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Abstract

Texture classification is an important first step in image segmentation and image

recognition. In this report we present the Detrending Moving Average (DMA) al-

gorithm as a robust and informative classification algorithm. We train the DMA

algorithm with the images of the UIUC dataset. The Cholensky-Levinson Factoriza-

tion algorithm is used to generate artificial fractal surfaces as a reference dataset. In

the classification results the DMA algorithm seems to be able to detect scale, aspect

and rotation changes in the analysed random textures.

I. INTRODUCTION

The world surrounding us is typically characterized by complex structures and patterns

that are easily recognized by our eyes. It is indeed natural for us to distinguish between

a wooden surface from a rock one, or a rough water surface from a plain water surface.

The same cannot be said for machines: finding artificial models and algorithms to describe

appropriately natural shapes is a challenging task.

From the definition of fractals, there has been an increasing research activity in the pro-

cessing of images as random fractal textures [12–21]. Texture can be defined in fact as a

coarseness or roughness measure of a surface and its analysis becomes critical when it allows

to distinguish among similar surfaces. There can be various applications as object recogni-

tion and image segmentation. Among the various applications we can cite for example the

analysis of medical images to assess the health of patients’ organs [5], the analysis of food

surfaces to check its quality and/or its properties [6, 7], fabric inspection [8] and the char-

acterization of satellite images [9]. If we approach the problem of surface characterization

by analysing the underlying “fractality” of the surface, the classification problem is reduced

to estimating the fractal dimension [16]. This type of investigation seems to be quite robust

and informative since the fractal feature is a property inherent to the object itself. Fractals

offer then an alternative to classification approaches based on feature vectors, which are not

reliable in cases when the lighting conditions are varying [16].

In this framework, we use the Detrending Moving Average (DMA) Algorithm to estimate

the fractal dimension DF via the Hurst’s exponent H, a parameter that quantifies the scaling
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properties of random curves and surfaces [1–4].

The present work will be structured as follows: first we will briefly describe the nature of

fractal textures; after, we will present the DMA algorithm, in the one-dimensional and two-

dimensional case; then, the DMA algorithm will be used to analyse an artificial dataset of

images generated by the Cholensky-Levinson algorithm and the UIUC dataset [21–24]. In the

final section we will comment the results obtained and illustrate some future developments

and applications.

A. Fractal textures

In the case of random textures exhibiting power law scaling forms, if M is some measure

of the surface, such as area or length, when a measuring unit of size λ is used, then

M = nλDF (1)

where DF stands for the fractal dimension, a measure of roughness of the surface. As a

direct consequence, smoother surfaces exhibits lower DF . If we are treating self-similar time

series or surfaces then the Hurst exponent H is directly related to the fractal dimension DF

by

DF = d−H (2)

where d is the metric dimension of the set [12]. The Hurst exponent H is an empirical pa-

rameter [10, 11] which finds its theoretical roots in the framework of the fractional Brownian

walk [13]. A one-dimensional fractional Brownian motion (FBM) BH(t, ω) is defined by the

following equation

BH(t, ω) = BH(0, ω) +
1

Γ(H + 1
2

)

∫ t

0

(t− s)H− 1
2dB(s) (3)

for t > 0. The FBM is by construction a moving average of the ordinary Brownian walk in

which past increments are weighted by the kernel (t− s)H− 1
2 . Notably, the DMA algorithm

relies too on the construction of moving averages. Generalization of the FBM to higher

dimensions is straightforward. FBM shows self-similarity of parameter H, where H is the

Hurst exponent ranging from 0 to 1, introduced in Eq. (2). For long-memory correlated

processes the value of the Hurst exponent H ranges respectively from 0 < H < 0.5 and from
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0.5 < H < 1, for negative and positive persistence; H = 0.5 corresponds to the ordinary

Brownian motion, i.e. fully uncorrelated signals.

It is important to note that real images and surfaces are not ideal fractals as defined by

the high-dimensional Eq. (3), since the latter are defined to exist at all scales. Real surfaces

are characterized by their finite dimension that fixes an upper limit of applicable scales.

