter in the training process is the batch size, which
defines the number of samples processed together in a single forward and
backward pass of the model. The choice of batch size affects both the stability
and efficiency of learning. Smaller batch sizes can introduce more variability
in gradient updates, potentially aiding generalization but slowing convergence.
On the contrary, larger batch sizes provide smoother gradient estimates and
enable more efficient computation, but they may require careful tuning of other
parameters, such as the learning rate, to avoid suboptimal learning dynamics.

Given the limited size of the datasets used, a relatively small batch size was
selected, typically ranging from 4 to 16 images per batch. To maximize GPU
utilization and maintain computational efficiency, the model was trained using a
gradient accumulation strategy. In this approach, the model runs one image at a
time, computing and accumulating the gradients for each forward-backward pass.
Once the accumulated gradients reach the effective batch size, the optimizer
applies the weight update. This technique effectively simulates training with a

36

Materials and methods

larger batch size, allowing for full utilization of GPU resources while avoiding
memory constraints associated with large physical batches. However, it limits
the use of batch normalization for the network layers, as previously mentioned.

3.3 Baseline Models

To evaluate the performance of the proprietary model, some state-of-the-art
models will be trained using the same data. When choosing the baseline
models the goal is to find established and well-documented technologies that
can be trained on custom data, while preserving some similarities to the model
evaluated.

3.3.1 YOLOv8

The first baseline model selected is YOLOv8 [44], which was released by
Ultralytics on 2023. Although Ultralytics did not publish a formal research
paper for it, the model builds upon the advancements of previous YOLO
versions, such as YOLOv7 [45]. Some of the key features that it took from
previous versions are the following:

• Multi-scale prediction: As done in most of the later YOLO versions,
the model predicts at different scales, which improves the detection of
objects with a wide variety of size. In particular, YOLOv8 predicts at
three different scales.

• C2f blocks: These blocks build upon the idea of residual connections from
Darknet-53 mentioned in Section 3.1.2.2. While residual blocks simply
add the transformed and identity paths, C2f splits the input into two
parts, processes one with transformations, and then fuses (concatenates)
the features. This results in better feature reuse, improved learning
efficiency, and a lightweight architecture.

• Use of SPPF (Spatial Pyramid Pooling-Fast) modules: This
module enhances feature aggregation at multiple scales. As shown in
Figure 3.11, it applies a single pooling layer sequentially. It is an attempt
at making it lighter than the original SPP module, which was first
implemented in YOLOv3 and applied a different pooling layer in parallel
for each scale.

37

Materials and methods

Figure 3.11: Structure of SPP and SPPF. Taken from [46].

• PAN (Path Aggregation Network) style neck: This kind of structure
was first introduced in 2018 aiming at boosting information flow in
proposal-based instance segmentation framework. It uses bottom-up path
augmentation, shortening the information path from the lower layers to
the top features, as seen in Figure 3.12. [47]

Figure 3.12: Original use of PANet. The bottom-up structure (b) shortens
the path for the layers coming from FPN backbone (a). Taken from [47].

The strong performance obtained with YOLOv8 has made it a popular option
for a wide range of projects and research studies. The framework provided by
Ultralytics simplifies the process of training on custom data, which also adds
to how widespread it has become. As a result, YOLOv8 has been applied in
numerous studies addressing pothole detection, such as [48, 49, 50]. Although
these works differ in their datasets and methodologies, they all rely on YOLOv8
as the core detection model.

Both the performance and the wide use of this model on custom data have
been the main reasons to adopt YOLOv8 as one of the baseline models for
comparison in this work.

38

Materials and methods

3.3.2 Faster R-CNN

As previously mentioned, RCNN have played a huge roll in object detection,
and they still are some of the most used architectures. Therefore, adding one
of these models as a baseline was considered a good option.

To train it on custom data, the tools provided by Detectron2 were employed.
Detectron2 was built by Facebook AI Research (FAIR) to support rapid im-
plementation and evaluation of novel computer vision research, including algo-
rithms such as Mask R-CNN and Faster R-CNN [51]. It simplifies the process
of training these models on custom data. For this work, Faster R-CNN was the
architecture used.

As mentioned in Section 2.2.1, Faster R-CNN is composed of two models.
The first module is a deep fully convolutional network that proposes regions
—Region Proposing Network (RPN)—, and the second module is the Fast
R-CNN detector [52] that uses these proposed regions. [53]

Some important characteristics of their approach are the following:

• RPN: It takes an image as input and outputs a set of rectangular object
proposals, with an objectness score. To generate these proposals, they
slide a small network over the convolutional feature map. Each sliding
window is mapped to a lower-dimenstional feature, which is fed into some
fully-connected layers.

• Anchor boxes: The proposals are parametrized relative to k anchor
boxes, which help with the diversity of aspect ratios. A diagram of this
structure is showed in Figure 3.13.

Figure 3.13: Region Proposal Network (RPN) used in Faster R-CNN. Taken
from [53].

• Multi-Scale anchors: To address the challenge of varying object sizes,

39

Materials and methods

R-CNN algorithms had used two main approaches, where either the image
was fed into the network at different scales, or the filters were applied with
multiple sizes. As shown in Figure 3.14, Faster R-CNN uses a pyramid of
anchors, using anchors of multiple scales and aspect ratios. Therefore, it
only relies on images and feature maps of a single scale and uses filters of
a single size.

Figure 3.14: Schemes for addressing scales and sizes. (a) Pyramids of images.
(b) Pyramids of filters. (c) Pyramids of anchor boxes, approach used for Faster
R-CNN. Taken from [53].

The adoption of Faster R-CNN as a baseline model in this work was motivated
by its established reputation for accuracy and reliability in object detection
tasks. As one of the most influential two-stage detectors, it has served as a
reference standard in numerous academic and industrial benchmarks.

3.4 Datasets

There is no benchmark dataset for potholes yet, so the selection of data to use
varies from one project to another, depending on the goal and focus of each
case.

It is worth mentioning the Road Damage Dataset (RDD2022), which is one of
the biggest annotated datasets for road defect detection. It was released as part
of the Crowd sensing-based Road Damage Detection Challenge (CRDDC’22),
which gathers researchers to propose solutions for automatic road damage
detection in multiple countries. [54]

RDD2022 contains four main types of road damage: longitudinal cracks, trans-
verse cracks, alligator cracks and potholes. However, potholes are the least
represented of those defects. After filtering all the images from RDD2022 to
select just the ones containing potholes in a scenario similar to the desired one,
just 1734 images were found suitable to use.

Some of these images that contain potholes are also noisy, including the same
reflection for the all the images taken in a country or blocking a considerable

40

Materials and methods

part of the view with the car’s dashboard. Furthermore, some pothole instances
were not labeled as thoroughly as the cracks, which can mislead the model
during training. Considering all these reasons, the dataset was not considered
suitable for this work.

Although smaller in size, the Potholes Detection Dataset was considered a
better option for this project.

3.4.1 Potholes Detection Dataset

Potholes Detection Dataset is publicly available at [55] and consists of 665
annotated potholes. The dataset was created and shared by Atikur Rahman
as part of his undergraduate thesis. The original dataset did not contain a
validation set, so for this project it was reshuffled into a 70%|15%|10% split
(499 images for training, 100 for validation, 66 for testing).

Figure 3.15: Examples of images from Pothole Detection Dataset [55].

