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Research context

The Master thesis has been carried out at Centre de Nanosciences et de Nan-
otechnologies, C2N, a joint research unit between CNRS (Centre National de la
Recherche Scientifique) and Université Paris-Saclay, devoted to Photonics, Funda-
mental Physics, Material Science and Quantum technologies located in Palaiseau,
Île-de-France, France.

More precisely, I have been working for four months in the ToniQ group, belonging
to the Department of Photonics, that performs research in the fields of nonlinear
and quantum optics, optomechanics, neuromimetic photonics, photonic crystals
and photonic arrays of micropillars, waveguides and nanocavities.

The internship project has been carried out in the framework of neuromimetic
photonics addressed by spiking micropillars. The broad research context of the
group is to investigate the physics of these building blocks and how they could be
used as nodes in a network to efficiently process information.
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Chapter 1

Introduction

Digital computers process information using discrete values, typically binary digits
(0 and 1). In contrast, analog computers manipulate continuous variables, physically
embodying the quantities being computed. While analog computing dominated
computational technologies for centuries, the emergence of solid-state transistors
and scalable digital architectures led to its widespread replacement. However,
contemporary challenges such as machine learning, high-speed data processing and
edge computing are driving a renewed interest in analog computing to overcome
some of the limitations of purely digital systems [1]. In particular, the rise of
artificial intelligence (AI) and large language models (LLMs) of the last few years
underscores the increasing computational demands and energy costs associated
with the training of advanced neural models.

1.1 Introduction to analog neuromorphic com-
puting

The overwhelming majority of computers employ the Von Neumann architecture,
in which data are stored in a dedicated memory (RAM) and transferred to a central
processing unit (CPU) for processing, before being written back to memory. This
architecture is inherently sequential and relies on continuous data transfers over
a shared bus between the CPU and memory. This data movement introduces a
bottleneck, as the processing speed of the CPU often exceeds the rate at which
data can be transferred across the bus. Moreover, in recent years, the advancement
of Moore’s Law - which states that "the number of transistors incorporated in a
chip will approximately double every two years" [2] - has slowed down due to power
consumption constraints, further widening the gap between the computational
efficiency of brains and conventional CPUs by orders of magnitude. Moreover,
despite being outperformed by digital systems in terms of computational power,
the human brain still presents many advantages in specific scenarios, such as facial
recognition in low-light environments and speech understanding in presence of
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1 – Introduction

noise. Finally, biological brains provide an evident robustness, since they continue
to function even after a loss of some cells and do not require explicit programming
or updates.

One promising approach to address this challenge is constituted by neuromorphic
computing, which goes beyond software-based emulation of brain function (as in
artificial neural networks), but also aims to develop new computing architectures
inspired by the operational principles of biological systems, with the potential to
replace or complement the conventional Von Neumann architecture.
The crucial task in the development of neuromorphic architectures is the design
of artificial neurons, whose specific implementation strongly depends on the final
application and on the structure of the system. In analog neurons weights are
usually stored using resistors, charge-coupled devices, capacitors or floating gate
EEPROMs.
However, together with the evolution of photonic solutions for optical communi-
cation and processing, optical implementations of neural networks have been a
subject of investigation for a long time, mainly because of the high connectivity
of optical system and the intrinsic parallelism offered through various degrees of
freedom such as wavelength, polarization and mode. Specifically, different optical
nonlinearities could be used to implement the characteristic neuronal functions.
Although the first implementations were large and non-scalable, integrated photon-
ics recently emerged as a key enabling technology, overcoming many limitations of
early solutions. All these characteristics suggest that optical neural networks may
surpass electronic solutions in computational speed and energy efficiency.

1.1.1 Reservoir computing
Most Artificial Neural Networks (ANNs) are structured into three key components.
The input layer receives and feeds data into the network, which then connects
to one or more hidden layers via a set of tunable weights. Finally, the last hid-
den layer is connected to the output where classification takes place. ANNs are
predominantly divided in two categories: feed forward networks, where all the
connections are directional from input to output, and recurrent neural networks
(RNNs), where there are feedbacks within single nodes and interconnections within
the nodes of each hidden layer are allowed. These architectures have demonstrated
extensive capabilities in processing static or, in the case of RNNs, complex temporal
tasks. However, practical applications require to overcome challenges such as high
computational costs and slow convergence of training algorithms.

To surpass these obstacles, the concept of Reservoir Computing emerged, at
first with the principles of Echo State Networks (ESNs) [3] and Liquid State

2



1 – Introduction

Machines (LSMs) [4], and later with the presence of a nonlinear physical device
[5]. These configuration make use of a random, recurrent network architecture
where the internal weights remain untrained, significantly reducing the training
process by only adjusting the output weights. The generic structure of a standard
reservoir computer, illustrated in Figure 1.1(a), includes three neural layers: an
input layer, a reservoir containing discrete neurons and a readout layer. In this
configuration the reservoir here acts as a dynamic filter, exploiting its dynamical
properties to transform input signals through a high-dimensional temporal mapping,
thereby facilitating the processing of temporal information. In the physical reservoir
framework, the internal weights must be accurately scaled to make the physical
device(s) that constitute the reservoir hover near a point of dynamical instability.
The attractiveness of the physical implementations of RC is further magnified by
its vast adaptability to a vast range of nonlinear system, making it a powerful and
versatile tool for research and physical implementation of neuromorphic computing
schemes. Some examples are reported in section 1.2.

1.1.2 Spiking Neural Networks
The physical system presented in this work is based on a reservoir computing
architecture, which is then adapted for Spiking Neural Networks (SNNs).
SNNs constitute the closest class, among all the ANNs, to biological systems
and have gained attention in several biosensing areas, including image and sound
processing or fast motion control [6].

In SNNs, whose generic structure is represented in Figure 1.1(b), information
is encoded both in the digital and analog characteristics of spikes. Furthermore,
by leveraging the inherent synchronization properties provided by these systems
- and by explicitly taking into account the precise timing of spike events - this
architecture is expected to offer greater computational power compared to classical
ANN models based on sigmoidal neurons.

a) b)

Figure 1.1: General schemes of RC (a) and SNN (b). Figures adapted from [1] and [7]

The artificial neurons that are employed in spiking neural networks aim to
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mimic their biological counterpart, and therefore need to employ some of their
characteristic features:

Excitability It refers to the ability to respond to external stimuli by generating
an all-or-none response, known in the biological field as action potential. The
response must be well calibrated (or even independent) with respect to the applied
stimulus. The nonlinear function describing the relationship between the synaptic
input received by a neuron and the generation of an action potential is know as
activation function, which can be often modeled as a sigmoid or a rectified linear
unit.

Refractory period It consists in a transient time after the excitation of an
action potential during which the neuron is unable (absolute refractory period) or
less able (relative refractory period) to generate another action potential. In the
second case, a stimulus can still be created by stronger-than-usual stimuli.

