
POLITECNICO DI TORINO

MASTER’s Degree in
DATA SCIENCE AND ENGINEERING

MASTER’s Degree Thesis

Understanding the needs of Image Retrieval
for Visual Localization

Supervisors

Prof. Carlo MASONE

Dr. Gabriele Moreno BERTON

Dr. Gabriele TRIVIGNO

Candidate

Lorenzo SIBILLE

MARCH 2025





Understanding the needs of Image Retrieval for Visual Localization

Lorenzo Sibille

Abstract

Visual Localization is a key task in autonomous systems and robotics, consisting
in the estimation of camera poses given their captures. Despite different approaches
exist, they always rely on comparing the query image to reference images with
known poses. To improve efficiency, relevant images to be matched are selected with
retrieval pipelines. This work focuses on the impact of retrieval algorithms in Visual
Localization. Firstly, current retrieval methods are benchmarked to determine the
current state of the art on the task. Secondly, the needs of retrieval are investigated
by selecting images using the known poses on different criteria. Lastly, different tasks
related to Visual Localization are explored. The experiments highlight the limits of
current approaches, as well as their margins of improvement and the future working
directions to remove the retrieval performance bottleneck in Visual Localization.
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Chapter 1

Introduction

1.1 Visual Localization

Visual Localization is the task of estimating the position where an image was taken.
The goal is to determine the position and the viewing angle of the capturing camera,
resulting in six degrees of freedom which correspond to the so called camera pose.
This a fundamental problem in augmented reality, robotics and autonomous systems,
where accurate positional knowledge with respect to the surroundings is needed.

The Visual Localization pipeline adopted in this work is shown in Figure 1.1.
The first step is to compute a reference system of coordinates and a set of spatial
information. This is achieved by computing an offline 3D reconstruction given an
unordered set of database images. The reconstruction is usually based on Structure-
for-Motion (SfM) (Section 2.3), which matches 2D points between the images, and
then given their geometric relations it is able to estimate their position in the 3D
space as well as the poses of the cameras in a non-trivial optimization. If the database
images are geo-tagged, the obtained reconstruction corresponds to the real world.

When a new image, referred to as the query, needs to be localized, the 3D
points it sees are determined, and exploited with the corresponding 2D positions in
the image plane to estimate the pose of the cameras within the reference system.
While the procedure is conceptually straightforward, additional key concepts must
be introduced, explaining how 2D points are computed and matched, and how the
3D points can efficiently be recovered.

Given an image, 2D keypoints are extracted and described. In particular, the
goal is to find only relevant points, such as objects’ corners, to reduce the problem
dimensionality, to remove uninformative points, and to allow matching between
interesting points reliably determined. Additionally, the extracted points have numer-
ical descriptions, in order to be easily matched between different images comparing
these representations. The obtained representation, including both coordinates and
descriptors, is generally referred to as local features (Section 2.1).

The 3D points in the reconstruction contain also the local descriptors of the 2D
points which originated them. Thus, initially, the correspondences between the 2D
points in the query and the 3D scene were computed directly in the local feature
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Query

Database 3D model

Retrieval Matching

Localization

Figure 1.1: Hierarchical visual localization pipeline [3]. From the database, a global
3D model is built offline and stored. At query time, promising reference images are
retrieved, then local matching is performed. The matched points are leveraged in
3D, and localization is achieved minimizing reprojection error in the query image.

space, comparing each 2D point to each 3D one. However, even though many works
tried to improve scalability [1, 2], this procedure introduced a major performance
issue. Currently, such direct approach has been substituted with a hierarchical [3]
procedure, in which first the query is compared with database images, establishing
2D-2D correspondences, and then such correspondences are leveraged in the 3D space
as the 2D points within the database have known 3D coordinates in the reconstruction.
However, in the case of exhaustive matching between the query and all the database
images, the complexity is not yet reduced. The key aspect to reduce computations is
to reduce the number of database images tested, avoiding unnecessary computations
for example on images not observing the same part of the scene.

To determine which database images are matched to the query, Image Retrieval
techniques are used. Similarly to local features, whose descriptors are compared and
points matched accordingly, the first step in a retrieval pipeline is to embed images
into compact vectors, generally known as global features (Section 2.2). These vectors
should represent the whole image, while highly reducing dimensionality with respect
to the initial pixel space. The global features of the database are computed and
stored offline, and at query time each of them is compared to the query representation,
usually selecting the most promising images according to a metric distance on the
embedding space.

To summarize the pipeline of Visual Localization, offline local and global features
are extracted from the database images, and an SfM 3D model is built. When
querying, local and global features are extracted from the query, then the Image
Retrieval step determines, based on global features, which database images are
promising to be matched; local features determine 2D-2D correspondences between
query and database images, which are leveraged to 2D-3D correspondences using the
reconstructed model, and pose estimation is computed on them.
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1.2 Research question

While Image Retrieval is a necessary optimization, it has been shown in the past
to limit localization performances [4]. Furthermore, Image Retrieval techniques are
usually trained for Visual Place Recognition, which is the task to retrieve images
containing the same landmark, without the need to show its same parts as no local
matching is performed.

This work deeply analyzes the role of Image Retrieval in Visual Localization. In
particular, the research questions investigated are:

• is current state-of-the-art retrieval limiting Visual Localization performances?

• which are the ideal retrieval characteristics that Visual Localization needs?

• do retrieval methods need to be tailored for Visual Localization?

1.3 Research methodology

To understand retrieval needs and to set upper bounds to be compared to retrieval
methods, different criterion to select images exploiting the known query poses are
defined (Section 3.2.1). For example, it is possible to select the database images
closest to the query, enforcing some spread, or having a high visual overlap. Such
methods replace the Image Retrieval step in Visual Localization, selecting database
images according to the chosen criterion rather than the usual global features. While
such approach is not applicable in real scenarios, as it requires the knowledge of
target query poses, comparing their performances gives insights on the ideal needs
that Image Retrieval should meet for Visual Localization; additionally, comparing
such selection criteria to actual retrieval methods highlights the impact of Image
Retrieval in Visual localization, possibly showing its limitation and that tailoring
retrieval to the task is necessary.

Additionally, to understand how much rework of retrieval methods is necessary, a
small pipeline variation is presented (Section 3.2.2). In particular, image retrieval
techniques are adopted to select a higher number of database images with respect to
the ones used in the actual localization, then they are further selected using the same
criteria described above. Such procedure is compared to the standard retrievals, as
well as to the ground truth based selection. This could show that small adjustments
may be enough to remove the retrieval bottleneck from Visual Localization.

While there exist some benchmarks on Visual Localization [5, 6, 7], they are
outdated in terms of dataset accuracy or retrieval algorithms. In this work, state-
of-the-art and literature methods (Section 2.2) are extensively tested on accurate
datasets (Section 3.1.4), evaluating and comparing the localization error of queries.
Both quantitative and qualitative analysis of retrievals is performed, to give a human
perspective on how much the gap with respect to the ground truth based upper
bounds can be reduced, as they exploit labels unavailable in a real scenario and thus
may not represent actually achievable results.
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The experiments also test two additional tasks strictly related to the adopted
Visual Localization pipeline (Section 3.2.3): Visual Localization using local maps,
and 3D reconstruction. The first task is an alternative pipeline, which is needed when
keeping a map built on the entire database is prohibitive. Such map is replaced by a
smaller local map, built at query time, using only the retrieved images. The second
task instead is the construction of the 3D map which is used in Visual Localization.
While not being the main focus of this work, SfM methods need to get 2D-2D
correspondences between reference images, and similarly to Visual Localization an
exhaustive procedure is computationally unfeasible. Thus, to establish the point
correspondences, each database image first goes through an Image Retrieval step,
which determines to which other images it is matched. This part is tested on its
own, evaluating the pose error of the images involved in the reconstruction, without
further considering the impact of such reconstruction in the overall Visual Localization
pipeline.

The contributions can be summarized as follows:

• the definition of different criteria to select database images exploiting ground
truths, to understand retrieval needs and set performance upper bounds;

• the benchmark of above mentioned ground truth methods against actual
image retrieval techniques, on Visual Localization and 3D reconstruction,
to understand the current limitations of Image Retrieval in Visual Localization;

• the simple Image Retrieval variation consisting in retrieving more images and
sampling them, to understand how much retrieval methods should be tailored
for Visual Localization.

4
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Background

2.1 Local features

Local feature extraction is the process of detecting and describing relevant points
of interest (keypoints) of an image. These local representations allow matching the
same visual points within different images.