This dataset shows a good balance of clear object instances while still appearing
in a realistic scenario, some examples are shown in Figure 3.15. It has been
used in other similar projects regarding pothole detection, such as [56] which
focuses on the use of dilated convolution, or some other works from the same
author as the dataset [57].

Given the smaller size of the dataset, it was considered very convenient to apply
some data augmentation techniques as part of data pre-processing.

41

Materials and methods

3.4.2 Data augmentation

Data augmentation is a technique used to artificially increase the size of a
training dataset, using the original images to create new ones by applying
multiple kinds of transformations. It is especially useful to increase the size of
small datasets, but that is not the only benefit of using this technique.

By exposing the model to many variations of the original data, it improves the
generalization for unseen data. The increased diversity and the bigger input
size also help preventing overfitting. In essence, data augmentation allows the
model to better utilize the information of the original dataset, getting a more
complete feature extraction and a better generalization. This ultimately leads
to better performance of the model.

This work has studied the effect of several techniques, whose transformations
will now be described. Figure 3.16 showcases an example of each of them.

3.4.2.1 Horizontal flipping

Flipping the image is one of the basic transformations applied for data aug-
mentation. It keeps the training symmetrical over the desired axis. In the
case of road images, vertically flipping the image (over a horizontal axis) is not
common, since there is some spatial information that must be preserved —e.g.:
sky above, road below, potholes facing up—. However, horizontally flipping
maintains the proper perspective.

3.4.2.2 Cropping

Cropping the image consists on isolating a smaller area of the image. Since
the model takes square images as an input, this transformation crops a square
section of the original image. This technique serves multiple purposes:

• Size diversity: The model is exposed to zoomed smaller sections of the
image, which in practice provides an object in a different size.

• Spatial diversity: It is common for these kind of datasets to have a
bias where the object tends to be towards the center of the image. The
cropping can happen in any part of the image, so the object’s center can
be anywhere in the image. The diversity on these coordinates can help
decrease the effect of the bias. It is particularly important for models like
the YOLO family, given how each part of the image predicts an object. In
this case, the filters might favor one cell over another when a significant
bias is present.

42

Materials and methods

(a) Original image (b) Horizontal flip

(c) Cropping (d) Translation

(e) 2 × 2 mosaic (f) Perspective distortion

Figure 3.16: Examples of transformations used for data augmentation, applied
on the same base image (Perspective distortion is hard to notice by sight).

43

Materials and methods

For the tests made, cropping is performed a set number of times for each
original image, depending on the influence desired. Each time an image is
cropped the coordinates are chosen randomly, either with a uniform function
or with a biased function that focuses on the edges.

For this work, the cropping was performed as follows:

• A random zoom is chosen in range [0.75, 0.9], where a value of 1.0 would
mean taking the whole image and 0.5 would take a square of half the
width or height. If the zoom is not enough to provide a square image
without padding, the zoom parameter is set to the minimum necessary
for it.

• The coordinates of the cropping are then chosen randomly but biased
towards the edges, using a uniform distribution u and computing the offset
as sin2(πu) · max_val. The max_val parameter is the maximum
offset that allows to keep the square cropping in the image.

3.4.2.3 Translation

The translation takes new random center coordinates and shifts the whole
image towards them. It uses a uniform distribution with range [0, 0.4] in the
horizontal axis and [0, 0.2] in the vertical axis.

The maximum translation in the horizontal axis is greater for two main reasons:

• In a real-life scenario, potholes’ position will vary farther horizontally,
since it can be from one edge of the road to the other.

• Aspect ratio for this type of images is usually wide, so vertical edges
are padded most of the time. It is convenient to expose the model to
slight shifts in vertical padding, but it is not as important as exposing
the left-most or right-most grid cells to the presence of an object.

Unlike cropping, the image does not change in scale, so after shifting there are
empty parts in the resulting image. All these pixels are padded with black.

The benefits of using translation are similar to the ones for cropping. However,
the idea here is to force the attention of the model on different grid cells,
exposing the same object with same scale to multiple parts of the detection
network. When inferring with the model, the non-square images will also be
padded with black pixels, so it is convenient to include different paddings in
the training stage.

44

Materials and methods

3.4.2.4 Mosaic pattern

Mosaic compositions are very common in the training stage of YOLO models,
where multiple images are placed in a square pattern —usually 2 × 2 or 4 × 4
patterns—. It addresses the diversity in object sizes, exposing the network to
smaller objects throughout the whole space of the image.

The mosaics used in this work have a pattern of 2 × 2 and were made applying
the following steps:

• Four random images are first selected from the training dataset.

• Each image is horizontally flipped as explained above, with a probability
of 0.5.

• Each image is then cropped, obtaining a square image with no padding.

• All four images are resized to half the size and placed in the 2 × 2 pattern.

The resulting image needs no padding, since all images have a full view and
are squared. This technique can also help increasing the attention in edge grid
cells, as well as preventing the centered bias.

3.4.2.5 Perspective distortion

All images receive a slight random perspective distortion, shifting their corners
to a maximum of 12% and adjusting it to the original size. After that, the
images are all slightly sharpened, enhancing their edges and then blending it
with the original image.

This technique aims at preventing overfitting and addressing the different
conditions where an image can be taken.

3.4.2.6 Final padding

Images can be taken in any aspect ratio, but the input size of the model is a
square image. There are three main options to deal with this mismatch:

• Cropping a square portion of the image. It would eliminate part of the
image, losing some information. Moreover, cropping is already performed
as part of the data augmentation, so its effect is already taken into
account.

• Scaling all dimensions of the image to fit a square ratio. Although it is
common for some object detection models, when the aspect ratio of the

45

Materials and methods

input image is far from square, the distortion of the final image would
highly affect the feature extraction.

• Padding the edges of the image. It adjusts the longer side to fit the
model’s input size and pads the remaining space with a constant value

—typically 0, i.e. black—. This method is common practice for YOLO
models, as it preserves the dimensions of the objects. If the model is
exposed to padded images during training, it is able to account for the
void space.

Therefore, black padding is performed as described above for any image that is
not already squared before feeding it to the model.

46

Results

Chapter 4

Results

4.1 Overview

In this section, the multiple tests done with each model will be explained,
comparing the performance of the proprietary architectures with that of the
baseline models. Additionally, the effect of some training parameters in the
final performance will be discussed.

4.1.1 Performance metrics

To evaluate the results between different models, there is the need to find a
metric that compares the predicted output and the ground truth throughout
the whole test dataset. It must be independent from the type of model used,
so that any model can be evaluated no matter the architecture employed.

In this case, three standard practices in the field of object detection will be
used to evaluate model performance: precision, recall, and mAP@0.5. These
metrics provide a balanced assessment of a model’s ability to accurately detect
and localize objects across the test dataset.

For the baseline models, these are directly obtained via their training framework.

For the custom model, a positive prediction refers to any predicted bounding
box with a confidence —objectness— higher than a set threshold, which controls
how sensitive the model is. It varies throughout the tests, but it always is in
range [0.7, 0.8]. Those boxes are then processed, as explained in Section 3.1.6,
to get the final positive predictions.

True Positives (TP) refer to any bounding box that is predicted where a box is

47

Results

also present in the ground truth. For a predicted box to be matched in these
tests, it must share an Intersection over Union (IoU) greater than a threshold
with any of the true boxes. The threshold is set to 50% (just like in mAP@0.5).
Two boxes are never matched with the same true box for these metrics, as it
would lead to faulty results.