Thus we cannot expect real images to behave as ideal fractals over all scales. We shall say

that a surface is fractal if its fractal dimension DF can be accurately approximated by a

scaling law over at least three decades of values [14, 16]. In case of small images, it is of

course not possible to detect power law scaling over a wide range of values but still it is

possible to extract some relevant information of the surface.

II. METHODS

As mentioned before, the scaling properties of random surfaces can be quantified in

terms of the Hurst exponent H, defined in the framework of the fractional Brownian walks.

Fractional Brownian functions are characterized by a correlation function depending as a

power law on λ [12], where λ defines a measuring unit size, as already used in Eq. (1). The

power-law correlation of fractional Brownian functions f(r) : Rd → R can be expressed by

the power-law dependence of the variance σH ,

σH =
〈
[f(r + λ)− f(r]2

〉
∝‖ λ ‖2H (4)

with r = (x1, x2, ..., xd), λ = (λ1, λ2, ..., λd) and ‖ λ ‖=
√
λ21 + λ22 + ...+ λ2d.

The DMA algorithm is based on a generalized high-dimensional variance of the Brownian

function around a moving average; such variance is introduced as follows:

σ2
DMA =

1

N

N1∑
i1=n1

N2∑
i2=n2

· · ·
Nd∑

id=nd

[f(i1, i2, ..., id)− f̃n1,n2,...,nd
(i1, i2, ..., id)]

2 (5)

where f(i1, i2, ..., id) = f(i) is a fractional Brownian function defined over a discrete d -

dimensional domain, with maximum sizes N1, N2, ..., Nd. It is i1 = 1, 2, ..., N1, i2 =

1, 2, ..., N2,...,id = 1, 2, ..., Nd. n = (n1, n2, ..., nd) defines the sub-arrays νd of the fractal

domain with maximum values n1max = max(n1), n2max = max(n2), ..., ndmax = max(nd).

The function f̃n1,n2,...,nd
(i1, i2, ..., id) = f̃ is given by
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f̃n1,n2,...,nd
(i1, i2, ..., id) =

1

n1n2 . . . nd

n1−1∑
k1=0

n2−1∑
k2=0

· · · ×
nd−1∑
kd=0

f(i1 − k1, i2 − k2, ..., id − kd) (6)

which is an average of f(i) computed over the sub-arrays νd. Equations (5) and (6) are

defined for any value of n1, n2, ..., nd and for any shape of the sub-arrays, however it is

preferable to choose sub-arrays with n1 = n2 = ... = nd to avoid spurious effects.

It was shown in [1] that the generalized variance obeys the following scaling relation:

σ2
DMA ∼

(√
n2
1 + n2

2 + · · ·+ n2
d

)2H

(7)

as a consequence of the property (4) of the fractional Brownian functions. In order

to calculate the Hurst exponent, the algorithm is implemented through the following

steps. The moving average f̃ is computed for different sub-arrays, by varying the slid-

ing windows n1, n2, ..., nd from 2 to the maximum values n1max , n2max , ..., ndmax . The val-

ues n1max , n2max , ..., ndmax depend on the size of the fractal domain. In order to min-

imize the saturation effects due to the finite size of the surface it is better to take

n1max � N1;n2max � N2; ...;ndmax � Nd. It is important to note that the basic action

of the moving average is that of a low-pass filter, i.e. it smooths the fractional Brownian

function onto which it acts. Next we will focus on the one-dimensional and two-dimensional

case of the DMA algorithm.

A. One-dimensional case

By imposing d = 1 in Eq. (4) one obtains

σ2
DMA =

1

N1 − n1max

N1∑
i1=n1

[f(i1)− f̃(i1)]
2 (8)

where N1 is the length of the time series and n1 is the sliding window and n1max � N1.