To be effective, the extracted keypoints should be repeatable, i.e, the same
keypoint is found in images with different viewing conditions, discriminative, i.e, the
representation is informative to unambiguously match keypoints, and robust, i.e, the
representation should be invariant to changes in illumination and viewing condition.

While engineered approaches (Section 2.1.1) have been successfully adopted for
years, they have recently been outperformed by learned representations based on
Convolutional Neural Networks (CNNs) (Section 2.1.2).

2.1.1 Engineered features

Traditional approaches divide the task in detecting keypoints and describing them.
Detection and description algorithms can thus be freely combined, depending on the
application.

2.1.1.1 Detection

Detection algorithms extract meaningful keypoints of an image, which are traditionally
associated to points in which the image is rapidly changing.

The Harris [8] operator performs corner detection finding points showing large but
comparable gradient magnitude in two different directions. Blob detection algorithms
further adopt second derivatives. For example, the extrema of the Laplacian operator
or of the Determinant of the Hessian matrix can be adopted to locate keypoints.

These methods are computed in a scale-space representation, i.e, multiple times
after applying successive Gaussian filters. The keypoints are then associated to the
scale at which they are extracted, possibly needed in the description step. The
Difference-of-Gaussians [9] detector directly finds keypoints while computing the

5
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scale-space representation, approximating the Laplacian operator while being faster
to compute.

2.1.1.2 Description

The most popular approaches are Scale Invariant Feature Transform (SIFT) [9] and
Speeded Up Robust Features (SURF) [10].

SIFT [9] represent keypoints as histograms of the gradients computed in a local
neighbourhood. The neighbourhood size is determined by the scale associated to the
keypoint, achieving scale invariance; gradient directions are aligned to the strongest
peak of the histogram, granting rotational invariance; histograms are normalized,
increasing robustness to illumination changes. SIFT has been the most successful
and adopted feature descriptor, inspiring many variations such as RootSIFT [11],
which improves matching performances using normalized square root values of SIFT
features.

SURF [10] adopts a similar strategy as SIFT, but the histogram is computed over
fewer aggregated values of Haar wavelets rather than single gradients, allowing faster
computations based on integral images. While being faster, the performances are
slightly worse than SIFT.

2.1.1.3 Matching

Matching between local features is performed using Mutual Nearest Neighbors. Given
two images, for each keypoint in an image the Nearest Neighbor in the other image is
found, and viceversa. Generally, the Nearest Neighbor is the point giving the smallest
Euclidean distance in feature space. If two keypoints are the Nearest Neighbor of
each other, they are matched.

To enforce discriminative and unambiguous matching, usually the Distance Ratio
between the Nearest Neighbor and the second Nearest Neighbor is thresholded.

2.1.2 Learned features

Learned feature extractors exploit the capability of Convolutional Neural Networks
(CNNs) to efficiently compute dense maps, which are then refined and selected into
sparse and informative keypoints. The first approaches, inspired by engineered
methods, focused on single tasks. However, it quickly became clear that it was
possible to exploit the same computations for the entire pipeline, jointly performing
detection and description. In this way the efficiency was increased, and the bias on
description caused by detection removed.

2.1.2.1 Detection and description

The first learned approach focusing on the end-to-end pipeline is Learned Invariant
Feature Transform (LIFT) [12]. However, it still shows its engineered roots, computing
detection, keypoint orientation and description sequentially. Starting from an image
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patch, every step is computed on a sub-patch determined by the previous step, with
a dedicated network.

Starting from Deep Local Feature (DELF) [13], a CNN dense map is extracted
using a pre-trained backbone [14, 15, 16], and then it is further processed to perform
both description and detection. In particular, DELF fine-tunes the dense map and
performs detection with an attention layer. Although focusing on retrieval rather than
local matching, DELF established the joint approach that all subsequent methods
adopted.

SuperPoint [17] reduces the dimensionality with a CNN encoder, then one disjoint
head for each task is trained, consisting in a small decoder followed by interpolation.
Further details are discussed in Section 3.1.1.1.

Detect-and-Describe Network (D2-Net) [18] directly adopts the fine-tuned CNN
dense map for detection and description, without any further processing. The
map is seen as one feature vector per pixel, but also as one detection heatmap per
output channel. A keypoint is selected if one of its value is a maximum for both its
corresponding feature descriptor and detection map.

Similarly, Repeatable and Reliable Detector and Descriptor (R2D2) [19] adopts the
dense map as descriptors, while it is further processed for detection. Two heatmaps
are extracted with an additional layer, representing reliability and repeatability.
Keypoints are extracted based and the product of those two scores.

All these approaches based on CNN dense maps handle scale invariance using
an explicit image pyramid, i.e, keypoints and descriptors are computed at multiple
scales, keeping the best ones overall.

2.1.2.2 Matching

Although the naive Mutual Nearest Neighbor (Section 2.1.1.3) is still a viable solution,
learned matching techniques are the current state-of-the-art. For example, SuperGlue
[20] exploits attention to iteratively contextualize descriptors, both within and across
images, and then adopts these representations as cost values in the transport-like
optimization problem to determine one-to-one correspondences. LightGlue [21]
improves SuperGlue efficiency by early pruning unpromising points, performing an
adaptive number of attention iterations, and matching based on linear scores rather
than complex optimization problems. Further details are provided in Section 3.1.1.2.

2.2 Global features

Global features are compact representations that try to encapsulate characteristics of a
whole image. Their compactness allows for quick image retrieval, computing similarity
scores based on these short embeddings rather than the entire images. Although
initially these representations were computed from local descriptors, now state-of-
the-art approaches have dedicated CNN backbones which outputs are aggregated.

7
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2.2.1 Aggregation of Local Features

A classic approach is to summarize multiple local descriptors into a single global
representation.

For example, local features can be clustered into discrete visual words, and then
aggregated into Bag-of-Words (BoW) representations which measure the frequency
of each visual word in an image.

Other techniques which improve compactness and search time have been developed.
A popular approach [22] is to exploit Fisher kernels [23, 24], an extended version
of the BoW representation including higher order statistics, which dimensionality
is heavily reduced using Principal Component Analysis (PCA). Similarly, Vector of
Locally Aggregated Descriptors (VLAD) [25] starts from the BoW representation, in
which each global descriptor contains, for each visual word, the sums of residuals
of the local features that have such word as the nearest one. It can be seen as a
simplification of Fisher vectors.

2.2.2 Aggregation of CNN dense outputs

CNN outputs are considered as dense local feature maps, which dimensionality is
reduced used pooling. Such reductions are trainable, and different losses are defined
depending on the model.

2.2.2.1 Pooling

NetVLAD [26] adopts a trainable generalized VLAD layer [25]. To achieve trainability,
the layer must be differentiable, thus soft cluster assignment is exploited, and added
as a weight in the sum of residuals to achieve global descriptors. As local features,
it uses the dense output of a CNN backbone with dimensionality W × H × D as
W×H feature vectors D-dimensional. Further details are explained in Section 3.1.2.1.
Similarly, the Sinkhorn Algorithm for Locally Aggregated Descriptors (SALAD)
adopts the same approach, while solving the initialization bias, allowing to discard
irrelevant local descriptors adopting a dustbin, and considering also cluster-to-feature
properties casting the task as optimal transport. Further details are provided in
Section 3.1.2.3.

Other approaches instead work on reducing channel feature maps into a single
value. Given the output of dimensionality W ×H ×D, they deal with it as D feature
maps with dimensionality W×H, and the output of the pool layer will simply be
D-dimensional. For each feature map, it is possible to extract the maximum value,
as in Maximum Activation of Convolution (MAC) [27] and its multi-region form
R-MAC [28], the mean, as in SPoC vectors [29] or a generalized mean with trainable
parameters, as in Generalized Mean (GeM) pooling which is further detailed in
Section 3.1.2.2.

8
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2.2.2.2 Training losses

Many different losses are suitable options to train image embeddings for retrieval.
The triplet loss [30] trains on three images, namely a query image, a positive,

i.e, relevant to the former one, and a negative example, with the goal to maximize
the similarity between representations of the query and the positive example, while
minimizing it for the negative case.

Similarly, contrastive loss [31, 32] trains on tuples. However, negative and positive
samples are trained separately with different loss formulation, while having the same
conceptual goal as the triplet loss.

