
Lorenzo Sibille
Understanding the needs of Image Retrieval for Visual Localization.
Rel. Carlo Masone. Politecnico di Torino, Corso di laurea magistrale in Data Science And Engineering, 2025
|
PDF (Tesi_di_laurea)
- Tesi
Licenza: Creative Commons Attribution Non-commercial No Derivatives. Download (10MB) | Preview |
Abstract: |
Visual Localization is a key task in autonomous systems and robotics, consisting in the estimation of camera poses given their captures. Despite different approaches exist, they always rely on comparing the query image to reference images with known poses. To improve efficiency, relevant images to be matched are selected with retrieval pipelines. This work focuses on the impact of retrieval algorithms in Visual Localization. Firstly, current retrieval methods are benchmarked to determine the current state of the art on the task. Secondly, the needs of retrieval are investigated by selecting images using the known poses on different criteria. Lastly, different tasks related to Visual Localization are explored. The experiments highlight the limits of current approaches, as well as their margins of improvement and the future working directions to remove the retrieval performance bottleneck in Visual Localization. |
---|---|
Relatori: | Carlo Masone |
Anno accademico: | 2024/25 |
Tipo di pubblicazione: | Elettronica |
Numero di pagine: | 64 |
Soggetti: | |
Corso di laurea: | Corso di laurea magistrale in Data Science And Engineering |
Classe di laurea: | Nuovo ordinamento > Laurea magistrale > LM-32 - INGEGNERIA INFORMATICA |
Ente in cotutela: | KUNGLIGA TEKNISKA HOGSKOLAN (ROYAL INSTITUTE OF TECHNOLOGY) - EECS (SVEZIA) |
Aziende collaboratrici: | NON SPECIFICATO |
URI: | http://webthesis.biblio.polito.it/id/eprint/35408 |
![]() |
Modifica (riservato agli operatori) |