Any other predicted box which does not share an IoU greater than the threshold
(or any one whose match has already been used for another prediction) is
considered a False Positive (FP).

4.1.1.1 Precision

Precision is a metric that measures the accuracy of the positive predictions,
computed as a ratio of true positives in relation to all the positives.

Precision = TP
TP + FP

4.1.1.2 Recall

Recall measures the model’s ability to detect all relevant objects in the input
images, computed as a ratio of the true positives and all the instances present
in the ground truth.

Recall = TP
TP + FN

False Negatives (FN) refer to any true box that has not been matched to a
prediction.

4.1.1.3 mAP@0.5

Precision and recall often work as tradeoffs to each other, where aiming at
increasing one often decreases the other. The mean Average Precision at IoU
threshold of 50% provides a broad assessment of a model’s performance, and it
takes into account both the precision and recall obtained.

mAP@0.5 summarizes the detector’s performance over all predictions by com-
puting the average precision (AP) at a fixed IoU threshold (0.5 in this case),
and then averaging it over all classes. Since the current implementation is
for a single-class detector, the mAP@0.5 effectively reduces to computing the
AP@0.5 for that class.

48

Results

Average Precision (AP) is computed as the area under the precision-recall curve.
To compute it, the 11-point interpolation method is applied. This method
samples the precision at 11 fixed recall levels: {0.0, 0.1, 0.2, . . . , 1.0}. For
each recall level r, the maximum precision value observed for any recall greater
than or equal to r is selected —Pinterp(r)—. The final AP@0.5 is obtained by
averaging these 11 interpolated precision values:

AP@0.5 =
q

r∈{0, 0.1, ..., 1.0} Pinterp(r)
11

This approach provides a stable approximation of the area under the curve,
smoothing out small fluctuations in the precision-recall plot.

4.2 YOLOv8

This model was trained with the Ultralytics framework, obtaining the following
performance metrics:

Precision = 0.840 Recall = 0.652 mAP@0.5 = 0.768

The architecture used was the YOLOv8s, which comprises around 11.1 million
parameters. It was pretrained on the COCO dataset, one of the standard
practices for general object detection models. The training for this test was
carried out for 50 epochs.

The training pipeline also includes some data augmentation techniques, such
as the following:

• Geometric augmentations: horizontal flip, random translation and mosaic
augmentation (mosaic deactivated for the last 10 epochs).

• Picture distortions: HSV-based adjustments, blur, grayscale conversion
and histogram equalization.

4.3 Faster R-CNN

This model was trained via Detectron2, also for 50 epochs. The Precision-Recall
curve is shown in Figure 4.1, obtaining a mAP@0.5 of 71.0%.

To have a fair comparison of precision and recall metrics, the precision value

49

Results

Figure 4.1: Precision-Recall curve obtained for Faster R-CNN.

is taken at the same recall point obtained in YOLOv8’s test (R = 65.2%),
obtaining the following performance metrics

Precision = 0.771 Recall = 0.652 mAP@0.5 = 0.710

4.4 Effect of data augmentation

Before carrying out the final trainings of the proprietary model, it is interesting
to test the effect of each data augmentation technique, to check which ones are
worth adding to the data processing pipeline.

The following training experiments aim at isolating each of these techniques.

All these tests were performed using an input size of 448 × 448 × 3 for the
images and the following model architecture:

• MobileNetV2 as a backbone, using as output the feature map resulting
from the block labeled as "block_13_expand_relu", which is a feature
map of output size 28 × 28 × 576. It is common for custom models using
MobileNetV2 to extract features from this layer, as it captures abstract
semantic features while keeping a moderate spatial resolution.

• Neck composed by a residual block —explained in Section 3.1.3.2—
followed by a convolutional layer with stride s = 2 and an average pooling
layer of pool size p = 2. This neck aims at reducing the size of the feature

50

Results

grid twice, to achieve the final grid size 7 × 7 × f that the head can take
as input.

• The split architecture explained in Section 3.1.4.1 was used as the detec-
tion head.

4.4.1 No augmentation

The first test was done with just the original dataset, establishing baseline
performance for later comparisons.

Precision = 0.269 Recall = 0.215 mAP@0.5 = 0.213

Figure 4.2: Loss evolution when trained with no augmentation techniques.

Other than the performance metrics obtained, the evolution of the loss function
throughout the training, shown in Figure 4.2 shows an early overfitting, where
the training loss keeps decreasing but the validation loss flattens out. It could
be a consequence of the small dataset size.

4.4.2 Horizontal flipping

For this test, every original image was flipped and added to the dataset.

Precision = 0.325 Recall = 0.245 mAP@0.5 = 0.247

51

Results

Figure 4.3: Loss evolution when trained just with horizontal flip.

The performance metrics improve, as well as the minimum loss value obtained
in the validation set. The validation loss evolution shown in Figure 4.3 also
diverges from the training loss a few epochs later than in the previous case.

4.4.3 Cropping

This test was performed adding two randomly cropped sections of each of the
original images.

Precision = 0.286 Recall = 0.260 mAP@0.5 = 0.249

Figure 4.4: Loss evolution when trained just with cropping.

Recall was the metric that improved the most when including cropping. This
could be due to the model recognizing potholes in places where it did not before.
However, it is worth mentioning that these values are relatively low for the ones
obtained by standard object detection models, so any conclusions based on

52

Results

them could be not representative of the reasons behind them. More importantly,
the validation loss shown in Figure 4.4 keeps a negative slope further down the
training process, which would be a sign of overfitting reduction.

4.4.4 Translation

This test was performed adding two random translations for each of the original
images.

Precision = 0.394 Recall = 0.298 mAP@0.5 = 0.298

Figure 4.5: Loss evolution when trained just with translation.

All the metrics significantly improved, as well as the loss evolution obtained,
which again diverges later in the training process as shown in Figure 4.5.

4.4.5 Mosaic

Mosaic augmentation introduces high variation in the images, creating new
patterns with sizes and positions very different from the original dataset.
Although the goal of this test is to isolate the effect of the technique, the flipped
images were kept as part of the dataset. That way, the amount of images that
remain with the same size of the original is larger, so more mosaic images can
be introduced without the model overfitting to that pattern.

For every image in the original dataset, four new ones were created with the
2 × 2 grid as explained in Section 3.4.2.4. The performance obtained is the
following:

Precision = 0.404 Recall = 0.301 mAP@0.5 = 0.302

53

Results

Similar to the YOLOv8 training pipeline, the mosaic images were removed
from the dataset for the last 10 epochs. The goal of this technique is also to
prevent the final model from overfitting to the mosaic pattern, which will not
appear in real images.

The performance improved significantly, both from the test with just the original
dataset and from the one with flipping included.

4.4.6 All augmentations

Once each augmentation technique has proven to achieve better performance
by their own, they were all included in the pipeline for the last test. The ratio
in which each was used is the following:

• Horizontal flip: Each original image was added flipped

• Cropping: Same as in the test, every image was randomly cropped
twice.

• Translation: Also as in the test, every image was randomly translated
twice.

• Mosaic: To keep a relevant ratio, six mosaic images were created for
every original one in the dataset.

Precision = 0.422 Recall = 0.299 mAP@0.5 = 0.300

These are the metrics obtained. Although significantly higher than the ones
obtained with no augmentation, they are not much better than the performance
obtained with just one of the two best performing techniques: translation
or mosaic. This could be related to the general low performance, which is
not comparable to the baseline models, indicating that there are other more
relevant aspects of the model that need to be improved to achieve comparable
performance.