Multi-similarity loss [33] considers many samples at the same time, both negative
and positive. Furthermore, it is based on different similarities, both comparing
the query with the database, as the previous losses, and comparing the database
representations themselves, depending on their relevance.

Lastly, totally different approaches adopt a list-wise loss that consider many
images at the same time, ranking them accordingly to a similarity score between their
embeddings. Given the ground truth relevance to the query, and some expedients to
keep such sorting differentiable [34], it is possible to directly train a model on the
final retrieval metrics, such as Average Precision (AP). This kind of loss is further
detailed in Section 3.1.2.2.

2.2.3 Retrieval

Depending on the chosen features, images are generally retrieved with Nearest
Neighbor or Cosine Similarity [35]. Given a query image and a set of database
images, the images retrieved have the smallest distance considering their global
descriptors and the query one. Multiple distances can be adopted, such as Euclidean
or Manhattan. Similarly, Cosine Similarity retrieves the images with the highest
similarity, which is defined as the normalized inner product between two descriptors.

2.3 Structure from Motion

Structure-for-Motion (SfM) compute a 3D reconstruction from unordered sets of im-
ages. In the first stage, images are matched, and then using their 2D correspondences
it is possible to determine their poses as well as the observed 3D points.

2.3.1 Correspondence search

Correspondence search determines scene overlap between images, trying to find
projections of the same point in different images. This is achieved with the following
steps:

• local features (Section 2.1) are extracted from each image;

• local features are matched between image pairs. Although the naive approach
to consider all pairs would be possible, it is prohibitive for large collection and
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thus images pairs are usually determined by a retrieval pipeline (Section 2.2)
to determine promising image pairs;

• images with matching points are geometrically verified with homographies [36]
or epipolar geometries [36]. Images are considered verified if enough inliers are
found, according to some robust estimator such as Random Sample Consensus
(RANSAC) [37].

2.3.2 Reconstruction

Reconstruction is handled differently between global and incremental approaches.
Global methods, such as Theia [38], Open-MVG [39] and GLOMAP [40], estimate
all the camera poses and observed points in a single large step, then performing a
single bundle adjustment [41]. On the other hand, incremental approaches, such as
Bundler [42], VisualSfM [43] and COLMAP [44], start from two-view reconstruction
and gradually register new images, with multiple bundle adjustments during the
process.

2.3.2.1 Incremental approaches

Given the scene graph obtained by the correspondence search, a reconstruction can
be computed. Although each incremental method has its own characteristics, the
procedure can be summed in the following steps:

• the model is initialized from two selected matching images, exploiting the
estimated two-view geometry and triangulating the points;

• a new image is iteratively registered solving the Perspective-n-Points (PnP)
problem [37], estimating the camera pose with respect to the reconstruction;

• the newly added image can extend the scene points, if it contains seen but
unregistered points in registered images, via triangulation;

• every time the model registers a certain number of images, a bundle adjustment
[41] is run, jointly optimizing camera poses and observed points.

COLMAP [44] is further detailed in Section 3.1.3.1.

2.3.2.2 Global approaches

The common pipeline for global approaches is as follow:

• from the view graph, camera poses are estimated at the same time. This is
generally achieved by rotation averaging, aligning relative rotations into global
absolute rotations, minimizing the error on the constraint Rij = RjRT

i , where
Ri, Rj are the absolute rotations and Rij the relative one between images i and
j. Then translation averaging is performed, factoring out the estimated absolute
rotations from the poses, minimizing the error on the constraint tij = ci−cj

||ci−cj || ,
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where tij is the relative translation and ci, cj the absolute camera positions,
which enforce coherent translation between images and the global coordinates.

• from two-view matches, given the estimated poses, a global triangulation is
performed, estimating the positions of the observed 3d points.

• a global bundle adjustment [41] is run, jointly optimizing camera poses and
positions of 3d points by minimizing the reprojection error.
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Chapter 3

Method

3.1 Literature methods

In this section, the adopted methods existing in the literature are detailed. In
particular, presenting the chosen local features (Section 3.1.1), global features (Section
3.1.2), SfM algorithm (Section 3.1.3), and the adopted datasets (Section 3.1.4).

3.1.1 Local features

Despite many valid local features exist, SuperPoint [17] has been chosen as it is still the
state-of-the-art when combined with neural matching, since they are usually trained
for it. Matching is performed with LightGlue [21], efficient and the state-of-the-art
approach, pretrained for SuperPoint.

3.1.1.1 SuperPoint

SuperPoint [17] architecture, represented in Figure 3.1, reduces the image dimension-
ality through a CNN encoder, such as VGG [15]. In particular, given the original
image size H×W , the encoder computes F values over non overlapping 8×8 windows,
obtaining a H/8×W/8× F dimensional representation. SuperPoint then split the
task of detection and description using two dedicated heads.

For detection, a decoder computes a H/8×W/8× 65 output, where 64 values
are associated to each of the 8× 8 pixels in a window, and the additional value is the
dustbin which represent that the patch has no points; it allows for parameter-free
upscaling to the initial resolution using sub-pixel convolution [45] after a softmax and
removal of the dustbin. Description is achieved computing a semi-dense H/8×W/8×D

feature map, which is then upscaled to the full resolution using bi-cubic interpolation
and L2-normalization.

The model is trained on synthetically warped images from MS-COCO [46], jointly
training the detector with cross-entropy loss and the descriptor with a hinge loss.
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Figure 3.1: SuperPoint [17] architecture. Gray layers represent convolution, while
dotted lines represent parameter-free upscaling, achieved with sub-pixel convolution
[45] and bi-linear interpolation, respectively for detection and description.
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Figure 3.2: LightGlue [21] architecture. LightGlue achieves adaptability with a
stack of identical attention modules. After each pass, termination is decided on
estimated confidence for each point. If enough points are confident, then a fast
matching based on pair-wise scores is performed. Otherwise, points confidently
unmatchable are pruned, and the outputs are fed again in the attention module.
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Figure 3.3: Comparison between AP-GeM [49], on the left, and NetVLAD [26], on
the right. Both start from a W ×H ×D dense map: AP-GeM deals with it as D
W×H-dimensional channel maps, and computes a single value on each of them via
GeM pooling [51]; NetVLAD, instead, takes it as W×H D-dimensional local features,
computing a VLAD [25] inspired representation based on residuals of learned visual
words, weighted by a soft-assignment to mantain differentiability.

3.1.1.2 LightGlue

LightGlue [21] is able to adapt to the difficulty of images via an iterative approach. It
is made of multiple identical modules, and after each stage a termination criterion is
checked to avoid unnecessary computations for easy images. Each module, as shown in
Figure 3.2, takes as input the coordinates of the points, with rotary positional encoding
[47], and the descriptors, which are then updated for the following iteration using
self-attention [48] followed by cross-attention, which contextualizes the embeddings
with respect to the other points both in the same image and in the matching one.

Based on the embeddings, a compact fully connected layer computes a confidence
value for each point, representing the reliability of the points, either in matchability
or unmatchability. If enough points have a confidence higher than a certain threshold,
the contextualization is ended and correspondences are computed. Otherwise, the
points considered confidently unmatchable are pruned, and the updated embeddings
are fed again into the module.

Matches are determined by two different scores: a similarity score is computed
pairwise between all points in the two images, while a matchability score is assigned to
each point base on its embedding. Each pair gets an assignment score proportional to
the matchability of the points and the similarity score. All pairs with an assignment
score greater than a threshold, and having the maximum similarity with respect to
all pairs containing one of the two points, is selected.

3.1.2 Global features

The global features studied in this paper are NetVLAD [26] and AP-GeM [49], as they
are the literature standards, and SALAD [50], which is the current state-of-the-art
on Visual Localization.

3.1.2.1 NetVLAD

NetVLAD [26] is a trainable generalization of a VLAD layer [25]. VLAD descriptors
aggregate a set of local features. As in the BoW approach, a set of K visual words
C = {c1, ..., ck} is learned with k-means. Then, given an image with a set of N local
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feature vectors F = {x1, ..., xN}, the global VLAD descriptor is a matrix v with
dimension K ×D, where D is the dimensionality of the words in the codebook as
well as the local features. Each element contains the sum of residuals of each local
descriptor and the nearest word as

vi,j =
Ø

a∈(1,N)|NN(xa)=ci

(xa,j − ci,j),

where xi,j represent the j-th element of xi, and the same notation is adopted
throughout the entire section.

