
Federico Arnaudo
Image classification with a single spiking microlaser.
Rel. Carlo Ricciardi. Politecnico di Torino, Corso di laurea magistrale in Nanotechnologies For Icts (Nanotecnologie Per Le Ict), 2025
![]() |
PDF (Tesi_di_laurea)
- Tesi
Licenza: Creative Commons Attribution Non-commercial No Derivatives. Download (4MB) |
Abstract: |
This work presents a comprehensive study on image classification using a single spiking microlaser within a neuromorphic photonic framework. The research leverages a vertical-cavity surface-emitting laser (VCSEL) with an integrated saturable absorber, which exhibits excitable dynamics analogous to biological neurons. Operating in the excitable regime, the microlaser emits spikes in response to perturbations, enabling its use as a standalone nonlinear node in a reservoir computing (RC) architecture. The system is analysed both from numerical and experimental perspectives. The sparse spiking output coming from the system is decoded into binary vectors via time-binning, and the readout matrix is trained using a simple Moore-Penrose pseudoinverse optimization, seeking to minimize, and ultimately remove, dependence on an external computer. An experimental characterization confirms the excitable behaviour of the microlaser. This work demonstrates the viability of spiking microlasers as ultra-fast, energy-efficient computational units for neuromorphic photonics. |
---|---|
Relatori: | Carlo Ricciardi |
Anno accademico: | 2024/25 |
Tipo di pubblicazione: | Elettronica |
Numero di pagine: | 40 |
Soggetti: | |
Corso di laurea: | Corso di laurea magistrale in Nanotechnologies For Icts (Nanotecnologie Per Le Ict) |
Classe di laurea: | Nuovo ordinamento > Laurea magistrale > LM-29 - INGEGNERIA ELETTRONICA |
Ente in cotutela: | Université Paris Cité (FRANCIA) |
Aziende collaboratrici: | C2N-CNRS |
URI: | http://webthesis.biblio.polito.it/id/eprint/36375 |
![]() |
Modifica (riservato agli operatori) |