But more importantly, as shown in Figure 4.6, the loss evolution keeps decreasing
for much longer, and shows much less signs of overfitting. Note that the test
was kept for 100 epochs, as the curve takes longer to flatten out.

54

Results

Figure 4.6: Loss evolution using all augmentation techniques.

Finally, Figure 4.7 shows a comparison of the performance metrics obtained in
these data augmentation tests.

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

No augment Flip Crop Translate Mosaic ALL

Data augmentation effect

mAP@0.5 Precision Recall

Figure 4.7: Metrics obtained by each augmentation technique.

4.5 Final results with proprietary model

Once a dataset pipeline was established, the different architectures considered
could be tested.

55

Results

4.5.1 MobileNetv2 as backbone

The first model tested was the same described in the previous section, tak-
ing MobileNetv2 as a backbone and the split head architecture described in
Section 3.1.4.1. It has a total of 9.05 million parameters, with 8.44 million
belonging to the custom neck and head and the rest 616 thousand coming from
the MobileNetV2 architecture.

A similar model was later tested, changing the architecture of the split head.
Instead of the first bottleneck blocks present in the architecture defined in
Section 3.1.4.1 to reduce the depth of the filters, those are replaced by three
convolutional layers of decreasing number of filters (576, 432 and 288). This
change increases the number of parameters up to a total of 11.34 millions.

The metrics obtained when trained with the whole data augmentation scheme
are the following:

Precision = 0.554 Recall = 0.413 mAP@0.5 = 0.415

There was an improvement in performance by using this head structure, probably
aided by the increase in complexity. mAP@0.5 increased from 30% to 41.5%.
Figure 4.8 shows the performance of both models side by side, also including
the performance of this last model when trained with no data augmentation.

0

0,1

0,2

0,3

0,4

0,5

0,6

No aug Bottleneck
head

No aug Convolution
head

MobileNet backbone, 2 head architectures

mAP@0.5 Precision Recall

Figure 4.8: Performance from models with different heads. Split head with
bottlenecks (left) and split head with convolutions (right).

56

Results

4.5.2 DarkNet-53 as backbone

The architecture tested that uses DarkNet-53 as a backbone is composed by
the following architecture:

• DarkNet-53 as a backbone, which outputs a feature map of size 14 ×
14 × 1024.

• Neck composed by a bottleneck block —explained in Section 3.1.3.3—
that reduces the depth from 1024 to 512, followed by a convolutional
layer with stride s = 2 that reduces the final grid size to 7 × 7.

• The split architecture explained in Section 3.1.4.1 is used as the detection
head.

All these tests were performed using an input size of 448 × 448 × 3 for the
images.

DarkNet-53 is significantly larger than MobileNetV2, contributing with 40.62
million parameters from the total of 51.18 million that this model employs. This
increase in complexity is supposed to be linked with better feature extraction
capabilities.

The model was trained using the same augmentation described in the previous
section, obtaining the following performance:

Precision = 0.642 Recall = 0.447 mAP@0.5 = 0.455

(Note: The threshold for the containment filter was lowered to a stricter value
of 40% for these tests, as it shows better performance for this model. Therefore,
NMS filter does not have any effect here, as any box removed by the NMS filter
would also be removed based on containment.)

All the metrics improved when compared with the MobileNetV2 backbone
model, being the precision the highest improvement. Another interesting
result is the bigger difference between the model trained with and without
augmentation, as seen in Figure 4.9.

57

Results

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

MobileNetV2
NO aug

MobileNetV2
ALL aug

DarkNet53
NO aug

DarkNet53
ALL aug

MobileNetV2 vs Darknet-53

mAP@0.5 Precision Recall

Figure 4.9: Performance from models with different backbones.

Figure 4.10 shows a comparison of the best performing model for each backbone,
next to the baseline models’ performance. This performance is still significantly
lower than the baseline models, with a mAP@0.5 difference of around . Some of
the potential issues that lead to this difference will be discussed in the following
section.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

MobileNetV2 DarkNet53 Yolov8 Faster-RCNN

Best performing vs Baselines

mAP@0.5 Precision Recall

Figure 4.10: Comparison of best performing models against baseline.

58

Results

4.6 Examples and potential flaws discussion

While quantitative metrics are essential to compare model performance, they
may not fully capture all aspects of prediction quality. Factors such as lo-
calization precision, false positives, or missed detections can often be better
appreciated through visual inspection. For this reason, we include a set of
qualitative examples to highlight the typical behavior of the model. These
images help illustrate recurring strengths and weaknesses, providing insights
that complement the numerical evaluation.

4.6.1 Size and positioning

All the custom models tested seem to better respond to potholes when they
are bigger in size and when they are centered in the image. This can be due to
the bias already mentioned when explaining the dataset. Although the data
augmentation techniques definitely helped reduce this unbalance, a bigger size
dataset or a better training scheme could help further improving it.

Another factor to take into account is the number of objects present in the
picture. The model seems to become less responsive when there are multiple
potholes on sight, also obtaining worse coordinate predictions. In these cases,
the model often predicts bounding boxes in the right area (the right YOLO
grid cell becomes activated) but the coordinates do not match the object.

Figure 4.11 shows some examples where few potholes are present, leading to
accurate predictions.

On the other hand, Figure 4.12 shows some faulty predictions when there are
multiple potholes present.

4.6.2 Annotation criteria

Given the irregular nature of the potholes, as well as the lack of a precise way
to define that kind of defect, there is a high subjective factor when labeling the
data. This leads to some cases where a similar defect can be labeled in some
images from the dataset but ignored on others. Additionally, some defects do
not have a clear outline, making it difficult to precisely define the coordinates
of the corresponding bounding box. For instance, potholes have a much less
defined shape in gravel roads.

In some cases, the model tends to group the potholes, predicting a single
bounding box where multiple ones are labeled. It can also make a prediction

59

Results

Figure 4.11: Examples of "good" predictions with few potholes.

60

Results

Figure 4.12: Examples of "bad" predictions with multiple potholes.

61

Results

Figure 4.13: Effect of annotation criteria (1). Ground truth on the left,
predictions on the right.

62

Results

Figure 4.14: Effect of annotation criteria (2). Ground truth on the left,
predictions on the right.

63

Results

in a spot that could be considered a defect but is not labeled as one. In other
cases, it fails to predict less obvious potholes, being even more prominent for
small objects.

Figure 4.13 and Figure 4.14 show some of those cases, where the annotation
criteria would highly impact whether or not a prediction is considered suitable
for the given task.

4.6.3 Loss of attention

Related to the size discussion, it often happens that the model loses some
sensitivity when there is a clear object in the image. Figure 4.15 illustrates
some of those cases, where the presence of a clear big pothole near the middle
of the image seems to make it less responsive to the smaller potholes present in
its surroundings.

Note: All the predictions for these examples were taken with the DarkNet-53
backbone model explained in Section 4.5.2.

64

Results

Figure 4.15: Examples of lost attention with a clear pothole present. Ground
truth (blue) and predictions (red).

65

Results

4.7 Clean test dataset

Some of the issues discussed in the previous section could be mitigated by a
better selected test dataset, as they are more closely related to the quality
of the test samples rather than to the actual performance of the model. For
instance, annotation consistency should be maintained more rigorously.