To achieve trainability, the NetVLAD pooling must be differentiable. Thus, a soft
assignment to codewords is adopted, and the descriptor is adjusted accordingly as

vi,j =
NØ

a=1

e−α||xa−ci||2q
i′ e−α||xa−ci′ ||2 (xa,j − ci,j ).

A further simplification is exploited, canceling the term e−α||xa||2 , obtaining

vi,j =
NØ

a=1

ewT
i xa−biq

i′ ewi′ xa+bi′
(xa,j − ci,j ),

in which each cluster has a set of independent trainable parameters wi, bi, ci.
To be invariant to the number of local features, both VLAD and NetVLAD

representations are normalized, first using intra-normalization [52], vi ← vi/||vi||2,
and then L2 normalization, v← v/||v||2.

NetVLAD takes as input a dense CNN map. In particular, given its shape
W ×H ×D, it is considered as W×H D-dimensional local features. It was originally
trained on AlexNet [14] and VGG-16 [15], with a triplet loss adapted to the weakly
supervised scenario on images taken from Google Street View Time Machine [53].

3.1.2.2 AP-GeM

AP-GeM [49] combines GeM pooling with a listwise loss which directly optimizes
the Average Precision (AP). GeM pooling [51] exploits the generalized mean [54]
to extract one single value from each feature map. In particular, given a CNN
output with shape W ×H ×D, it deals with it as D feature maps {x1, ..., xD} with
dimensions W×H. The pooling results in a D-dimensional vector f = [f1, ..., fD],
with

fk =

 1
WH

WØ
i=1

HØ
j=1

xpk
k,i,j

 1
pk

.

Note that max pooling [27, 28] and average pooling [29] are special cases when
pk →∞ and pk = 1, respectively. The parameter pk is learnable, since this pooling
is differentiable allowing for backpropagation.

The listwise loss considers the entire database at once. Given a query image Iq and
a set of N database images {I1, ..., IN}, the similarity between the embeddings is the
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vector Sq, where Sq
i = sim(Iq, Ii). Additionally, the similarities can be sorted, and

R denotes the ordered indexes such that the j-th image according to the similarity
Sq is IRj . The ground truth image relevance is binary, and denoted as Y q where Y q

i

is 1 if Ii is relevant to Iq and 0 otherwise. The Average Precision (AP) is then

AP =
NØ

k=1
Pk∆rk,

where Pk is the precision at k, i.e, the fraction of relevant images in the first k sorted
images according to R

Pk = 1
k

kØ
i=1

Y q
Ri

,

and ∆rk is the difference of recalls at k and at k − 1, where the recall at j is the
fraction of the relevant images in the first j and the total number of relevant images,
i.e,

∆rk = 1qN
i=1 Y q

i

Y q
Rk

.

The actual mathematical formulation is slightly relaxed to achieve differentiability,
using soft assignment to bins rather than strict ranking [34]. The model was trained
on the Landmarks dataset [30], using a ResNet-101 [16] pretrained on ImageNet [55]
as backbone.

3.1.2.3 SALAD

Sinkhorn Algorithm for Locally Aggregated Descriptors (SALAD) [50] is heavily
inspired by NetVLAD [26], while trying to solve some of its problems. The first
main difference is the adoption of a visual transformer as the backbone, namely
DinoV2 [56], which from each image extract n patches, resulting in the feature vectors
t1, ..., tn+1, one per patch plus a global one. Then, SALAD directly addresses three
problems of NetVLAD:

• The bias given by the k-means initialization in the soft-assignment is removed
by assigning weight scores with two randomly initialized fully connected layers,
in the form

si = ws2σ(ws1ti + bs1) + bs2 ,

where σ is a non-linear activation, and si an array containing the score with
respect to each of the m clusters for the i-th patch;

• Some features might be irrelevant for the visual place recognition, while
NetVLAD considers them all equally. SALAD introduces a dustbin to allow
discarding features, by appending to each score a single learnable parameter z

as s̄i = [si, z];

• while NetVLAD only considers the feature-to-cluster relation, SALAD also
models the cluster-to-feature one solving the assignment with the Sinkhorn
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algorithm [57, 58], obtaining the final assignment matrix P after dropping the
values corresponding to the dustbin.

The last differences is in an additional reduction of feature dimensionality as

fi = wf2σ(wf1ti + bf1) + bf2 ,

obtaining the overall descriptor for the patches

vj,k =
nØ

i=1
Pi,j · fi,k.

Lastly, v is flattened and concatenated with the reduced global descriptor

g = wg2σ(wg1tn+1 + bg1) + bg2 .

The model was originally trained on GSV-cities [59], a large collection of scenes from
Google Street View [53], using multi-similarity loss [33].

3.1.3 Mapping

COLMAP [44] has been the state-of-the-art SfM for the last 10 years, and all
the existing code-bases are conveniently already adopting it. Additionally, the
recent speed-up achieved by GLOMAP [40] is only on proper reconstructions, while
triangulation and pose estimation are still handled by COLMAP.

3.1.3.1 COLMAP

COLMAP [44] follows the general incremental algorithm described in Section 2.3.2.1.
However, COLMAP has some peculiarities which made it outperforming all the other
SfM methods in the last decade.

• A multi-model geometric verification allows the optimal choice of the starting
image pair, and to avoid degenerate triangulations between panoramic (i.e,
with pure rotation) images. Both homographies and fundamental matrices are
fitted, determining the number of inliers to each model; depending on their
ratio, and possibly exploiting prior calibration, image pairs are classified as
general, panoramic and planar, and the initial pair is chosen accordingly.

• The choice of the next camera to register within the partial model is optimized
to maximize robustness. A common approach is to register the camera that sees
the largest number of triangulated points; instead, COLMAP considers also the
distribution of those points. Images are split into K bins in both dimensions,
and then each bin containing at least one triangulated point contributes to
a score with a weight of K2. This operations is repeated L times, with the
number of bins equal to {21, ..., 2L}. The score keeps track of the distribution
and the number of points, and the candidate image is chosen as its maximum.
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• Transitive correspondences are exploited, merging the same matching point
between multiple images into a single “feature track”. Each feature track
contains the coordinates of the point in the i-th image as well as the camera
pose. Robustness is achieved using RANSAC [37], iteratively selecting a unique
pair of images in the feature track, triangulating the point in the 3d space, and
then computing in how many other images such 3d coordinates have a smaller
reprojection error than a threshold t. Since a track may contain multiple
independent points, the RANSAC process is run multiple times removing
consensus points, allowing to split feature tracks.

• Bundle adjustment is run locally after each image, and globally every time
the model grows of a certain percentage. Additionally, bundle adjustment is
run iteratively in a pipeline which alternates bundle adjustment, filtering of
observations with large reprojection errors, and re-triangulation. This improve
the model robustness, removing outliers, and improving feature tracks certainty.
Bundle adjustment is performed with Ceres solver [60].

• Since bundle adjustment is a major bottleneck in SfM, its optimization is
crucial. In particular, cameras are clustered into small and highly overlapping
groups. Each group is then parametrized as a single camera, highly reducing
the number of parameters. However, images affected by the latest extensions
are not clustered, allowing for stronger adjustments.

Although COLMAP has default feature extraction based on RootSIFT [11] and
matching based on vocabulary trees, it allows to import matches based on external
features and retrieval, which is crucial in this research. Additionally, COLMAP
allows to perform triangulation, fixing known camera poses during bundle adjustment,
rather than a proper SfM reconstruction.

3.1.4 Datasets

The dataset adopted are LaMAR [4] and VBR [61], which have extremely accurate
known poses, fundamental to properly evaluate the impact of retrieval.

3.1.4.1 LaMAR

LaMAR [4] is a dataset for augmented reality containing images from different
locations: HGE, the ground floor of a university building; CAB, a multi-floor office
building; and LIN, few blocks of a small city center.

Each location contains many sequences, recorded at different times of the day and
the year to increase diversity. The sequences have been collected with a Microsoft
HoloLens 2 and an Apple iPad Pro, with additional custom sensors measuring depth
and radio signals. The sequences are collected into different sets: a map set, two
validation sets, and two test sets; while the map contains images from Hololens and
iPad, the two devices have dedicated validation and test sets. Since the test sets
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does not have public labels, and evaluation takes long time through LaMAR authors,
all the experiments are conducted on the validation partitions.

Information from the different sensors is combined, refining camera poses up to
the cm through a complex alignment within and across sequences. Such accuracy,
combined with the scale, density, and diversity, makes LaMAR a perfect set to
experiment Visual Localization.