Summability It refers to the ability of the neuron to integrate multiple incoming
synaptic inputs to determine whether to fire a spike. The integration can occur
through both temporal and spatial summation. The first takes place when consec-
utive inputs from the same synapse arrive within a short time window, causing the
postsynaptic potential to accumulate. The latter, instead, involves the simultaneous
arrival of stimuli from multiple synapses distributed across the dendritic tree, whose
combined effect can bring the activation function over the firing threshold.

Plasticity It refers to the capacity of a neuron’s structure and function to change
over time in response to its activity, experience or environmental influences. This
adaptability, which can involve modifications of synaptic strength or alterations in
the activation threshold, may manifest as a short-term plasticity, lasting milliseconds
to minutes, or as long-term plasticity, resulting in persistent changes that can endure
for even years.

1.2 Overview of neuromimetic photonic systems
in literature

Numerous semiconductor-based photonic systems have been investigated to emulate
the behavior of biological neurons. In 2011, Appeltant et al. [8] demonstrated
both theoretically and experimentally that information processing can be achieved
using a single dynamical node with an optical feedback loop in a RC physical
architecture. Chakraborty et al. proposed a simulated neural network composed of
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all-photonic spiking neurons based on phase-change materials [9]. In 2017, Shen
et al. developed an integrated silicon photonic feed-forward neural network, both
theoretically and experimentally, employing a cascade of Mach-Zehnder interferom-
eters to harness the properties of coherent light [10]. Extensive research activity is
also being performed in the framework of photonic synapses [11], which would be
responsible for the collection and transmission of signals through the neurons in a
real neuromimetic architecture.

In 2011, the group of S.Barbay proposed a physical implementation of a spiking
neuron based on a semiconductor laser with a saturable absorber [12]. This ap-
proach is particularly appealing as it removes the need for optical feedback loops,
thereby simplifying the experimental setup. Additionally, it avoids the use of slow
thermal mechanisms typically involved in phase-change materials.

Building on the PhD thesis by A. Masominia in the group [1, 13], the goal of
this internship is to push further the numerical and experimental investigation of
the computational potential of such system, with the ambitious goal of developing
a fully optical ultra-fast classification scheme.

In Chapter 2 I will describe the physical system that I am going to use as an artificial
neuron and I will give some numerical results regarding the general neuromimetic
properties of a single micropillar.
In Chapter 3, instead, I will present numerical simulations addressing the whole
process of image classification, along with preliminary experimental results charac-
terizing the properties of the system.
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Chapter 2

Physical system

2.1 Neuromimetic micropillar laser
As previously discussed, in recent years, neuromimetic photonic systems have gained
substantial attention owing to their promise for implementing analog, spike-driven,
and non-Von Neumann computational paradigms [14]. These systems aim to repli-
cate a central feature of biological neurons, that is their excitability, which allows
for the encoding of information into sharp and well-defined spikes that facilitate
both signal transmission and computational functions.

Lasers with saturable absorbers1 have been extensively studied as excitable
systems, both from a theoretical [15] and an experimental [16] point of view.

While the majority of the proposed devices required coherent laser injection
into a cavity, a major breakthrough came along with the development of the first
excitable semiconductor laser incorporating an integrated saturable absorber [12,
17]: this kind of system needs only incoherent pumping, either electrical or optical,
and its functionality is based on a carrier based slow-fast non-linearity instead of
slow thermal responses. Moreover, the micropillar lasers can be easily integrated
into arrays and other spatial schemes exploiting their evanescent coupling [18].

2.1.1 Excitable microlaser
The excitable system considered during the internship, represented in Figure
2.1, is a specifically designed, optically pumped VCSEL featuring an integrated
intracavity saturable absorber. The monolithic cavity incorporates aperiodic
multilayer AlGaAs/AlAs mirrors engineered to obtain efficient optical pumping

1A saturable absorber may be generically defined as a material whose absorption decreases as
the intensity of the incoming light increases. At low intensities, the material strongly absorbs
light, but as the intensity rises, the absorption "saturates," and the material becomes increasingly
transparent.
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2 – Physical system

across a wide wavelength spectrum [19]. The active zone of the device contains
two InGaAs/GaAs quantum wells for the gain medium and one InGaAs/AlGaAs
quantum well acts act as a saturable absorber. All the three quantum wells have
to be placed at the anti-nodes of the cavity resonant fields, targeted at 980 nm.
Moreover, in order for it to remain unpumped, the placement of the SA quantum
well must be engineered to correspond also with a node of the pump field, which is
characterized by a wavelength of 808 nm.

Figure 2.1: Real and schematic images of the micropillar. (a) Image of a micropillar laser. (b)
Structure of the excitable VCSEL. (c) Simplified scheme of the device architecture.

The physical working principle of the device is as follows: when an optical
pump is applied to the system, electrons in the valence band of the gain quantum
wells are excited, leading to a large increase in the laser gain (defined as G(ν) =
σ(ν)∆N , with σ(ν) the stimulated emission cross-section and ∆N = Nc − Nv the
difference between the carriers’ concentrations in the excited and fundamental
states). Meanwhile, the saturable absorber (SA) remains unpumped due to its
spatial location at a node of the pump field. The resulting spontaneous emission
processes that emerge from the pumped gain region are responsible for absorption
processes inside the SA, which effectively block most of the resulting light intensity.
However, once the intensity reaches the saturation threshold of the absorber, its
absorption decreases and the SA becomes transparent to light. This allows a rapid
onset of stimulated emission, which quickly depletes the carrier population in the
gain region, resulting in a macroscopic light spike. In a comparable timescale, the
excited electrons in the conduction band of the SA relax back to the ground state.
Under suitable conditions—further detailed in Section 2.1.2—this process repeats
periodically over time, typically at frequencies in the gigahertz range [20].
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2.1.2 Yamada model
The micropillar excitable dynamics is described by a modified version of the well-
estabilished Yamada model [21], which is described by the following set of non-linear,
coupled and adimensional differential equations, that can be derived from the rate
equations for the system, taking into account absorption and stimulated emission
processes, non-radiative recombinations and a spontaneous emission term for the
intracavity intensity (neglected in the remaining two equations):


İ = I(G − Q − 1) + βsp(G + η)2

Ġ = γG(µ1(t) − G(1 + I))
Q̇ = γQ(µ2 − Q(1 + sI))

(2.1)

These equations characterize the intra-cavity intensity I, while G and Q are,
respectively, proportional to the excess carrier densities in the gain and saturable
absorber regions. The factor R(t) = G(t) − Q(t) − 1 is defined as the rescaled net
gain. Different parameters influence the system dynamics: µ1 and µ2 represent
respectively the pump intensity and the linear absorption, η adjusts for the trans-
parency offset in the gain region, γG and γQ are the non-radiative recombination
rates, s is a saturation parameter that takes into account the finite number of states
in the conduction band of the SA and βsp is the spontaneous emission factor, which
accounts for the fraction of spontaneously emitted photons that effectively couple
into the cavity’s resonant mode. Across the simulations, some of the previously
presented parameters remained fixed; their numerical values are reported here:
both γG and γQ have been set to a value of 0.005, µ2 = 2.0, s = 10, η = 1.4
and βsp = 10−5. All the factors of Eq. 2.1.2 are rescaled with respect to the
photon lifetime in the cavity; therefore, a time unit in the system corresponds
approximately to 1.5 ps.
As one may notice from Eq. 2.1.2, the effective timescales governing the dynamics
of G and Q are on the order of τG,Q = 1/γG,Q = 200, whereas the evolution of
I occurs on a much faster timescale, approximately τI ∼ 1. This separation of
timescales gives rise to a slow-fast nonlinear system, where G and Q act as slowly
varying variables, while I responds rapidly to changes in the system.
In order to maintain physical coherence with the experiment during this study,
perturbations will be applied on the pump µ1, since it will be the only parameter
that may be accessed through the experimental setup.