To achieve a better assessment of the model’s performance, a new test dataset
was created by removing some of these outlier samples that introduced noise.
Upon closer inspection of the test dataset, a few images were found as problem-
atic: some contained watermarks and text that the model to make incorrect
predictions, while others featured ambiguous annotations or doubtful pothole
examples. These images were excluded from the test set. A total of 10 images
were removed, keeping approximately 85% of the original test dataset.

With this new dataset, the metrics for both custom models —with MobileNetV2
and DarkNet-53 backbones— were computed again. The results are as follows:

For the MobileNetV2 backbone:

Precision = 0.654 Recall = 0.469 mAP@0.5 = 0.477

For the Darknet-53 backbone:

Precision = 0.749 Recall = 0.518 mAP@0.5 = 0.533

The metrics show a clear improvement, with the mAP@0.5 increasing by a
6.1% in case of MobileNetV2 backbone and by 7.9% for DarkNet-53. The most
notable change is in precision, which increased by 10.9 percentage points in the
latter case, reaching 74.9%. This precision performance is already comparable
to that of the Faster-RCNN baseline (77.1%). The updated new results are
shown in Figure 4.16, including the baselines for comparison.

Recall values —although also improved with the cleaner dataset— are still
low when compared to the values usually obtained by state-of-the-art object
detection models. That ultimately leads to a low general metric of mAP@0.5.

66

Results

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

MobileNetV2 MobileNetV2
(CLEAN DATASET)

DarkNet53 DarkNet53
(CLEAN DATASET)

Faster-RCNN
(BASELINE)

Yolov8
(BASELINE)

Best performing vs Baselines with clean dataset

mAP@0.5 PRECISION RECALL

Figure 4.16: Comparison of best performing custom models with the updated
cleaner test dataset against baseline performances.

These last results not only show a better assessment of the capabilities of
the models tested, but also serve as a confirmation of the biases and flaws
mentioned in the previous section.

67

Conclusions and future work

Chapter 5

Conclusions and future work

The main goal of this thesis was to explore options for a proprietary object
detection model specific for potholes, which has been achieved. Experiments
were carried out to test different architectures and to get a thorough comparison
with some of the state-of-the-art models.

Although the trained models were able to accurately predict potholes under
specific conditions, there is a lack in robustness and performance that should be
addressed if any of the models are finally used for their intended task. Several
potential directions derive from this work to address the observed performance
gap, including:

• Training the same models with a different dataset. Size has proven to
highly affect the outcome, so a bigger dataset could be helpful. Also
including more realistic pictures in the dataset, all taken in the same
perspective, could help with generalization for this given task.

• Addressing the poor performance on small objects, for which there are
several options. A multi-scale detecting head can be implemented, just
like the ones in late YOLO versions. A simpler approach could take
feature maps at different stages of the backbone and fusing them in the
neck before feeding them to the detection head.

• Including anchor boxes on the model. It was not considered for this work,
given the single-class focus and the small size dataset, but it is a feature
common to multiple state-of-the-art models.

• Test other architectures for the head, either following the YOLO structure
or not.

68

Conclusions and future work

Although it was not the main focus of the project, some interesting results have
been obtained about the effect of data augmentation techniques, especially for
small sized datasets. Further elaboration on this topic could be of interest.

One of the advantages for a proprietary model that was mentioned in the
work is the potential increase in efficiency and adaptability when inferring
on edge devices. Therefore, their performance could be tested on local hard-
ware to compare it with the standard models, also obtaining their Real-Time
capabilities.

Other path worth exploring is to optimize the multiclass version of the model,
so that it can detect multiple types of road defects (using RDD2022 could be a
choice for training). Although the focus for the models proposed in this work
was not to be a general-purpose detector, another option to explore would
be training the model on a benchmark multiclass dataset (such as COCO
or others), to later train it in the specific dataset and test if generalization
improves.

69

BIBLIOGRAPHY

Bibliography

[1] Roboflow. YOLOv8 Model License Guide. https://roboflow.com/model-
licenses/yolov8. Accessed: 2025-02-13. 2023 (cit. on p. 2).

[2] Free Software Foundation. GNU Affero General Public License v3.0.
https://www.gnu.org/licenses/agpl-3.0.html. Accessed: 2025-05-15. 2007
(cit. on p. 2).

[3] FOSSA. Open Source Licenses 101: AGPL License.
https://fossa.com/blog/open-source-software-licenses-101-agpl-license/.
Accessed: 2025-05-15. 2023 (cit. on p. 2).

[4] BBC News. Potholes: What are they and why are they dangerous?
https://www.bbc.com/news/uk-england-67958426. BBC News, Accessed:
2025-04-23. 2023 (cit. on p. 6).

[5] Vialytics. The Dangers of Potholes: A Growing Threat to Public Safety.
https://www.vialytics.com/blog/dangersofpotholes. Accessed: 2025-05-13.
2024 (cit. on p. 6).

[6] Ary Setyawan, Irvan Kusdiantoro, and Syafi’I Syafi’i. “The Effect of
Pavement Condition on Vehicle Speeds and Motor Vehicles Emissions”.
In: Procedia Engineering 125 (Dec. 2015), pp. 424–430. doi: 10.1016/j.
proeng.2015.11.111 (cit. on p. 6).

[7] Omar Chaaban, Leen Daher, Yara Ghaddar, Nader Zantout, Daniel
Asmar, and Naseem Daher. “An End-to-End Pothole Detection and
Avoidance System for Autonomous Ground Vehicles”. In: 2025 Interna-
tional Conference on Control, Automation, and Instrumentation (IC2AI).
2025, pp. 1–6. doi: 10.1109/IC2AI62984.2025.10932181 (cit. on p. 7).

[8] Hamzeh Zakeri, Fereidoon Moghadas Nejad, and Ahmad Fahimifar. “Im-
age based techniques for crack detection, classification and quantification
in asphalt pavement: a review”. In: Archives of Computational Methods
in Engineering 24 (2017), pp. 935–977 (cit. on pp. 7, 8).

[9] Sylvie Chambon and Jean-Marc Moliard. “Automatic road pavement
assessment with image processing: Review and comparison”. In: Interna-
tional Journal of Geophysics 2011.1 (2011), p. 989354 (cit. on p. 7).

70

https://doi.org/10.1016/j.proeng.2015.11.111
https://doi.org/10.1016/j.proeng.2015.11.111
https://doi.org/10.1109/IC2AI62984.2025.10932181

BIBLIOGRAPHY

[10] Chen Yu, Chen Dian-ren, Li Yang, and Chen Lei. “Otsu’s thresholding
method based on gray level-gradient two-dimensional histogram”. In: 2010
2nd International Asia Conference on Informatics in Control, Automation
and Robotics (CAR 2010). Vol. 3. 2010, pp. 282–285. doi: 10.1109/CAR.
2010.5456687 (cit. on p. 8).

[11] Christian Koch and Ioannis Brilakis. “Pothole detection in asphalt pave-
ment images”. In: Advanced Engineering Informatics 25.3 (2011). Special
Section: Engineering informatics in port operations and logistics, pp. 507–
515. issn: 1474-0346. doi: https://doi.org/10.1016/j.aei.2011.01.
002. url: https://www.sciencedirect.com/science/article/pii/
S1474034611000036 (cit. on p. 8).

[12] Ionut Schiopu, Jukka P. Saarinen, Lauri Kettunen, and Ioan Tabus.
“Pothole detection and tracking in car video sequence”. In: 2016 39th
International Conference on Telecommunications and Signal Processing
(TSP). 2016, pp. 701–706. doi: 10.1109/TSP.2016.7760975 (cit. on
p. 8).