3.1.4.2 VBR

VBR [61] is a dataset containing different locations in Rome. The dataset is developed
for SLAM, and thus it has single but long sequence per location. However, there is a
big variety in the locations themselves, having interiors, exteriors in urban areas and
exteriors in green areas.

The dataset has two different cameras, an IMU, a LiDAR, and a RTK-GPS,
which, as for LaMAR, allow for accurate poses through refinement.

Since the dataset has single sequences per scene, the sequences are split into
reference and test images, as explained in Section A.1.

3.2 Contribution

In this section the contributions are described. In particular, the definition of
retrievals based on ground truths (Section 3.2.1), the pipeline variation combining
their sampling criteria with existing retrieval methods (Section 3.2.2), and a brief
overview of the experiments (Section 3.2.3).

3.2.1 Ground truth based retrieval

To understand the needs of retrieval in Visual Localization, methods selecting images
based on different criterion, exploiting ground truths, are tested. These methods
replace the usual Image Retrieval stage in the Visual Localization pipeline, deciding
which database images should be matched given a query.

While some of them do not have any practical application, as they exploit also
the target query pose, they are extremely important to understand the objective
actual retrieval methods should have. This information can lead, for example, to
new training procedures tailored for Visual Localization. Furthermore, they may
highlight the limits of actual Image retrieval methods, setting loose upper bounds on
localization performances.

While the goal is to select images from the entire database, some methods are
computationally intensive and thus an initial reduction of the number of database
images to select from is needed. The proposed methods first start from candidate
images, that ideally could be the entire database but here it is a subset (Section
3.2.1.1), and then the best candidates according to some criterion (Section 3.2.1.2)
are sampled, and used in the Visual Localization pipeline.
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3.2.1.1 Candidates

As some of the proposed selection criteria are computationally expensive, candidates
are initially reduced. This is necessary to limit the computational resources needed,
while maintaining exhaustivity. Furthermore, the candidates are the same for all the
samplings, and thus determined only once and stored to be used in multiple runs.

For each query image, the candidates are the database images within 20 meters
from the query, with a maximum difference in the viewing angle of 120o, and with
frustum intersection, i.e, the intersection between the fields of view, within 20
meters. Given the nature of the datasets, extremely dense and depicting relatively
closed spaces, these parameters are suitable to reduce computations without loosing
generality. Additionally, only database images observing at least 5% points of the
query image are considered. Again, generality is not lost since images with a smaller
number of seen points are unlikely to contribute to localization, while many outliers
which slow selection are removed.

3.2.1.2 Selection

Different methods to sample from candidates are defined:

• random: candidates are randomly sampled. This aims to distinguish between
the impact of sampling using specific criteria, and the impact of the initial
definition of candidates on its own. To get a fair comparison, and since
this method is extremely sensitive to outliers, isolated database images are
removed from candidates. Isolated images are defined through DBSCAN-like
[62] clustering on candidates’ poses, and then clusters containing few cameras
are discarded.

• pose-near : the images closest to the ground truth position of the query are
selected. At this stage, only the translation are considered, as the intersection
of field of view is already verified in the definition of the candidates.

• pose-coverage: the images are taken such that they are spread in space as much
as possible. The first image selected is the closest to the query pose, and then
iteratively the image having the maximum distance from the nearest already
selected image is taken. Formally, given the set of candidate images C, the set
of already selected images R, and the position of the i-th image as xi, at each
step the selection is

R ← R∪
I

max
i∈C\R

;
min
j∈R
{|xi − xj |}

<J
.

Since this method is sensitive to outliers, the same removal as for random is
adopted. Furthermore, in some experiments, an additional restriction of the
candidates being within t meters is used, obtaining an hybrid with pose-near,
trying to force spread but closer to the query.
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• covisibility: the images observing the highest number of points appearing in
the query image are selected.

• covisibility-coverage: the images are selected such that their corresponding
points cover as much as possible the points appearing in the query. Iteratively,
to each image is assigned a score s, and then the image with the maximum
score is selected. The score is the sum, for each point matching the query,
of the inverse of how many times such point already appears in the sampled
images. Formally, given the points P = {p1, ..., pn} appearing in the query, the
set of already selected images as R, the set of candidate images C, δji is defined
such that δji = 1 if pj appears in the i-th image and 0 otherwise. Then, the
score of the i-th image is computed as

si =
Ø

pj∈P

1
1 +

q
l∈R δjl

δji.

This score is proportional to how many matching points a candidate image has,
while also giving more importance to points not yet retrieved.

These methods will be deeply tested in Section 4, replacing the usual Image retrieval
step, to understand which ideal criterion is more relevant and beneficial in Visual
Localization. In all the experiments, the further speed-up of considering for all
samplings only the 50 candidates with the highest covisibility has been adopted.
Partial test were run without such assumption, without observing major differences
while being drastically slower.

3.2.2 Sampling retrievals

While pose based criteria described in Section 3.2.1.2, namely pose-near and pose-
coverage, heavily depends on target ground truths and thus meaningless in real
applications, covisibility methods, namely covisibility and covisibility-coverage, only
depend on labels in the initial definition of candidates. Thus, such methods are
usable also in real applications if candidates are properly defined without exploiting
any a-priori knowledge.

In this work, such sampling criteria are tested on candidates determined by actual
retrieval. For example, it is possible to retrieve N images with SALAD [50], and then
sampling n < N images to match. This is useful to determine if a complete rework
of retrieval methods is necessary, or if small pipeline adjustments or fine tuning may
be sufficient.

Unfortunately, covisibility introduces a big computational overhead even in case
of parallelizable neural matching as LightGlue [21]. However, if future works may
find faster effective sampling, the overall process may be more efficient than keeping
the whole N images, balancing the sampling computations with faster localization,
as it scales with the number of matched images.
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3.2.3 Benchmark

Although there exist some benchmarks for Visual Localization [4, 5, 6], they are
outdated in terms of retrieval methods or using inaccurate datasets. This work, on
the other hand, benchmarks the two literature standards AP-GeM [49] and NetVLAD
[26] against the state-of-the-art retrieval SALAD [50], on datasets accurate to the
centimeter [61, 4]. Additionally, a thorough study of the retrieval needs is performed
exploiting ground-truth based retrievals explained in Section 3.2.1, setting loose upper
bounds on the performances. Lastly, small pipeline variation based on sampling from
retrievals (Section 3.2.2) are tested, showing if major reworks are needed or small
adjustments are enough to reduce the gaps with respect to the computed bounds.

The main task analyzed is Visual Localization from a global 3D map, in which
localization is performed as described in Section 1.1. However, inspired by [7, 6], two
additional tasks are explored: Visual Localization based on local maps, in which
a local 3D reconstruction is built at runtime only on the retrieved images, and 3D
reconstruction itself, in which COLMAP [44] is run without exploiting known poses,
and the model is then rigidly aligned to the ground-truths using RANSAC [37]. These
additional tasks are strictly related to Visual Localization on global maps, and thus
their retrieval needs are compared.
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Chapter 4

Experiments

4.1 Visual Localization

In this section, Visual Localization is performed using global maps, as described in
Section 1.1. Given reference images, a global 3D reconstruction is triangulated with
COLMAP [44], using local SuperPoint features [17] matched with LightGlue [21]. For
each image, the 50 most promising images according to NetVLAD [26] are matched
to build the view graph. At query time, N reference images are retrieved from the
database with the chosen method, matching SuperPoint features with LightGlue as
for the mapping. Then, based on the matched points leveraged in the 3-dimensional
space, queries can be localized within the global reconstruction.

4.1.1 Quantitative analysis

The first experiments are on the LaMAR [4] dataset, on all the validation sets, testing
NetVLAD [26], AP-GeM [49], and SALAD [50], as well as the ground-truth based
methods described in Section 3.2.1.

Different numbers Ns of retrieved images have been tested, as shown in Figure 4.1.
Increasing N improves localization performances, at least for actual retrievals: in fact,
retrieving more images, there is a higher chance of finding positives, which enhance
localization; at the same time, however, there is a higher chance of finding irrelevant
images, but their noise is mitigated using robust estimators such as RANSAC [37].
At the same time, for ground-truth bounds, the impact of N is smaller, meaning that
ideally localization could be performed with a small value of N . This is important as
localization complexity scales with the number of matched points, highly correlated
with the number of retrieved images. Until saturated performances comparable to
the ground-truth based retrieval are achieved, a trade-off between accuracy and pose
estimation time is unavoidable. Additional results varying N are reported in Tables
A.2, A.3, and A.4.