Figure 2.2 represents the bifurcation diagram evaluated from the system character-
izing the Yamada model.

The graph represents the maximum value reached by the intra-cavity intensity
I as a function of the base pump µ1. For low values of µ1 the system is set in a
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Figure 2.2: Bifurcation diagram of the solution of the Yamada model; solid lines represent the
stable solutions of the system, while dashed lines the unstable ones. Image adapted from [1].

a) b)

Figure 2.3: Projection on the G–I plane of the phase representation of: (a) the emission of a
spike after a perturbation. After spiking, the system returns to the stable state; (b) self-pulsing
regime, where spikes are emitted continuously. Insets show the full phase space trajectories
considering all three variables.

non-lasing state: the stable solution is I = 0. By following the maximum amplitude
in the graph, an abrupt jump is then clearly visible after the excitable threshold
µth1: when the threshold is surpassed, the system immediately starts to emit light
pulses of high intensity without any variation in the pump intensity. If µ1 is further
increased, the intensity of the self-spiking pulses decreases until a second jump is
found. For high values of pump, the microlaser starts emitting a continuous wave
signal (in the image denoted as "damped oscillator regime"), with an intensity that
is notably lower than the one coming from the self-spiking regime. However, the
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most interesting regime for tasks such as image classification is the excitable regime
(the one right under µth1), in which a spike is emitted when a perturbation of the
pump is enough to make it overcome the spiking threshold and, therefore, to emit
a spike.

Additionally, Figure 2.3 shows the phase-space representation of the intensity I as
a function of the gain G both in the case of a single excitable spike (a) and of a
self-spiking regime (b). Clearly in the second case the system converges toward a
limit cycle corresponding to the emission of a spike train with a definite period.
The black dot in Figure 2.3(a) represents the stable solution of the system, to
which the system converges after the emission of a spike.

2.2 Numerical results
In the preliminary computational studies that will be presented in this section, the
system of three coupled ordinary differential equations (ODEs) has been integrated
by using is the solve_ivp function from the Python library SciPy [22]. This func-
tion, which interfaces to different ODEs solvers, is able to manage both stiff and
non-stiff problems with adaptive step size control; this adaptability is essential for
capturing the complex slow-fast dynamics of the system. The explicit Runge-Kutta
method of order 5(4) ’RK45’ has been specifically selected for the simulation of the
system.

2.2.1 Micropillar’s neuromimetic properties

The objective of this section is to numerically characterize the properties of the
excitable system introduced in Chapter 1, that enable the device to emulate
the behavior of a biological neuron. In order to maintain a coherence with the
experimental work that will be described in section 3.3, in order to demonstrate all
the following properties the pump perturbation applied to the system has a boxcar
shape selected according to the following formula:

µ1(t) = µ1,0 + pΠτp(t − t0) (2.2)

in which µ1,0 is the base pump of the system and represents the pump intensity
needed to bring the system in the excitable regime, while the second part of the
equation represents a boxcar function with amplitude p and time width τp; t0 is
the initial time at which the perturbation is applied.

10
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Excitability The key property that a neuromimetic spiking microlaser must
exhibit is excitability. As shown in Figure 2.4(a), the first, weaker perturbation
of the pump fails to trigger a spike, whereas the second, stronger perturbation
successfully elicits a macroscopic response. A more detailed analysis reveals that
the critical factor governing excitability is the net gain. In fact, whenever the
net gain R(t) exceeds the threshold defined in Section 2.1.2, a spike is almost
instantaneously generated.

Figure 2.4(b) further emphasize the excitable threshold of the system by plotting
the peak intensity reached during the simulation as a function of the perturbation
amplitude. As clearly represented, the over-threshold spike amplitude is well
calibrated and linearly follows the amplitude of the perturbation. Figure 2.4(c) ,
instead, demonstrates the self-spiking regime, in which the system emits periodic
spikes spontaneously once the baseline pump exceeds the threshold, even in the
absence of external perturbations. The sharp transition between the two different
regimes is a crucial feature for information processing. Although it is theoretically
possible to generate light intensity spikes by using short gain switching - i.e. a
high-intensity pulse in the laser pump - in a conventional laser, the linear response
of such laser means that most of the information encoded in weaker smaller stimuli
would be lost.

Figure 2.4(d) shows the excitability threshold, defined as the minimum value
of p (i.e. the maximum of 1/p), required to trigger a spike as a function of the
perturbation width τp in Eq. 2.2. It can be clearly observed that the energy of the
pump perturbation, E = δµ1τp = piτp, necessary to elicit a spike, remains constant
for τp ≫ 1

γQ,G
.

However, for large τp, the curve saturates because the system compensates
the carrier injection from the pump with increased losses due to non-radiative
recombination processes [1, 23].

Refractory period As shown in Figure 2.5(a), on the left side of the figure,
the proposed neuromimetic system clearly exhibits an intrinsic absolute refractory
period: although perturbations carry sufficient energy to trigger a spike, only one
spike effectively does so. On the right side, instead, the presence of a relative
refractory period is highlighted, meaning that both perturbations elicit responses,
but the second is notably weaker. This reduced response results system’s incomplete
return to equilibrium, due to the slow recovery dynamics of the gain (G) and
saturable absorber (Q). The refractory period of the spiking micropillar naturally
correlates the temporal sequence of incoming stimuli, effectively acting as form
a short-term memory. This enables the use of a single spiking micropillar as a
complete physical reservoir, eliminating the need for a feedback loop that would
otherwise be required.
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a)
b)

c)
d)

Figure 2.4: Numerical demonstration of the excitability of the system: (a) Only perturbations
that make the net gain exceed a threshold trigger a spike; (b) Maximum value of the emitted
intensity as a function of the perturbation amplitude. The minimum perturbation needed to
excite a spike depends on the base pump; over the excitable threshold the spiking intensity is
clearly reproducible. (c) A base pump µ1,0 ≥ 3.0 causes self-spiking. (d) Inverse of the minimum
perturbation amplitude required to excite a spike as a function of the pulse width; for high values
of the pulse width, the graph shows a step-like structure caused by numerical limitations, as it
was obtained via brute-force physical simulations across numerous pi and τp pairs, rather than
through a continuation algorithm.