[13] Alex Lenail. NN-SVG: Publication-Ready Neural Network Architecture
Schematics. Accessed: 2025-03-20. 2019. url: https://alexlenail.me/
NN-SVG/ (cit. on p. 9).

[14] Yashar Safyari, Masoud Mahdianpari, and Hodjat Shiri. “A Review of
Vision-Based Pothole Detection Methods Using Computer Vision and
Machine Learning”. In: Sensors 24 (Aug. 2024), p. 5652. doi: 10.3390/
s24175652 (cit. on p. 9).

[15] J. Javier Yebes, David Montero, and Ignacio Arriola. “Learning to Auto-
matically Catch Potholes in Worldwide Road Scene Images”. In: IEEE
Intelligent Transportation Systems Magazine 13.3 (2021), pp. 192–205.
doi: 10.1109/MITS.2019.2926370 (cit. on p. 9).

[16] Aditi Tithi, Firoj Ali, and Sadman Azrof. “Speed Bump and Pothole
Detection with Single Shot MultiBox Detector Algorithm and Speed
Control for Autonomous Vehicle”. In: 2021 International Conference on
Automation, Control and Mechatronics for Industry 4.0 (ACMI). 2021,
pp. 1–5. doi: 10.1109/ACMI53878.2021.9528185 (cit. on p. 9).

[17] Anas Al-Shaghouri, Rami Alkhatib, and Samir Berjaoui. Real-Time Pot-
hole Detection Using Deep Learning. July 2021. doi: 10.48550/arXiv.
2107.06356 (cit. on p. 9).

[18] Montaser Nalawi, Mohammad Baghdadi, Basel Alyateem, Zaer S Abo-
Hammour, and Adham Alsharkawi. “Design of a Real-time Detection
System for Potholes and Bumps Using Deep Learning”. In: 2024 22nd
International Conference on Research and Education in Mechatronics

71

https://doi.org/10.1109/CAR.2010.5456687
https://doi.org/10.1109/CAR.2010.5456687
https://doi.org/https://doi.org/10.1016/j.aei.2011.01.002
https://doi.org/https://doi.org/10.1016/j.aei.2011.01.002
https://www.sciencedirect.com/science/article/pii/S1474034611000036
https://www.sciencedirect.com/science/article/pii/S1474034611000036
https://doi.org/10.1109/TSP.2016.7760975
https://alexlenail.me/NN-SVG/
https://alexlenail.me/NN-SVG/
https://doi.org/10.3390/s24175652
https://doi.org/10.3390/s24175652
https://doi.org/10.1109/MITS.2019.2926370
https://doi.org/10.1109/ACMI53878.2021.9528185
https://doi.org/10.48550/arXiv.2107.06356
https://doi.org/10.48550/arXiv.2107.06356

BIBLIOGRAPHY

(REM). 2024, pp. 160–165. doi: 10.1109/REM63063.2024.10735479
(cit. on p. 10).

[19] T C Mahalingesh, Anubhav, Harshit Mishra, R V Arun, and Anshuman
Anand. “Pothole Detection and Filling System using Image processing
and Machine Learning”. In: 2024 International Conference on Smart
Systems for applications in Electrical Sciences (ICSSES). 2024, pp. 1–5.
doi: 10.1109/ICSSES62373.2024.10561417 (cit. on p. 10).

[20] Omar Chaaban, Leen Daher, Yara Ghaddar, Nader Zantout, Daniel
Asmar, and Naseem Daher. “An End-to-End Pothole Detection and
Avoidance System for Autonomous Ground Vehicles”. In: 2025 Interna-
tional Conference on Control, Automation, and Instrumentation (IC2AI).
2025, pp. 1–6. doi: 10.1109/IC2AI62984.2025.10932181 (cit. on p. 10).

[21] Hexiang Bai and Ling Qin. “Research on Road Defect Detection Based
on Improved YOLOv5s”. In: 2024 5th International Seminar on Artificial
Intelligence, Networking and Information Technology (AINIT). 2024,
pp. 2344–2348. doi: 10.1109/AINIT61980.2024.10581495 (cit. on
p. 10).

[22] Pengchun Zhang, Haoran Chen, Jiahui Gao, Liqiang Ma, and Rong He.
“Improved YOLOv10 for High-Precision Road Defect Detection”. In: Sept.
2024, pp. 79–83. doi: 10.1109/CCSB63463.2024.10735633 (cit. on
p. 10).

[23] Wenzhe Wang, Bin Wu, Sixiong Yang, and Zhixiang Wang. “Road Dam-
age Detection and Classification with Faster R-CNN”. In: 2018 IEEE
International Conference on Big Data (Big Data). 2018, pp. 5220–5223.
doi: 10.1109/BigData.2018.8622354 (cit. on p. 10).

[24] Chuan-Bi Lin and Yikai Liu. “Research on Potholes Detection Based
on Improved Mask RCNN Algorithms”. In: 2023 12th International
Conference on Awareness Science and Technology (iCAST). 2023, pp. 50–
54. doi: 10.1109/iCAST57874.2023.10359275 (cit. on p. 10).

[25] Surekha Arjapure and D.R. Kalbande. “Deep Learning Model for Pothole
Detection and Area Computation”. In: 2021 International Conference on
Communication information and Computing Technology (ICCICT). 2021,
pp. 1–6. doi: 10.1109/ICCICT50803.2021.9510073 (cit. on p. 10).

[26] Zhen Zhang, Xiao Ai, C. K. Chan, and Naim Dahnoun. “An efficient
algorithm for pothole detection using stereo vision”. In: 2014 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP). 2014, pp. 564–568. doi: 10.1109/ICASSP.2014.6853659
(cit. on p. 10).

[27] Yaqi Li, Christos Papachristou, and Daniel Weyer. “Road Pothole De-
tection System Based on Stereo Vision”. In: NAECON 2018 - IEEE

72

https://doi.org/10.1109/REM63063.2024.10735479
https://doi.org/10.1109/ICSSES62373.2024.10561417
https://doi.org/10.1109/IC2AI62984.2025.10932181
https://doi.org/10.1109/AINIT61980.2024.10581495
https://doi.org/10.1109/CCSB63463.2024.10735633
https://doi.org/10.1109/BigData.2018.8622354
https://doi.org/10.1109/iCAST57874.2023.10359275
https://doi.org/10.1109/ICCICT50803.2021.9510073
https://doi.org/10.1109/ICASSP.2014.6853659

BIBLIOGRAPHY

National Aerospace and Electronics Conference. 2018, pp. 292–297. doi:
10.1109/NAECON.2018.8556809 (cit. on p. 10).

[28] Jongmin Yu, Jiaqi Jiang, Sebastiano Fichera, Paolo Paoletti, Lisa Layzell,
Devansh Mehta, and Shan Luo. “Road Surface Defect Detection—From
Image-Based to Non-Image-Based: A Survey”. In: IEEE Transactions
on Intelligent Transportation Systems 25.9 (2024), pp. 10581–10603. doi:
10.1109/TITS.2024.3382837 (cit. on p. 10).

[29] Xiangyang Xu and Hao Yang. “Intelligent crack extraction and analysis
for tunnel structures with terrestrial laser scanning measurement”. In:
Advances in Mechanical Engineering 11 (Sept. 2019), p. 168781401987265.
doi: 10.1177/1687814019872650 (cit. on p. 10).

