Sean Rajendra Eruppakkattu
Image Analysis through the Detrending Moving Average Algorithm.
Rel. Anna Filomena Carbone. Politecnico di Torino, Corso di laurea magistrale in Physics Of Complex Systems (Fisica Dei Sistemi Complessi), 2024
|
PDF (Tesi_di_laurea)
- Tesi
Licenza: Creative Commons Attribution Non-commercial No Derivatives. Download (15MB) | Preview |
Abstract: |
Texture classi cation is an important rst step in image segmentation and image recognition. In this report we present the Detrending Moving Average (DMA) algorithm as a robust and informative classi cation algorithm. We train the DMA algorithm with the images of the UIUC dataset. The Cholensky-Levinson Factorization algorithm is used to generate arti cial fractal surfaces as a reference dataset. In the classi cation results the DMA algorithm seems to be able to detect scale, aspect and rotation changes in the analysed random textures. |
---|---|
Relatori: | Anna Filomena Carbone |
Anno accademico: | 2024/25 |
Tipo di pubblicazione: | Elettronica |
Numero di pagine: | 21 |
Soggetti: | |
Corso di laurea: | Corso di laurea magistrale in Physics Of Complex Systems (Fisica Dei Sistemi Complessi) |
Classe di laurea: | Nuovo ordinamento > Laurea magistrale > LM-44 - MODELLISTICA MATEMATICO-FISICA PER L'INGEGNERIA |
Aziende collaboratrici: | NON SPECIFICATO |
URI: | http://webthesis.biblio.polito.it/id/eprint/34067 |
Modifica (riservato agli operatori) |