Temporal summation As illustrated in Figure 2.5(b), contributions from mul-
tiple pulses in the laser pump can sum temporally - provided they occur close
enough in time - to collectively trigger a spike. This behavior is essential for the
biomimetic character of the device.
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The combination of these properties makes the system particularly well-suited for
implementation in hardware neural networks and also enables a direct recognition
of simple patterns, as highlighted by Masominia et al. in [13]. For instance, Figure
2.5(c), demonstrates that, with proper tuning, the system can distinguish between
closely related input sequences such as 1011 and 1101. This capability can be used
to design a simple photonic spike-based classification scheme [1].
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Figure 2.5: Properties of the excitable system: (a) Absolute (left) and relative (right) refractory
period of the system; the blue dashed lines indicate the moment in which the second perturbation
is applied. (b) (c) A correct tuning of the parameters allows the distinction of similar features
such as "1011" and "1101"

.

Spike latency The system exhibits a characteristic delay - here referred to as
spike latency - between the application of a perturbation on the pump and the
spike coming from the system’s response.

This latency arises from the slow-fast dynamics governing the excitable behavior
of the system: when a perturbation is applied, the system does not respond
instantaneously; instead, the response is delayed by an amount of time that depends
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sensitively on the energy of the perturbation relative to the excitable threshold.
More in detail, as represented in Figure 2.6(a), if the net gain barely exceeds the
threshold, the system "hesitates" near the resting state before transitioning to an
excitable response, resulting in a long latency. In contrast, perturbations that make
R(t) exceed the threshold by a larger margin lead to shorter delays. The latency
dramatically increases as the input energy approaches the threshold from above, as
illustrated in Figure 2.6(b).
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Figure 2.6: Spike latency of the system: (a) Spike latency as a function of the input perturbation
amplitude. (b) Examples of the response of the system to different input perturbations.

This property paves the way for the enrichment of the information carried by
individual spikes. As proposed in [13], indeed, it would be possible to make use of
the difference between the time delays of the spikes excited by different perturbation
patterns, thus employing a temporal coding instead of the more conventional event-
based coding, to increase the computational efficiency for tasks such as image
classification.
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Chapter 3

Image classification with
spiking microlasers

The broad objective of the work is to pave the path toward a fully hardware-based
computing system. Although the initial studies that will be described in this
chapter do not eliminate the need for a conventional computer, they still represent
an important step to comprehend the mechanisms of encoding and decoding of the
data. Exploiting the information presented in chapter 1, in this chapter the spiking
microlaser will be exploited as a nonlinear node within a reservoir computing
framework under the hypothesis that the sparsity and event-based nature of the
spikes may facilitate the mapping of the data into an higher dimension: each spike
is elicited under specific conditions and conveys substantial information about the
perturbation that induced it.
While conventional reservoir computing architectures typically rely on a complex
network of recurrently connected nonlinear nodes to retain memory of past inputs,
in this case of study a single spiking microlaser can effectively replace the entire
recurrent network. This is made possible by the intrinsic refractory period of the
microlaser, which provides a form of short-term memory by temporally correlating
the system’s response to recent stimuli. As a result, the need for explicit recurrent
connections is relaxed, allowing the memory of the system to emerge from its
own dynamical properties, thus enabling the system to retain memory through its
intrinsic dynamical behavior rather than through explicit recurrent connectivity.

Image classification is a standard benchmark for evaluating the performance
of machine learning algorithms. In particular, digit recognition represents an
interesting case: while it does not require highly complex models, it still presents
enough challenge to serve as an intermediate step toward real-world applications in
computer vision and pattern recognition.
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3.1 Methodology
As discussed in section 2.1.2, pump level (µ1) of the micropillar gain is able to set
the system in the so-called excitable regime so that a spike is excited only when
a certain perturbation is applied to the system. This condition is essential for
the image classification tasks. In this context, the system must undergo both a
training phase (sec. 3.1.1), where it has to "learn" the association between input
patterns and output labels, and an inference phase (sec. 3.1.2), where it applies
the learned behavior to classify new inputs. In the first phase, the images have
to be encoded in a suitable spatial or temporal scheme in order to be processed
by the neural network. In the context of reservoir computing, the output of the
reservoir is decoded in a vector and then used to evaluate the optimal readout
matrix. During the inference phase, instead, the decoded ouptut is multiplied for
the evaluated matrix. The result is a vector containing all the "scores" assigned to
each label.

Dataset

The reduced MNIST digit dataset provided by scikit-learn [24] consists of 1,797
grayscale images of handwritten digits, each in an 8×8 pixel format. Every image
is flattened into a 64-dimensional vector, where each element represents a pixel
intensity ranging from 0 (black) to 16 (white), across 17 discrete grayscale levels.
The dataset is designed to be balanced, containing approximately 179 or 180
samples for each of the ten digits (0–9). In the studies described, if not specified,
70% (125 images per digit) of the dataset has been employed for the training and
30% (54 per digit) for the inference analysis and accuracy evaluation of the system.
In order to avoid the possibility of casually selecting a particularly well-suited
training subset, measurements are repeated 10 times, each with a new randomly
selected set of digits.

Solver

The numerical computations were performed using the Julia programming language,
known for its high performance in scientific computing. In particular, the integration
of the differential equations was carried out using the Tsit5 solver, an explicit
Runge-Kutta method of order 5(4), which is well-suited for non-stiff problems.

3.1.1 Training
In the framework of reservoir computing, which this work is based upon, training
the system means to compute the optimized readout matrix. The algorithm used
for the training of the model is reported in Figure 3.1
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Figure 3.1: Training algorithm used in the simulations. (a) Example of one image from the
dataset in 8x8 format. (b) Schematic of the bit time (τb) and perturbation time (τp). (c) Encoding
process: the digit vector is converted into a pump perturbation scheme. (d) Optical response
from the system. (e) The response is decoded into a binary vector and the linear system is solved
to find Wout

Encoding

The first step for the training of the classification model is the encoding of the
images into a specific perturbation scheme: in this case the perturbations are
applied on the pump of the excitable laser. Each dataset entry (64 values, one for
each pixel of an image) are stored as a vector of 64 values.
In order to generalize the problem, a random vector with the same dimension is
created for each digit that is inputed to the system and a dot product is performed.
In contrast to conventional machine learning algorithms, during the simulations we
do not enlarge the data volume through masking procedures. Instead, we aim to
fully exploit the information already contained in the dataset.

The resulting vector containing the perturbation amplitudes pi is then normalized
and converted using a coefficient c into the pump laser µ1(t) according to the
following formula:

µ1(t) = µ0 +
Ø

i

cpiΠτp(t − iτb) (3.1)

where Πτp(t) is a boxcar function of duration τp, µ0 is the base (DC) pump, which
is used to keep the laser in the excitable regime and is kept constant during the
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simulation. τp and τb are the respectively the perturbation and bit times, which
are clarified in Figure 3.1 (c): each pixel perturbs the system for a time τp, and
occupies an effective time τb. The factors in this formula are the actual degrees of
freedom that can be modified in the system.