[30] A. A. Tsesar, S. V. Varshavskiy, Yu. E. Vasiliev, and M. A. Fineeva.
“Technology for Collecting and Data Processing of Street-Road Network
Monitoring Objects”. In: 2023 Systems of Signals Generating and Pro-
cessing in the Field of on Board Communications. 2023, pp. 1–6. doi:
10.1109/IEEECONF56737.2023.10092184 (cit. on p. 10).

[31] Anoop Thomas, Jobin K. Antony, and Sarath Chandran S. “Detection of
Road Attributes Using Solid-State LiDAR”. In: 2024 11th International
Conference on Advances in Computing and Communications (ICACC).
2024, pp. 1–5. doi: 10.1109/ICACC63692.2024.10845297 (cit. on p. 10).

[32] Hassan Muhammad Saddique, Ahsan Raza, Zain Ul Abideen, and Shah
Nawaz Khan. “Exploring Deep Learning based Object Detection Archi-
tectures: A Review”. In: 2020 17th International Bhurban Conference
on Applied Sciences and Technology (IBCAST). 2020, pp. 255–259. doi:
10.1109/IBCAST47879.2020.9044558 (cit. on p. 10).

[33] Aydin Ayanzadeh. A Study Review: Semantic Segmentation with Deep
Neural Networks. Mar. 2018. doi: 10.13140/RG.2.2.12534.04160/2
(cit. on p. 12).

[34] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. “Mask
R-CNN”. In: 2017 IEEE International Conference on Computer Vision
(ICCV). 2017, pp. 2980–2988. doi: 10.1109/ICCV.2017.322 (cit. on
p. 12).

[35] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You
Only Look Once: Unified, Real-Time Object Detection. 2016. arXiv: 1506.
02640 [cs.CV]. url: https://arxiv.org/abs/1506.02640 (cit. on
pp. 13, 15).

[36] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott
Reed, Cheng-Yang Fu, and Alexander C. Berg. “SSD: Single Shot Multi-
Box Detector”. In: Computer Vision – ECCV 2016. Springer International
Publishing, 2016, pp. 21–37. isbn: 9783319464480. doi: 10.1007/978-

73

https://doi.org/10.1109/NAECON.2018.8556809
https://doi.org/10.1109/TITS.2024.3382837
https://doi.org/10.1177/1687814019872650
https://doi.org/10.1109/IEEECONF56737.2023.10092184
https://doi.org/10.1109/ICACC63692.2024.10845297
https://doi.org/10.1109/IBCAST47879.2020.9044558
https://doi.org/10.13140/RG.2.2.12534.04160/2
https://doi.org/10.1109/ICCV.2017.322
https://arxiv.org/abs/1506.02640
https://arxiv.org/abs/1506.02640
https://arxiv.org/abs/1506.02640
https://doi.org/10.1007/978-3-319-46448-0_2
https://doi.org/10.1007/978-3-319-46448-0_2

BIBLIOGRAPHY

3-319-46448-0_2. url: http://dx.doi.org/10.1007/978-3-319-
46448-0_2 (cit. on pp. 13, 14).

[37] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew
Rabinovich. “Going deeper with convolutions”. In: 2015 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). 2015, pp. 1–9.
doi: 10.1109/CVPR.2015.7298594 (cit. on p. 16).

[38] Muhammad Hussain. “YOLOv1 to v8: Unveiling Each Variant–A Compre-
hensive Review of YOLO”. In: IEEE Access 12 (2024), pp. 42816–42833.
doi: 10.1109/ACCESS.2024.3378568 (cit. on p. 16).

[39] Ghazlane Yasmine, Gmira Maha, and Medromi Hicham. “Overview of
single-stage object detection models: from Yolov1 to Yolov7”. In: 2023
International Wireless Communications and Mobile Computing (IWCMC).
2023, pp. 1579–1584. doi: 10.1109/IWCMC58020.2023.10182423 (cit. on
p. 16).

[40] S. Jain, D. Ramesh, E. Damodar Reddy, et al. “A fast high throughput
plant phenotyping system using YOLO and Chan-Vese segmentation”.
In: Soft Computing 28 (2024). Published: August 5, 2024; Issue Date:
October 2024, pp. 12323–12336. doi: 10.1007/s00500-024-09946-y
(cit. on p. 16).

[41] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov,
and Liang-Chieh Chen. “MobileNetV2: Inverted Residuals and Linear
Bottlenecks”. In: 2018 IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 2018, pp. 4510–4520. doi: 10.1109/CVPR.2018.
00474 (cit. on pp. 19–21).

[42] Joseph Redmon and Ali Farhadi. YOLOv3: An Incremental Improvement.
2018. arXiv: 1804.02767 [cs.CV]. url: https://arxiv.org/abs/1804.
02767 (cit. on pp. 21, 22).

[43] Joseph Redmon and Ali Farhadi. YOLO9000: Better, Faster, Stronger.
2016. arXiv: 1612.08242 [cs.CV]. url: https://arxiv.org/abs/1612.
08242 (cit. on p. 21).

[44] Glenn Jocher, Ayush Chaurasia, and Jing Qiu. Ultralytics YOLOv8.
Version 8.0.0. 2023. url: https://github.com/ultralytics/ultraly
tics (cit. on p. 37).

[45] Chien-Yao Wang, Alexey Bochkovskiy, and Hong-Yuan Mark Liao.
YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time
object detectors. 2022. arXiv: 2207.02696 [cs.CV]. url: https://arxiv.
org/abs/2207.02696 (cit. on p. 37).

[46] Hao Dong, Mu Yuan, Shu Wang, Long Zhang, Wenxia Bao, Yong Liu, and
Qingyuan Hu. “PHAM-YOLO: A Parallel Hybrid Attention Mechanism

74

https://doi.org/10.1007/978-3-319-46448-0_2
https://doi.org/10.1007/978-3-319-46448-0_2
https://doi.org/10.1007/978-3-319-46448-0_2
http://dx.doi.org/10.1007/978-3-319-46448-0_2
http://dx.doi.org/10.1007/978-3-319-46448-0_2
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/ACCESS.2024.3378568
https://doi.org/10.1109/IWCMC58020.2023.10182423
https://doi.org/10.1007/s00500-024-09946-y
https://doi.org/10.1109/CVPR.2018.00474
https://doi.org/10.1109/CVPR.2018.00474
https://arxiv.org/abs/1804.02767
https://arxiv.org/abs/1804.02767
https://arxiv.org/abs/1804.02767
https://arxiv.org/abs/1612.08242
https://arxiv.org/abs/1612.08242
https://arxiv.org/abs/1612.08242
https://github.com/ultralytics/ultralytics
https://github.com/ultralytics/ultralytics
https://arxiv.org/abs/2207.02696
https://arxiv.org/abs/2207.02696
https://arxiv.org/abs/2207.02696

BIBLIOGRAPHY

Network for Defect Detection of Meter in Substation”. In: Sensors 23.13
(2023). issn: 1424-8220. url: https://www.mdpi.com/1424-8220/23/
13/6052 (cit. on p. 38).

[47] Shu Liu, Lu Qi, Haifang Qin, Jianping Shi, and Jiaya Jia. Path Aggregation
Network for Instance Segmentation. 2018. arXiv: 1803.01534 [cs.CV].
url: https://arxiv.org/abs/1803.01534 (cit. on p. 38).