In Figure 4.2 the localization for N = 10 results on LaMAR HGE are reported,
while complete results on the entire dataset are reported in Figures A.2 and A.3. Al-
though specific results depend on the scene, overall SALAD significantly outperforms
NetVLAD and AP-GeM, which yield similar performances. However, there is still
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Figure 4.1: Localization error varying the number of retrieved images in LaMAR
[4] HGE. The comparison is between NetVLAD [26] (■), AP-GeM [49] (■), SALAD
[50] (■), and the ground-truth based (Section 3.2.1.2) pose-near (■). Solid lines
represent the results obtained retrieving 5 images, while dotted and dashed lines
retrieving 10 and 20 images, respectively.

Figure 4.2: Localization error and distance between queries and retrievals for
Hololens validation images in LaMAR [4] HGE scene. The comparison is between
actual methods, namely NetVLAD [26] (■), AP-GeM [49] (■), SALAD [50] (■),
and retrievals exploiting the ground-truths (Section 3.2.1.2): random (■), pose-near
(■), pose-coverage (■), covisibility (■), covisibility-coverage (■). The results are
obtained retrieving 10 images.
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a big performance gap with respect to ground-truth based retrievals. Notably, all
of them have comparable performances, even random selection, which means that
the process to establish candidates (Section 3.2.1.1) is valid and high covisibility is a
fundamental need in retrieval.

Instead, there is no major benefit from the positional spread of retrieval as en-
forced by pose-coverage sampling, while pose-near and covisibility-coverage samplings
generally perform slightly better than the other. A part from the results on the
iPad images for the CAB scene, in which some repetitive elements (corridors, stairs,
classrooms) corrupt covisibility and make pose-near stand out by finding the correct
elements within repetitions, there is no proper correlation between performances and
closeness of query and retrieved images. In fact, pose-near has the closest retrieval
by a big margin, but the performances are comparable to the other ground-truth
retrievals. Additionally, pose-coverage and random have retrieval distances higher
than SALAD, while outperforming it. The performances of pose-near, considering
that the candidates are already selected for covisibility, are explained by the intrinsic
correlation between closeness and similarity of viewpoints, which means that many
points are covisibile. Furthermore, since covisibility and covisibility-coverage do
not exploit the ground truth, a part from the proposal of candidates in which it is
exploited only as a speed-up solution, they have higher potential application in a
real case scenario, such as described in Section 3.2.2.

The same experiments have been run on VBR [61], as shown in Figure A.4.
Unfortunately, the density and the scenes registered in single sequences make the
retrieval task trivial: with few exceptions, namely SALAD in spagna, and the
colosseo scene, results are almost independent from retrievals and variations are
spurious. Within ground-truth methods, covisibility-coverage and pose-near are the
best performing, although by a tiny margin.

4.1.2 Qualitative analysis

To understand if retrieval improvements seem possible from human perspective, a
qualitative analysis is performed. The main challenges are the lack of information in
an image and the ambiguity due, for example, to repetitive structures, as exampled
in Figure 4.3. While uninformativeness is generally hard in any retrieval context,
ambiguity is a problem more specific to Visual Localization, since retrieving the same
object is not enough, needing the same specific section to allow matching.

Despite these two challenges, many negatives, i.e, badly localized queries, have
room for improvement in the retrieval stage, from a human standpoint, having some
details removing ambiguity or uninformativeness and allowing for correct retrieval,
such as paintings, signs, or geometric relations. Some examples are shown in Figure
A.5, and analyzed more in detail in Section A.3.
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Query Retrieved

Figure 4.3: Examples illustrating the main challenges in retrieval: uninformativeness
and ambiguity. The retrieval shown is SALAD [50], on the CAB scene of LaMAR [4].
More examples are shown in Figure A.5.

Figure 4.4: Localization error in LaMAR [4], on HoloLens images in scenes CAB
an HGE. The comparison is between plain SALAD [50] (■) with 5, 10, and 20
retrieved images (respectively, solid, dashed and dotted lines), the ground-truth
baseline obtained selecting 5 images with pose-near (Section 3.2.1) (■), and sampling
5 images among the 20 retrieved with SALAD using pose-near (■) and covisibility
(■). Results on the other LaMAR scenes are shown in Figure A.6.
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4.1.3 Sampling retrievals

It is possible to adopt the samplings described in Section 3.2.1 on candidates based
on actual retrieval methods. For example, in Figure 4.4, 20 images are retrieved
with SALAD [50], and then only 5 images are selected on pose-near and covisibility
criterion. Additional results are shown in Figure A.6.

Sampling 5 images in this way improves performances not only with respect to
directly taking the best 5 images according to SALAD, but also 10, and obtaining
results comparable to using the whole 20 images in the localization phase. Despite
the ground-truth upper bound is still far, such result shows that the key is not the
number of images retrieved, but rather their quality, and at the same time that the
current retrieval methods may have major improvements with tiny modifications,
such as fine tuning. Additionally, sampled localizations are sometimes better than
using all the images, showing that increasing the number of retrieved images does not
always correspond to an improvement, introducing outliers, despite robust RANSAC
[37] pose estimation.

The proposed samplings are not suitable for real applications, since pose-near
exploits the targets, and covisibility introduces the overhead of matching all the 20
images, which is parallelizable but still computationally intensive. However, a similar
approach may be exploited if efficient and effective sampling criterion are found, as
localization complexity benefits from fewer matched images.

4.2 Visual Localization with local maps

As proposed by [7], it is possible to perform Visual Localization on small local maps
instead of keeping huge global maps. This approach, while increasing computations
at query time by building the local maps, is necessary when the scale makes a global
map prohibitive. Local maps are built using only the images retrieved for the query,
triangulating the points exploiting the known poses.

Results are reported in Figure 4.5. In this section, the candidates for pose-coverage
are first filtered to be within a certain adaptive radius from the query, starting from
3m and iteratively increasing it by 50% until the candidates kept were at least twice
the number to be sampled, in order to not degenerate pose-coverage into pose-near.
This was necessary due to the sensibility of noise in pose-coverage, which in this task
corresponds to poor triangulations impacting localization.

This approach on local maps has a lower recall of 5-10% on average with respect to
using global maps, depending on the retrieval and the dataset. Using more reference
images may improve the quality of the local maps, boosting performances, but at
the same time increasing triangulation time and matching time between database
images, if not done offline. At the same time, for some applications it may be the
only suitable choice, and the performance drop can be acceptable at large scales in
which accuracy at the decimeter is not necessary.

Unexpectedly, having a wider distribution of reference images is worse than

29



Experiments

Figure 4.5: Localization error for validation images in LaMAR [4] CAB and
HGE scenes, using local maps. The comparison is between actual methods, namely
NetVLAD [26] (■), AP-GeM [49] (■), SALAD [50] (■), and retrievals exploiting
the ground-truths (Section 3.2.1.2): random (■), pose-near (■), pose-coverage (■),
covisibility (■), covisibility-coverage (■). For pose-coverage the images are filtered
to be within an adaptive radius from the query, starting from 3m and increased by
50% iteratively if not enough images are kept. Dotted lines are obtained using global
maps, to ease comparison between the two approaches. The results are obtained
retrieving 10 images. The other LaMAR scenes are reported in Figure A.7.

retrieving the closest to the query. Even the modified pose-coverage approach
previously described, having a close spread, performs worse than pose-near. This is
probably due to the exploitation of ground truth in building the map, performing only
triangulation rather than a reconstruction, which would have a badly conditioned
pose estimation step for very close images. In this scenario, pose-near and covisibility
based methods have similar performances. Overall, the needs of retrieval seem to be
the same for Visual Localization using global maps and local maps: high covisibility,
which is generally correlated to closeness, if as in this work selected images are filtered
granting a minimum visual overlap.