In the simulations, the N digits are fed sequentially into the spiking micropillar
by appending a (1, 64) vector to the input matrix for each image provided. This
results in an input matrix referred as Xin ∈ RN×64.

Decoding

Once the input is provided to the system, the response consists of a train of spikes
whose physical characteristics—such as amplitude and temporal spacing—depend
on the input. Due to the intrinsic refractory period of the photonic neuron, not
all pump perturbations are converted into spikes. This results in a sparse spiking
output, which enhances the information content of each individual spike.

To compute the optimized readout matrix, the resulting analog signal must be
converted into digital form. This is achieved by dividing the entire response timeline
into a fixed number K of time bins and assigning a binary value to each bin based
on whether the light intensity within that interval exceeds a given threshold. In
this work, the threshold is set to 20% of the image’s maximum intensity, although it
can be further optimized as a hyperparameter. A representation of this procedure
is represented in Figure 3.2. As for the images, all the resulting output vectors are
concatenated in a matrix Xout ∈ {0,1}N×K .

Figure 3.2: Decoding of the output: by considering a number K of time bins, each bin will take
the value 1 in the presence of a spike and a 0 in its absence
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Training of the readout matrix

As already described, in the framework of reservoir computing, on which this work
is based upon, training the model refers just to optimizing the readout matrix
W ∈ RK×10. In machine learning literature this can be assessed in a variety of
possibilities [25–27]. However, in order to pursue the broad goal of the project of
minimizing - and ideally eliminating the system’s reliance on an external computer
- we adopt the simplest form of supervised training. This consists in solving the
linear system XW = Y , where Y ∈ {0,1}N×10 contains the one-hot encoded labels
of the training dataset. Since the system is overdetermined (N > K), this has to
be done by looking at the solution that minimizes the squared error ∥XW − Y ∥2

F ,
where ∥ · ∥ is the Frobenius norm. The resulting least-squares solution, which
effectively computes the best linear mapping, is then

W = X+Y (3.2)

in which X+ is the Moore-Penrose pseudoinverse of X. This approach provides
a closed-form solution to the problem, without requiring iterative optimization
methods such as gradient descent.

3.1.2 Inference
Inference is the stage in which a previously trained machine learning model is
deployed to generate predictions on data it has not encountered before. Once the
model parameters - in this case the readout matrix W - have been optimized during
the training phase, the model applies the learned input-output relationship to new
examples.

During this phase, the system takes an input sample xin ∈ R1×64, that is en-
coded as during the training phase described in section 3.1.1. The decoded output
xout ∈ {0,1}1×K is then multiplied by the optimized matrix W ∈ RK×10 found
during the training: the result is the vector Ypred ∈ R1×10 that contains a "score" for
each label, that is associated to the pseudo-probability of each label to be associated
to the image xin. The predicted label will be the one associated to the highest score.

By testing the model with about 30% of the dataset one can finally compute
the accuracy of the system as

A = Number of correct predictions
Total number of predictions = 1

n

nØ
i=1

I(ŷi = yi) (3.3)

where I is the indicator function, the value of which is 1 if the prediction ŷi is equal
to the true label yi and 0 otherwise.
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3.2 Numerical results
In order to test the capabilities of the described system, at least from a numerical
point of view, different simulations have been carried out by considering the dataset
of handwritten digits described in section 3.1.

For the initial analysis, a dataset composed by 125 samples per digit is used.
Both training and inference are repeated 10 times with the digits shuffled each
time to avoid bias from randomly select a favorable dataset.
Several parameters are kept fixed across all the simulations presented in this
work: µ2 = 2.0, γG = γQ = 0.005, S = 10.0, η = 1.4, βsp = 10−5, τp = 10.00.
The remaining parameters of Eq. 3.1, instead, are considered as hyperparameters
subject to further optimization. During the decoding phase, the data are binarized
using a threshold set at 20% of the maximum output intensity produced during
the training. Additionally, the output spike stream is divided into time bins equal
in number to the pixels in the image, which is 64. Figure 3.3(a) shows an example
of the pump perturbation scheme applied to the microlaser and the corresponding
spiking output.

a) b)

Figure 3.3: (a) Top: pump perturbation scheme given as input to the micropillar; center:
net gain dynamics of the optical neuron, the net gain acts as a thresholding function; bottom:
response of the excitable laser to the input; inset: example of one of the images in the MNIST
dataset. Pixels are read in the conventional order: left to right, top to bottom; parameters:
µ1,0 = 2.68, τb = 125.0, c = 17.5. (b) Confusion matrix, the diagonal represents the correctly
assigned labels.
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As expected, due to the system’s refractory period, not every input perturbation
triggers a spike in the output. Furthermore, the amplitude of some spikes is
significantly reduced in comparison to the expected values because of the relative
refractory period that the system presents. Finally, Figure 3.3(b represents the
confusion matrix, in which the predicted labels from the model are compared to
the true labels of the dataset, that has been obtained after testing the system with
the remaining 30% of the dataset that was not used during the training. For this
reason, we opted to exploit the ultrafast properties of the optical scheme not to
compute new data from the initial ones, but to physically read each image with
different orders, as specified in section 3.2.1

3.2.1 Data augmentation
A common practice in machine learning is to increase the information content of a
dataset by applying data augmentation techniques. With the training algorithm
considered for this experiment (sec. 3.1.1), one might simply perform a matrix
multiplication between the input matrix Xin ∈ RN×64 and a weight matrix Waug ∈
R64×K ; doing so the dimensions of the readout matrix Wout remain coherent with the
considered algorithm and independent from the size of the input dataset. However,
as already stated in this work, one of the aims of the study is to minimize the
dependence from an external computer to finally create fully optical setup for image
classification. This approach comes from the notion of receptive fields in ANNs [28],

a)

b)

Figure 3.4: (a) Decoding process of the reading order method with a varying number of
considered orders. (b) Resulting confusion matrix using three different reading orders; µ1,0 = 2.68,
τb = 125.0, c = 17.5
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that exploit the correlations between the data encoded in different variations or
portions of each image to enrich the available information. In this configuration, each
different reading of an image has to be horizontally appended to the input matrix,
which therefore becomes Xin ∈ RN×(64·Nc), where Nc represents the number of
reading orders considered during the training. This process is represented in Figure
3.4. Obviously, the number of time bins has to be opportunely adjusted taking into
consideration the amount of different reading orders considered. By considering all
the eight possible horizontal and vertical reading orders, the simulation returns an
accuracy A = 94.14±0.96%. However, by performing different simulations, one can
clearly notice how the accuracy saturates by considering more than three reading
orders. By considering, as an example, only the "left to right, top to bottom" ,
"top to bottom, right to left" and "left to right, bottom to top" orders, the average
accuracy found from the simulations is 94.07 ± 1.09%. Therefore, all the following
analysis will be performed using these three reading orders, which result in a matrix
Xin ∈ RN×192

3.2.2 Dependencies and optimization
Several parameters in the proposed model influence the simulation results and can
be further tuned.
The first - and arguably the most critical from a computational standpoint — is
the number of time bins, which directly determines the size of the output matrix
to be optimized. It is worth noting that, although the current model operates in a

a) b)

Figure 3.5: (a) Relation between the accuracy of the model and the number of time bins/virtual
neurons considered. 125 samples for each digit were used for the training; parameters: µ1,0 = 2.68,
c = 17.5; three reading orders were considered for each digit. (b) Accuracy dependence with
respect to the size of the training dataset, expressed as the number of samples given for each
different digit; parameters: µ1,0 = 2.68, τb = 125.0, c = 17.5; three reading orders were considered
for each image and the number of time bins was set to 192.
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serial fashion by feeding all perturbations corresponding to each training image
into the same node sequentially over time, an alternative approach would be to
employ multiple nodes working in parallel; this would reduce the computational
complexity at the expense of a more complex architecture. In a complete parallel
configuration, the number of required nodes would match the number of time bins
used in the serial case.