[48] Saluky, Yoni Marine, Ahmad Zaeni, Ari Yuliati, Onwardono Rit Riyanto,
and Nurul Bahiyah. “Pothole Detection on Urban Roads Using YOLOv8”.
In: 2023 10th International Conference on ICT for Smart Society (ICISS).
2023, pp. 1–6. doi: 10.1109/ICISS59129.2023.10291192 (cit. on p. 38).

[49] Riddhi Mirajkar, Anuradha Yenkikar, Shreyash Nawalkar, Rishabh Kaul,
Aditya Rokade, and Kedarnath Rothe. “Enhanced Pothole Detection in
Road Condition Assessment Using YOLOv8”. In: 2024 IEEE Interna-
tional Conference for Women in Innovation, Technology & Entrepreneur-
ship (ICWITE). 2024, pp. 429–433. doi: 10.1109/ICWITE59797.2024.
10502437 (cit. on p. 38).

[50] Laura Tsanaullailla, Inggit Yeira Budi Agranata, Steven Harun Samba,
and Faqih Hamami. “Road Pothole Damage Detector at Night Using
YOLOv8”. In: 2024 International Conference on Advanced Information
Scientific Development (ICAISD). 2024, pp. 138–143. doi: 10.1109/
ICAISD63055.2024.10894890 (cit. on p. 38).

[51] Meta AI Research. Detectron2. Accessed: 2025-05-25. 2019. url: https:
//ai.meta.com/tools/detectron2/ (cit. on p. 39).

[52] Ross Girshick. “Fast R-CNN”. In: 2015 IEEE International Conference
on Computer Vision (ICCV). 2015, pp. 1440–1448. doi: 10.1109/ICCV.
2015.169 (cit. on p. 39).

[53] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster R-CNN:
Towards Real-Time Object Detection with Region Proposal Networks.
2016. arXiv: 1506.01497 [cs.CV]. url: https://arxiv.org/abs/1506.
01497 (cit. on pp. 39, 40).

[54] Deeksha Arya, Hiroya Maeda, Sanjay Kumar Ghosh, Durga Toshniwal,
and Yoshihide Sekimoto. “RDD2022: A multi-national image dataset for
automatic Road Damage Detection”. In: arXiv preprint arXiv:2209.08538
(2022) (cit. on p. 40).

[55] Roboflow. Pothole Detection Dataset. Accessed: 2025-06-01. url: https:
//public.roboflow.com/object-detection/pothole (cit. on p. 41).

[56] Khaled R. Ahmed. “Smart Pothole Detection Using Deep Learning Based
on Dilated Convolution”. In: Sensors 21.24 (2021). issn: 1424-8220. doi:
10.3390/s21248406. url: https://www.mdpi.com/1424-8220/21/24/
8406 (cit. on p. 41).

75

https://www.mdpi.com/1424-8220/23/13/6052
https://www.mdpi.com/1424-8220/23/13/6052
https://arxiv.org/abs/1803.01534
https://arxiv.org/abs/1803.01534
https://doi.org/10.1109/ICISS59129.2023.10291192
https://doi.org/10.1109/ICWITE59797.2024.10502437
https://doi.org/10.1109/ICWITE59797.2024.10502437
https://doi.org/10.1109/ICAISD63055.2024.10894890
https://doi.org/10.1109/ICAISD63055.2024.10894890
https://ai.meta.com/tools/detectron2/
https://ai.meta.com/tools/detectron2/
https://doi.org/10.1109/ICCV.2015.169
https://doi.org/10.1109/ICCV.2015.169
https://arxiv.org/abs/1506.01497
https://arxiv.org/abs/1506.01497
https://arxiv.org/abs/1506.01497
https://public.roboflow.com/object-detection/pothole
https://public.roboflow.com/object-detection/pothole
https://doi.org/10.3390/s21248406
https://www.mdpi.com/1424-8220/21/24/8406
https://www.mdpi.com/1424-8220/21/24/8406

BIBLIOGRAPHY

[57] Stefan Achirei, Ioana-Ariana Opariuc, Otilia Zvoris,teanu, Simona
Caraiman, and Vasile Manta. “Pothole Detection for Visually Impaired
Assistance”. In: Oct. 2021, pp. 409–415. doi: 10.1109/ICCP53602.2021.
9733610 (cit. on p. 41).

76

https://doi.org/10.1109/ICCP53602.2021.9733610
https://doi.org/10.1109/ICCP53602.2021.9733610

Dedications

This work puts an end to a long journey, one that wouldn’t have even started
without the encouragement I have always received from my family. It also
wouldn’t have ended in such a great place if it wasn’t for your constant support
and your tolerance for my complaints. Gracias a mi madre, mi padre y mi
hermano Jorge.

These words aren’t just for those who have helped during the thesis, but for
everybody that accompanied throughout these years. I feel grateful to have so
many to thank that it will be hard to include them all here. First to my friends
in Segovia and from my university back at home. Although we are distant right
now, it feels great to know that we care for each other. Thanks to those who
live in Chicago, who I rarely hear from but are and always will be a big part of
me anyways. Same goes for that friend in Germany, the one in Málaga and
that other one who I am lucky to hear more often, allowing him to withstand
more of my complaining throughout this whole time.

These two last years have been such an experience. Everybody feels lucky for
the people they meet when they are abroad, it’s probably just a matter of
attitude and a change of environment. But I’m truly grateful to have had the
chance to surround myself with people I now consider great friends. Thanks
to the guy I did my first multipitch with, to that other guy that took me to
my first four thousand, to those who have shared so much time with me in the
library, and to that person who saw me fall in the best ways possible. Thanks
to all those who already left Torino, and to those who will unfortunately leave
soon. And thanks to anybody that passed by Nizza, that might be a good way
to sum it up.

	Introduction
	Motivation of the project
	Control of the training process
	Ownership and independence
	Customization and flexibility

	Goals and outline
	Thesis outline

	State of the art
	Road defect detection
	Fields of interest/applications
	Current established technologies
	Traditional 2D image processing
	Deep Learning 2D image processing
	Stereo images
	Depth sensors

	Object detection background
	R-CNN
	YOLO models
	SSDs

	Belonging of current project

	Materials and methods
	Architecture
	Design considerations
	Backbone selection
	MobileNetV2
	Darknet-53

	Common architecture blocks
	Conv layer
	Residual block
	Bottleneck block
	Activation stage

	Head selection
	Split head

	Neck selection
	Post-processing
	Greedy NMS (Non-Maximum Suppression)
	Containment filter

	Training characteristics
	Loss function
	Coordinates loss Lcoord
	Detected object loss Lobj
	Not detected object loss Lnoobj
	Class loss Lclass
	Total Loss

	Learning rate
	Batch size

	Baseline Models
	YOLOv8
	Faster R-CNN

	Datasets
	Potholes Detection Dataset
	Data augmentation
	Horizontal flipping
	Cropping
	Translation
	Mosaic pattern
	Perspective distortion
	Final padding

	Results
	Overview
	Performance metrics
	Precision
	Recall
	mAP@0.5

	YOLOv8
	Faster R-CNN
	Effect of data augmentation
	No augmentation
	Horizontal flipping
	Cropping
	Translation
	Mosaic
	All augmentations

	Final results with proprietary model
	MobileNetv2 as backbone
	DarkNet-53 as backbone

	Examples and potential flaws discussion
	Size and positioning
	Annotation criteria
	Loss of attention

	Clean test dataset

	Conclusions and future work
	Bibliography
	Dedications