4.3 3D Reconstruction

The quality of 3D reconstruction is strictly related to Visual Localization, especially
when the poses of reference images are unavailable. In this section, the same retrievals
benchmarked for Visual Localization are tested in 3D reconstruction. The experiments
are run only on LaMAR [4] Hololens images, since iPad images are colinear and thus
reconstruction is ill-posed. Reconstructions are achieved using COLMAP [44], and the
obtained reconstruction is rigidly aligned to the ground-truth poses using RANSAC
[37]. Being computationally intensive, requiring days for each reconstruction on more
than 10000 of images, the scenes analyzed are only the smaller validation sets rather
than the actual reference images. As evaluation metric, only the error in the poses is
adopted. Other measures, such as the reprojection error, depend on the number of
points triangulated, making a fair objective analysis impossible.
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Figure 4.6: Reconstruction pose error for Hololens validation images in LaMAR [4].
The comparison is between actual methods, namely NetVLAD [26] (■), AP-GeM [49]
(■), SALAD [50] (■), and retrievals exploiting the ground-truths (Section 3.2.1.2):
pose-near (■), pose-coverage (■), covisibility (■). For pose-coverage the images
are filtered to be within an adaptive radius from the query, starting from 3m and
increased by 50% iteratively if not enough images are kept. The results are obtained
retrieving 10 images.
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Results are shown in Figure 4.6. Despite validation sets containing fewer sequences,
making the retrieval easier, there is still a big performance gap with respect to ground-
truth based upper bounds, depending on the scene. Notably, in this task, there is no
major difference between NetVLAD [26], AP-GeM [49], and SALAD [50]. Instead,
as the previous experiments, the most consistent ground-truth approach is pose-near,
highlighting once again that the need is to retrieve close images. Although intuitively
in reconstruction a higher pose diversity should allow for more robustness, COLMAP
exploits the view graph to transitively match points between image pairs: thus,
the good performances of pose-near are probably tied to the creation of a highly
connected view graph. Instead, the struggles of covisibility are probably due to image
pairs with high covisibility being co-linear, creating poorly connected graphs given
split between front and side cameras.
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Conclusions

5.1 Conclusions

The current retrieval methods are limiting Visual Localization performances. Despite
the ground-truth upper bounds are just ideal, some of them only exploit the known
poses in the candidate proposal, showing that there is margin of improvements
only based on appearances, as also highlighted in the qualitative analysis, despite
facing challenging ambiguity and uninformativeness. In particular, the main need of
retrieval for Visual Localization, according to the experiments, is finding images with
high covisibility, possibly covering different parts of the query; this is often granted
finding very close images facing the same direction.

This shows the potential path to improve retrieval for Visual Localization. In
fact, current Image Retrieval methods are trained on Visual Place Recognition,
which needs invariance with respect to the viewpoint, while the experiments showed
the benefits of viewpoint similarity. A possible working direction could be to fine
tune existing methods trying to consider the camera position with respect to the
observed scene in the embeddings, and possibly to focus also on details that are
usually lost in producing global features, as they are crucial for ambiguous query.
Additionally, the experiments show the benefit of further selecting images after
retrieval, at least on current methods. Although an efficient sampling strategy is
crucial for the task, localization speed would improve with respect to using all the
images, while outperforming a traditional retrieval with an equal number of images.
Using a small number of images is sufficient, as performances saturates quickly when
increasing it, especially in case of good retrievals.

While classic literature standards are still used in recent works, given the perfor-
mances on Visual Localization new studies should focus on less traditional models in
favor of actual state-of-the-art approaches, even if more complex.

Reconstruction, on the other hand, showed different retrieval needs, more related
to pose similarity than covisibility. However, it is believed that this is due to the
nature of the dataset, and further studies are necessary. Additionally, reconstruction
seemed more invariant to retrieval, probably due to the transitive matching abilities
of COLMAP [44].
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5.2 Limitations

The datasets adopted in this work are sequential dataset. The study needs extremely
accurate reference poses on a large scale, and unfortunately these two characteristics
are not easy to find on non-sequential data, as large scale labels are often computed
with SfM compromising their accuracy and affecting their analysis. However, the
adoption of sequential data makes this study less generalizable on other kind of data.

As the focus of this study was the retrieval stage, the other aspects have been
fixed. In particular, local features and matching have been chosen according to
the state-of-the-art, but may have still affected evaluation. Furthermore, all the
experiments on Visual Localization have been performed fixing the reference map
built using Netvlad [26]; while the scale of the datasets, the transitive abilities of
COLMAP [44], the exploitation of known poses, and the high number of retrieved
images should make the results almost invariant to such choice, it still may have
introduced a bias.

In this work covisibility has been defined according to matched local features,
as it is the most immediate approach. However, other definitions [4] exploiting the
reference poses exist and are possibly more reliable, not being influenced by repetitive
patterns and false matches. While possibly not adoptable in real applications, they
may still provide insights and drive innovations.

Lastly, the study of 3D reconstruction has been carried with COLMAP, which
does not allow for large scale scenarios due to complexity and repeated bundle
adjustments, and thus smaller subsets have been adopted. However, GLOMAP [40]
should allow for larger scales in reasonable time complexity, although at the time of
this work it had compatibility issues due to early development. Larger scale studies
may provide results impossible to see in the smaller subsets tested in this work.

5.3 Future Work

Future works should focus on extending the study according to the limitations (Section
5.2). In particular, large scale non-sequential datasets should be adopted, while
testing different local features and matching, different maps in Visual Localization,
different covisibility definitions, and different and more efficient methods in the 3D
reconstruction. Such extension may provide additional insights, further validating
the conclusions drawn in this work or, possibly, disconfirming them.

If the same conclusion are drawn from extended studies, then the focus should be
on tailoring retrieval models for Visual Localization. Given the conclusions in this
work, the suggested approaches are fine tuning existing retrievals, or slight pipeline
variations as the additional sampling step proposed in this study. Such research may
definitely remove the bottleneck of retrieval performances in Visual Localization,
allowing to refine other steps of the pipeline.
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A.1 VBR splits

Since VBR [61] contains only one labeled sequence per scene, a split into training and
validation images is needed. Fortunately, these long sequences pass multiple times
through the same places, allowing to split into sub-sequences with spatial overlap.
Examples of adopted splits are shown in Figure A.1. Given a sequence, the test set
is made of images captured by the left camera within a sub-sequence from a starting
timestamp to an ending timestamp, as reported in Table A.1. For ciampino scene,
two subsequences are used as the test set. The reference set, used to build the 3D
models, consists of all the timestamps outside the test, using both left and right
cameras. Test sequences are reduced to 750 images, uniformly sampled within the
time dimension.

A.2 Quantitative analysis of retrieval and localization

Figures A.2 and A.3 illustrate the localization error and the distances between queries
and retrieved images, considering only translation distance and not rotation. While
NetVLAD [26] and AP-GeM [49] have similar results, they are outperformed by
SALAD [50]. SALAD, on the other hand, is able to reduce the gap with the ground-
truths based loose upper bounds, even achieving comparable performances depending
on the dataset. CAB is a very repetitive dataset, containing ambiguous buildings,

Figure A.1: Example of reference and test sets for VBR [61] ciampino and colosseo,
on the left and on the right respectively. The test samples are shown in red, while
black represents the samples used as references.
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Scene Timestamp range for test images
campus_1 1273791462170− 1324036965410

ciampino_0 3333899690710− 3361796843540
4320655133829− 4394998052910

colosseo 2353839583910− 2442227787890
diag 2824193513930− 3062070457450

pincio 284343555140− 707687060340
spagna 213141675270− 460611290830

Table A.1: Timestamp ranges splitting VBR [61] scenes into reference and test sets.
Reference images are all the images taken in timestamps excluded from the reported
intervals. Test sets are made of 750 images uniformly sampled from the intervals
shown in the table, considering only the left camera.

Scene Retrieval N = 5 N = 10 N = 20
R@(1o,0.1m) R@(5o,1m) R@(1o,0.1m) R@(5o,1m) R@(1o,0.1m) R@(5o,1m)

NetVLAD [26] .378 .567 .446 .629 .481 .667
AP-GeM [49] .393 .566 .438 .631 .471 .677
SALAD [50] .482 .707 .535 .752 .570 .783

CAB random .520 .794 .591 .846 .633 .865
Hololens pose-near .603 .860 .645 .889 .662 .901

pose-coverage .561 .808 .614 .848 .634 .872
covisibility .606 .849 .625 .867 .644 .878

covisibility-coverage .635 .868 .658 .885 .670 .891
NetVLAD [26] .404 .505 .406 .512 .467 .563
AP-GeM [32] .396 .492 .416 .515 .434 .555
SALAD [50] .429 .551 .446 .551 .475 .601

CAB random .454 .621 .515 .654 .575 .689
iPad pose-near .674 .856 .684 .833 .654 .775

pose-coverage .475 .644 .538 .664 .575 .689
covisibility .505 .641 .573 .691 .591 .684

covisibility-coverage .523 .656 .591 .699 .591 .717

Table A.2: Localization recalls for LaMAR [4] CAB scene, using the thresholds
proposed in the original paper, retrieving a different number N of images.