Figure 3.5(a) reports the dependence of the resulting accuracy with respect to
the number of time bins considered during the simulation. To evaluate whether
the neuromorphic system implemented in this work offers any advantage over a
purely software-based solution using the same resources, the accuracy of the model
can be compared to that obtained by directly computing Wout from the dataset,
after binarizing the values of the pixels. As one can notice in Figure 3.5(a), the
model considering the spiking micropillar shows better performances with respect
a direct computation from the input - meaning that more information is encoded
in each value of the binary output matrix Xout - in particular when the number
of time bins is reduced. As represented in Figure 3.5(b), the performances of the
software-based computation tend to overcome the ones from the model only for
small training datasets.

Even though the values of the parameters used in the model are only qualitative,
it is important to analyze the influence of hyperparameters on the system’s behavior
in order to gain a clear understanding of which inputs would be more suited for
the experimental implementation of the algorithm. As represented in Figure 3.6(a),
very low values of the bit time τb are reflected in a strong decrease in the accuracy.
Indeed, many spikes cannot be triggered because of the refractory period of the
system and the total amount of information given to the system is strongly reduced.
However, the accuracy becomes approximately constant with τb ≳ 75.
Figure 3.6(b) reports the dependence of the system from the threshold used for the
binarization process during the decoding of the output data (or for the binarization
of the input in the case of the direct computation).
Figure 3.6(c), finally, presents a heatmap of the average classification accuracy as
a function of the parameters µ1,0 and c in Eq. 3.1. As expected, low values of
µ1,0 correspond to a higher distance from the excitability threshold, resulting in a
reduced number of spikes and, consequently, lower classification performance. As
µ1,0 increases, this distance decreases, leading to a denser spiking response and
improved accuracy, which eventually tends to saturate. The parameter c, which
controls the strength of the input perturbation, plays a similar role in modulating
the system’s responsiveness. The saturation of the output may be interpreted as
reduced sensitivity to these parameters over determined values, which could be
useful during experiments.
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a) b)

c)

Figure 3.6: Accuracy dependence on the hyperparameters. (a) Dependence with respect to τb;
µ1,0 = 2.68, c = 17.5. (b) Dependence on the binarization threshold; µ1,0 = 2.68, τb = 125.0,
c = 17.5. (c) Heatmap of accuracy vs µ1,0 and c; τb = 125.0

3.3 Experimental analysis

3.3.1 Experimental setup

To validate the proposed approach, the algorithm outlined in Section 3.1 will next
be deployed in a physical experimental setup, allowing performance assessment
under realistic operating conditions and noise influence. A schematic representation
of the experimental setup is shown in Figure 3.7.

The experimental apparatus contains two different continuous wave (CW) lasers
and is divided into two main sections: the first employs fiber coupling to control
the RF component of the pump, thereby generating the perturbations; the second
operates in free space, where both the DC and RF components of the pump signal
are delivered to the spiking micropillar.

The signal derived from the images is generated by modulating the output of a
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Figure 3.7: Schematic representation of the experimental setup

CW semiconductor laser (Thorlabs MCLS1 ), which will be denoted as L1, operating
at a wavelength of 808 nm with a maximum optical power of approximately 30 mW.
To minimize drift, the laser features internal temperature stabilization, maintaining
a constant temperature of 25.00°C. The fiber-coupled output passes through an
optical isolator to suppress any potential back-reflections, and is then routed
through a polarization controller before being injected into an optical modulator
(iXblue NIR-MX800-LN-10-00-P-P-FA-FA).

The waveform given as a RF voltage input to the modulator is created by
an arbitrary waveform generator (Tektronix AWG5002 ), amplified by a iXblue
DR-VE-10-MO driver amplifier, and combined with a DC voltage of 12 V + Vbias

via a bias tee. The role of Vbias is to effectively set the modulator at a specific point
on its transfer function.

The optical signal that comes out of the modulator is then sent in free space to
the second part of the experiment, where it is combined through a beam splitter
with the light beam emitted by a second semiconductor CW laser (Coherent FAP
laser diode), denoted as L2, with a wavelength of approximately 800 nm, which is
responsible for the base (DC) component of the micropillar pump. The complete
optical pump is then reflected by a dichroic mirror and directed to the spiking
microlaser. To maintain optical performance, the micropillar is cooled and stabilized
at a temperature slightly below 0°C using a Peltier heat pump. Exploiting the
wavelength difference between the input and the output of the latter, the outcoming
signal is able to pass through the dichroic mirror and to be directed to an RF-
coupled avalanche photodetector (APD, MenloSystems APD210 ) with a bandwidth
between 1-1600 MHz, from which it can be analyzed by a LeCroy Wavemaster
8620A oscilloscope with a sample rate up to 20 GS/s.
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Working principle of the optical modulator

The iXblue NIR-MX800-LN-10-00-P-P-FA-FA optical modulator is based on a
Mach-Zehnder interferometer, in which one arm incorporates a lithium niobate
(LiNbO3) crystal. Modulation arises from the Pockels electro-optic effect intrinsic
to lithium niobate, whereby the application of an external voltage alters the
crystal’s refractive index. This voltage-induced index variation changes the optical
path length, thus modifying the interference pattern at the output. The resulting
intensity modulation is described by the following transfer function:

T (V ) = sin2
A

πV ′

2Vπ

B
(3.4)

with V ′ = V − Voff . In this expression, Vπ denotes the voltage required to induce a
full swing between the maximum and minimum transmission, while Voff is the bias
voltage that results in a zero (or multiple of 2π optical phase difference between the
interferometer arms). From a fitting procedure of the transfer function in Figure
3.8, the parameters were determined to be Vπ = 4.32 V and Voff = −2.07 V . A
non-negligible thermal drift can be denoted in different sweeps of the curve.
Since this electro-optical response is essentially instantaneous - requiring no thermal
response - and the device is engineered for high RF bandwidth, this system enables
modulation with rise times in the order of 100 ps.

Possible working conditions

As represented in Figure 3.8, adjusting the peak voltage of the AWG directly
determines the peak amplitude of the modulated waveform.
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Figure 3.8: Possible working conditions of the optical modulator: (a) Vbias = Voff + Vπ. (b)
Vbias = Voff + 3/2 Vπ
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Since we aim to encode pixel intensities into pump amplitudes, we can actively
control the amplitude of the signal output from the optical modulator by adjusting
the peak voltage of the waveform generated by the AWG. Meanwhile, the DC
voltage determines the operating point of the modulator. One first possibility is
to set the DC voltage Vbias in order to set the modulator in the minimum point
of the transfer function in Eq. 3.4. This condition is achieved by applying a
Vbias = Voff + Vπ, as represented in Figure 3.8(a). This approach allows for a wider
dynamic range in terms of the waveform amplitude.

The second possibility, illustrated in Figure 3.8(b), is to set Vbias = Voff +3/2 Vπ

to work in the function region that may be approximated as linear: in this case the
dynamical range will effectively be smaller, but it would allow the use of negative
pulses, which are reflected in an effective pump removal.

Given the non-linearity of Eq. 3.4, it is useful to linearize the relation in order
for the optical signal to maintain a coherent amplitude with respect to the one
coming from the electrical signals that are applied by the AWG. To do so, the the
voltage V in the transfer function can be computed through the inverse formula:

V ′(x) = 2Vπ

π
arcsin

1√
x
2

(3.5)

The modulated input is represented in Figure 3.9 in both the working conditions.
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Figure 3.9: Linearization of the input from the AWG. (a) First working condition. (b) Second
working condition.

Characterization of input signal

After modulating the input that is given to the AWG according to Eq. 3.5, the
linearity of the input can be checked by applying a modulated perturbation to
the AWG and recording the resulting signal with an oscilloscope. The results are
reported in Figure 3.10.
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Figure 3.10: Check of the input linearity in the two working conditions.

3.3.2 Characterization of excitability
By adjusting the bias current of the laser L2 (IL2), the bias voltage Vbias applied to
the optical modulator, and the peak voltage Vpp of the waveforms sent to the AWG, a
clear excitable behavior of the device can be observed. As illustrated in Figure 3.11,
the emission intensity of the micropillar exhibits distinct spiking behavior when
a perturbation is applied to the pump. To simplify the understanding, the two
images are manually aligned using a marker (green waveform) as a reference.

As represented in Figure 3.12, the occurrence of spikes in the experiment is not
perfectly deterministic. Due to the low power density of the pump perturbation
laser on the sample — measured to be approximately 19 mW — it is necessary
to set the bias current of laser L2 to values that bring the system very close to
the excitable threshold. This operating condition results in an unstable output
signal, where some spikes are triggered or suppressed by noise. The waveforms in
Figure 3.12 are recorded using the oscilloscope in persisence mode, conserving a
trace of each spikes for a time span of 2 s. The parameters used for Figure 3.11 and
3.12 are: IL1 = 80.0 mA, IL2 = 14.77 A, Vbias = 2.32 V , Vpp = 200 mV . Although
the excitable behavior of the device is evident from the discrete nature of spike
generation, the low optical power density of the perturbations results in a highly
variable spike latency. This variability is evident by looking at the rapid decrease
of spike latency (Figure 2.6) with an increase of the perturbation amplitude.

Figure 3.13, instead, reports the spiking activity of the sample when the input
consists in a series of 20 pulsed perturbations with increasing amplitude. The
expected all or none response is here clearly evident, as perturbations with a lower
amplitude are not able to excite a spike; in contrast, larger perturbations elicit a
spike with calibrated amplitude.
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Figure 3.11: Experimental observation of excitability. (a) Perturbation scheme applied to the
AWG, with high time τh = 4 ns and low time τl = 10 ns. (b) Signal emitted by the spiking
micropillar. The green waveform serves as a trigger for synchronization and signal acquisition.
Each time division represents 10 ns, while each voltage division 20mV .
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Figure 3.12: (a) Statistical temporal positioning of the spiking pattern. (b) Signal when no
perturbation is applied to the pump. Each time division represents 10 ns, while each voltage
division 20mV .
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Figure 3.13: (a) Perturbation scheme applied to the AWG. (b) Signal emitted by the spiking
micropillar; τh = 4; ns, τl = 10 ns. Each time division represents 10 ns, while each voltage
division 20mV .
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Chapter 4

Conclusions

This internship was a valuable opportunity to explore the research fields of photonics
and to deepen my knowledge of neuromophic computing, a topic I have been
interested in for a long time. During the course of the project, I became familiar
with the physical principles and dynamical behavior of excitable micropillar lasers
from theoretical, numerical, and experimental perspectives.

From a numerical standpoint, I implemented and analyzed vast simulations to
characterize the properties of a single micropillar, and I managed to implement a
complete image classification framework based on a reservoir computing architecture
using an excitable microlaser as a single dynamical node, studying the influence
of hyperparameters. By optimizing the simulation parameters and leveraging on
the reading of each image from three different reading orders, I finally managed to
obtain similar accuracy results tasks compared the PhD thesis this work was based
upon [1] - which employed logistic regression as an optimization algorithm for the
readout matrix - but employing a way less computationally expensive algorithm
based on the Moore-Penrose pseudoinverse matrix. By exploiting Julia’s multi-
threading capabilities on an Intel i7 processor with 8 cores, the average computation
time required to train the model with 125 samples per digit was approximately
50 s. This result clearly highlights the potential computational efficiency that a
physical system such as the one described could help to achieve.

From an experimental point of view, I practiced the use of a complex optical
setup. Although some limitations in the current configuration prevented full
implementation of the classification task, the system’s excitability was successfully
demonstrated under controlled perturbations.

4.1 Perspectives
During the course of the internship some problems were found in the experimental
setup, such as an insufficient power density of the pump perturbation onto the
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sample. This is reflected in a clear non-deterministic nature of the spiking pattern,
as one can notice in Figure 3.12. Because of this, and also due to time limitations,
some work still has to be performed in order to produce a deterministic response
in the spiking output to proceed with the experimental implementation of image
classification tasks. In order to obtain a better control over the power density
applied to the sample, a new more powerful laser has already been ordered by the
group.

If better working conditions manage to be achieved, a single waveform containing
the whole training dataset has to be created with a specific separation between
each image. This waveform will be given as an input to the system and the results
will be processed according to the algorithm described in section 3.1.1. An example
of the perturbation scheme computed by a digit is reported in Figure 4.1

a) b)

Figure 4.1: (a) Input applied to the AWG. (b) Signal after the optical modulator.

Recently, the group has been working also on a novel genetic algorithm training
method [29] that could provide better performances and a high efficiency. A future
perspective of this study could be to try to implement this into the physical system
in order to improve its accuracy.
A final and ambitious goal, as anticipated in the introduction to this work, would
be to create a fully optical ultrafast classification method by combining the results
coming from different receptive fields with the use of on-chip photonic logic gates
based on pulse collisions [18], on which I already deepened my knowledge by
performing numerical simulations that were not reported in this report.