Scene Retrieval N = 5 N = 10 N = 20
R@(1o,0.1m) R@(5o,1m) R@(1o,0.1m) R@(5o,1m) R@(1o,0.1m) R@(5o,1m)

NetVLAD [26] .401 .571 .443 .569 .472 .622
AP-GeM [49] .424 .582 .462 .610 .483 .644
SALAD [50] .542 .704 .578 .726 .591 .738

HGE random .570 .785 .640 .820 .676 .844
Hololens pose-near .670 .875 .693 .879 .709 .882

pose-coverage .615 .819 .651 .838 .679 .854
covisibility .523 .656 .674 .854 .702 .861

covisibility-coverage .685 .856 .718 .869 .718 .869
NetVLAD [26] .582 .775 .634 .829 .672 .882
AP-GeM [49] .512 .747 .588 .817 .659 .859
SALAD [50] .655 .913 .712 .941 .728 .943

HGE random .613 .880 .697 .933 .729 .947
iPad pose-near .725 .937 .768 .962 .756 .971

pose-coverage .320 .915 .716 .943 .722 .956
covisibility .699 .936 .726 .949 .727 .947

covisibility-coverage .731 .941 .747 .952 .752 .960

Table A.3: Localization recalls for LaMAR [4] HGE scene, using the thresholds
proposed in the original paper, retrieving a different number N of images.
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Figure A.2: Localization error and distance between queries and retrievals for
Hololens validation images in LaMAR [4]. The comparison is between actual methods,
namely NetVLAD [26] (■), AP-GeM [49] (■), SALAD [50] (■), and retrievals
exploiting the ground-truths (Section 3.2.1.2): random (■), pose-near (■), pose-
coverage (■), covisibility (■), covisibility-coverage (■). The results are obtained
retrieving 10 images.
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Figure A.3: Localization error and distance between queries and retrievals for iPad
validation images in LaMAR [4]. The comparison is between actual methods, namely
NetVLAD [26] (■), AP-GeM [49] (■), SALAD [50] (■), and retrievals exploiting
the ground-truths (Section 3.2.1.2): random (■), pose-near (■), pose-coverage (■),
covisibility (■), covisibility-coverage (■). The results are obtained retrieving 10
images. The different behavior in CAB is due to the images containing ambiguous
and repeated patterns, showing corridors, stairs and classrooms.
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Figure A.4: Localization error for test images in VBR [61]. The comparison is
between actual methods, namely NetVLAD [26] (■), AP-GeM [49] (■), SALAD
[50] (■), and retrievals exploiting the ground-truths (Section 3.2.1.2): random (■),
pose-near (■), pose-coverage (■), covisibility (■), covisibility-coverage (■). The
results are obtained retrieving 10 images.
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Scene Retrieval N = 5 N = 10 N = 20
R@(1o,0.1m) R@(5o,1m) R@(1o,0.1m) R@(5o,1m) R@(1o,0.1m) R@(5o,1m)

NetVLAD [26] .566 .662 .603 .699 .629 .720
AP-GeM [49] .583 .689 .619 .729 .655 .757
SALAD [50] .746 .889 .777 .903 .806 .915

LIN random .763 .919 .814 .942 .836 .951
Hololens pose-near .828 .952 .847 .963 .859 .963

pose-coverage .779 .921 .821 .938 .836 .952
covisibility .821 .954 .835 .958 .842 .959

covisibility-coverage .836 .953 .854 .963 .865 .964
NetVLAD [26] .727 .843 .774 .874 .785 .898
AP-GeM [49] .661 .798 .689 .823 .736 .869
SALAD [50] .793 .929 .803 .945 .833 .960

LIN random .803 .965 .838 .975 .867 .980
iPad pose-near .873 .975 .873 .977 .886 .980

pose-coverage .843 .972 .858 .975 .861 .980
covisibility .846 .952 .861 .967 .871 .977

covisibility-coverage .854 .955 .883 .977 .881 .982

Table A.4: Localization recalls for LaMAR [4] LIN scene, using the thresholds
proposed in the original paper, retrieving a different number N of images.

corridors, stairs, and classrooms, and thus pose-near outperforms everything since
it is able to select the correct repeated elements, while methods relying only on
covisibility, which is empirically determined with matching points, struggle.

The same conclusion are drawn from Tables A.2, A.3 and A.4, which also compare
the effect of the number of retrieved images.

A.3 Qualitative analysis of retrieval

The focus of this section is to qualitatively evaluate the retrieval, to understand if
retrieval is intrisincally ill-posed due to the nature of the images itself, or if any
improvements seems possible from a human perspective. Some examples of badly
localized images are shown in Figure A.5. Two major problems emerge: ambiguity
and lack of informativeness. Some images (A.5.a) are so uninformative that retrieval
is really hard, and even in case of correct retrieval they may be impossible to localize.
However, in some cases, there are details that should provide enough distinctiveness,
such as the signs in A.5.b, the geometric relation between the stairs, the handrail
and the colored wall in A.5.c, and the picture in the frame in A.5.d. Ambiguity may
be due to repetitive structures, such as the pattern on the building in A.5.e. Again,
some details such as the protrusion of the building in A.5.f should allow for a proper
retrieval and localization.

While the lack of informativeness is hard to face, the needs of retrieval for Visual
Localization are different than the typical task of Image Retrieval. In fact, models
are trained to be invariant to the viewpoints and to focus on the overall, while, as
shown in this qualitative analysis of the negatives, the distinctiveness of details as
well as the importance of similar viewpoints are crucial.
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Query Retrieved

a

b

c

d

e

f

Figure A.5: Examples of retrievals for the CAB scene of LaMAR [4] dataset. The
retrieval shown is performed with SALAD [50], purposely selecting problematic
queries incorrectly located, i.e, with more than 40 meters of error. While some
queries are uninformative (a), some have minor details that should enable correct
retrieval and localization (b,c,d). Another problem is ambiguity, such as in case of
repetitive patterns (e), which is mitigable in case of some geometric peculiarities (f).
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A.4 Sampling from retrievals

As discussed in Section 3.2.2, it is possible to retrieve more images with standard
methods such as SALAD [50], and then selecting a subset of images to perform
localization with. In particular, pose-near and covisibility (Section 3.2.1) are tested
on LaMAR [4], as shown in Figure A.6. This approach is able to reduce the gap
with respect to the ground-truth upper bounds, and localization using the subset
perform on par or better than using the whole starting set. This highlights that the
quality of retrieval is more important than the quantity, and that fine tuning existing
models or slight alterations of the pipeline are enough to improve results, and major
modifications may not be needed to improve Visual Localization.

A.5 Visual Localization with local maps

In some cases, such as large scale dataset, keeping a global map is prohibitive.
Thus, local maps are built at query time, using only the image retrieved. The
performances of localization using this approach are shown in Figure A.7. Even
in this scenario, there is no benefit in retrieving sparse images, as pose-near and
covisibility approaches have the best results. Furthermore, this approach has at least
a 5-10% performance drop with respect to the global maps. Such drop is higher for
worst performing methods, while good retrievals are less sensitive to the paradigm
change. The local map procedure seem viable only when it is not possible to adopt
the standard global approach, possibly adopting robust retrievals. This approach
may benefit by retrieving more images, building better local reconstructions, at the
cost of exponentially increase runtime.
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Figure A.6: Localization error in LaMAR [4]. The comparison is between plain
SALAD [50] (■) with 5, 10, and 20 retrieved images (respectively, solid, dashed and
dotted lines), the ground-truth baseline obtained with pose-near (Section 3.2.1) (■),
and sampling 5 images among the 20 retrieved with SALAD using pose-near (■)
and covisibility (■).
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Figure A.7: Localization error for validation images in LaMAR [4] using local maps.
The comparison is between actual methods, namely NetVLAD [26] (■), AP-GeM [49]
(■), SALAD [50] (■), and retrievals exploiting the ground-truths (Section 3.2.1.2):
random (■), pose-near (■), pose-coverage (■), covisibility (■), covisibility-coverage
(■). For pose-coverage the images are filtered to be within an adaptive radius from
the query, starting from 3m and increased by 50% iteratively if not enough images
are kept. Dotted lines are obtained using global maps, to ease comparison between
the approaches. The results are obtained retrieving 10 images.
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