32



Bibliography

[1] Amir Hossein Masominia. «Neuro-inspired computing with excitable microlasers».
Theses. Université Paris-Saclay, July 2024 (cit. on pp. 1, 3, 5, 9, 11, 13, 31).

[2] Gordon E Moore. «Cramming more components onto integrated circuits, Reprinted
from Electronics, volume 38, number 8, April 19, 1965, pp. 114 ff.» In: IEEE
solid-state circuits society newsletter 11.3 (2006), pp. 33–35 (cit. on p. 1).

[3] Chenxi Sun et al. «A review of designs and applications of echo state networks».
In: arXiv preprint arXiv:2012.02974 (2020) (cit. on p. 2).

[4] Junhyuk Woo et al. «Characterization of the neuronal and network dynamics of
liquid state machines». In: Physica A: Statistical Mechanics and Its Applications
633 (2024), p. 129334 (cit. on p. 3).

[5] Daniel Brunner, Laurent Larger, and Miguel C. Soriano. Nonlinear photonic dy-
namical systems for unconventional computing. 2021. arXiv: 2107.08874 [cs.ET]
(cit. on p. 3).

[6] Kashu Yamazaki et al. «Spiking neural networks and their applications: A review».
In: Brain sciences 12.7 (2022), p. 863 (cit. on p. 3).

[7] Wenzhe Guo et al. «Towards Efficient Neuromorphic Hardware: Unsupervised
Adaptive Neuron Pruning». In: Electronics 9.7 (2020) (cit. on p. 3).

[8] L. Appeltant et al. «Information processing using a single dynamical node as
complex system». In: Nature Communications 2.1 (2011), p. 468 (cit. on p. 4).

[9] Indranil Chakraborty et al. «Toward Fast Neural Computing using All-Photonic
Phase Change Spiking Neurons». In: Scientific Reports 8.1 (2018), p. 12980 (cit. on
p. 5).

[10] Yichen Shen et al. «Deep learning with coherent nanophotonic circuits». In: Nature
Photonics 11.7 (2017), pp. 441–446 (cit. on p. 5).

[11] Zengguang Cheng et al. «On-chip photonic synapse». In: Science Advances 3.9
(2017), e1700160. eprint: https://www.science.org/doi/pdf/10.1126/sciadv.
1700160 (cit. on p. 5).

[12] Sylvain Barbay, Robert Kuszelewicz, and Alejandro M Yacomotti. «Excitability
in a semiconductor laser with saturable absorber». In: Optics letters 36.23 (2011),
pp. 4476–4478 (cit. on pp. 5, 6).

[13] Amir Masominia et al. «Online spike-based recognition of digits with ultrafast micro-
laser neurons». In: Frontiers in Computational Neuroscience 17 (2023), p. 1164472
(cit. on pp. 5, 13, 14).

33

https://arxiv.org/abs/2107.08874
https://www.science.org/doi/pdf/10.1126/sciadv.1700160
https://www.science.org/doi/pdf/10.1126/sciadv.1700160


BIBLIOGRAPHY

[14] Bhavin J. Shastri et al. «Photonics for artificial intelligence and neuromorphic
computing». In: Nature Photonics 15.2 (2021), pp. 102–114 (cit. on p. 6).

[15] Johan LA Dubbeldam, Bernd Krauskopf, and Daan Lenstra. «Excitability and
coherence resonance in lasers with saturable absorber». In: Physical Review E 60.6
(1999), p. 6580 (cit. on p. 6).

[16] Miguel A Larotonda et al. «Experimental investigation on excitability in a laser
with a saturable absorber». In: Physical Review A 65.3 (2002), p. 033812 (cit. on
p. 6).

[17] Venkata Anirudh Pammi and Sylvain Barbay. «Micro-lasers for neuromorphic
computing». In: Photoniques 104 (2020), pp. 26–29 (cit. on p. 6).

[18] L Soun et al. «Computing using pulse collisions in lattices of excitable microlasers».
In: Chaos, Solitons & Fractals 164 (2022), p. 112537 (cit. on pp. 6, 32).

[19] T Elsass et al. «Fast manipulation of laser localized structures in a monolithic
vertical cavity with saturable absorber». In: Applied Physics B 98 (2010), pp. 327–
331 (cit. on p. 7).

[20] Johan L.A. Dubbeldam and Bernd Krauskopf. «Self-pulsations of lasers with
saturable absorber: dynamics and bifurcations». In: Optics Communications 159.4
(1999), pp. 325–338 (cit. on p. 7).

[21] Minoru Yamada. «A theoretical analysis of self-sustained pulsation phenomena in
narrow-stripe semiconductor lasers». In: IEEE Journal of Quantum Electronics
29.5 (1993), pp. 1330–1336 (cit. on p. 8).

[22] Pauli Virtanen et al. «SciPy 1.0: fundamental algorithms for scientific computing
in Python». In: Nature methods 17.3 (2020), pp. 261–272 (cit. on p. 10).

[23] Venkata Anirudh Pammi et al. «Photonic computing with single and coupled spiking
micropillar lasers». In: IEEE Journal of Selected Topics in Quantum Electronics
26.1 (2019), pp. 1–7 (cit. on p. 11).

[24] Fabian Pedregosa et al. «Scikit-learn: Machine learning in Python». In: the Journal
of machine Learning research 12 (2011), pp. 2825–2830 (cit. on p. 16).

[25] Eric Hunsberger and Chris Eliasmith. «Training Spiking Deep Networks for Neuro-
morphic Hardware». In: (2016) (cit. on p. 19).

[26] Jun Haeng Lee, Tobi Delbruck, and Michael Pfeiffer. «Training Deep Spiking Neural
Networks Using Backpropagation». In: Frontiers in Neuroscience Volume 10 - 2016
(2016) (cit. on p. 19).

[27] Chankyu Lee et al. «Deep Spiking Convolutional Neural Network Trained With
Unsupervised Spike-Timing-Dependent Plasticity». In: IEEE Transactions on Cog-
nitive and Developmental Systems 11.3 (2019), pp. 384–394 (cit. on p. 19).

[28] Wenjie Luo et al. Understanding the Effective Receptive Field in Deep Convolutional
Neural Networks. 2017. arXiv: 1701.04128 [cs.CV] (cit. on p. 21).

34

https://arxiv.org/abs/1701.04128


BIBLIOGRAPHY

[29] Gibaek Kim et al. «Spike-based Classification with ultrafast Microlaser Neurons
using Surrogate Model-assisted Genetic Algorithm training». July 2024 (cit. on
p. 32).

35


	Acknowledgements
	List of Figures
	Introduction
	Introduction to analog neuromorphic computing
	Reservoir computing
	Spiking Neural Networks

	Overview of neuromimetic photonic systems in literature

	Physical system
	Neuromimetic micropillar laser
	Excitable microlaser
	Yamada model

	Numerical results
	Micropillar's neuromimetic properties


	Image classification with spiking microlasers
	Methodology
	Training
	Inference

	Numerical results
	Data augmentation
	Dependencies and optimization

	Experimental analysis
	Experimental setup
	Characterization of excitability


	Conclusions
	Perspectives