Equation (8) defines a a generalized variance of the time series f(i1) with respect with the

function f̃(i1) in the following way:

f̃n1(i1) =
1

n1

n1−1∑
k1=0

f(i1 − k1) (9)
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which is the moving average of f(i1), over each sliding window of length n1. The moving

average f̃n1 is calculated for different values of the window n1, ranging from 2 to the max-

imum value n1max . The variance σ2
DMA is then calculated according to Eq. (8) and plotted

as a function of n1 on log-log axes. The plot is a straight line, as expected for a power-law

dependence of σ2
DMA on n1 as follows:

σ2
DMA ∼ n2H

1 (10)

Equation (10) allows one to estimate the scaling exponent H of the series f(i1). The slope

is found through an ordinary least squares (OLS) regression. By the relation (2) for d = 1,

also the critical dimension DF can be estimated.

B. Two-dimensional case

For d = 2, the generalized variance defined by Eq. (4) writes

σ2
DMA =

1

(N1 − n1max)(N2 − n2max)
×

N1∑
i1=n1

N2∑
i2=n2

[f(i1, i2)− f̃(i1, i2)]
2 (11)

with f̃(i1, i2) given by

f̃n1(i1, i2) =
1

n1n2

n1−1∑
k1=0

n2−1∑
k2=0

f(i1 − k1, i2 − k2) (12)

The average f̃ is calculated over sub-arrays with different size n1× n2. The next step is the

calculation of the difference f(i1, i2)− f̃n1,n2(i1, i2) for each sub-array n1×n2. A log-log plot

of σ2
DMA,

σ2
DMA ∼

[√
n2
1 + n2

2

]2H
= s2H (13)

σ2
DMA ∼

[√
n2
1 + n2

2

]2H
=
[√

n2 + n2
]2H

= s2H (14)

as a function of s = n2
1 + n2

2 , yields a straight line with slope H, found through a OLS

regression. Fractal dimension can again be estimated thanks to Eq. (2) by taking d = 3.

In Fig. 1 one can see the effect of the low-pass filter action on a fractal surface of Hurst

exponent H = 0.5.

In the present work, the two-dimensional DMA algorithm was developed in Matlab

language.
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(a) (b)

FIG. 1: N1 ×N2 = 68× 68 fractal surface (a) and its moving average (b) of sliding window n = 5.

Through the volume intersections between the fractal surface and its moving mean one can exploit

statistical cluster. The fractal surface was generated by the Cholensky-Levinson factorization

(CLF) [26].

1. Deviations at the extreme scales

Real images have to deal with finite dimension size, which do not represent the ideal

scaling behaviour of theoretical fractals. In case of small surfaces, it is not even possible

to prove robust scaling laws over three decades of values as the onset of finite size effects

comes into play. At most one can expect to retrieve a local fractal behaviour. This limit is

particurarly notable for large scales, as we can see for the log-log plots of the UIUC database

images in Fig. 9, Fig. 10, Fig. 11, Fig. 12. The deviations from the linearity at large scales

lead to the saturation of the σ2
DMA values. Finite size effects become negligible when the

conditions n1max � N1;n2max � N2; ...;ndmax � Nd are satisfied. Due to the non-ideality

of the moving mean at low scales we had to neglect the first data points generated by the

DMA algorithm in our simulations.

At small scales the deviations are related to the departure of the moving average from

the the ideality. A thorough explanation of this behaviour was given in [2].

III. DATASETS AND RESULTS

We will take the following route: first we will test our method’s feasibility and robustness

by analysing synthetic rough surfaces with assigned Hurst exponent (Sec. III A), then we

will proceed to analyse a collection of images of the UIUC database [21–24] (Sec. III B).
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A. Artificial dataset

(a) H = 0.1 (b) H = 0.5 (c) H = 0.9

FIG. 2: Synthetic fractal surfaces generated by the CLF algorithm.

In order to synthetize rough surfaces we used the Cholensky-Levinson factorization al-

gorithm, included in the package FRACLAB [26]. In Fig. 1(a) one can see a synthethized

fractal surface of domain size N1 ×N2 = 128× 128 with Hurst exponent H = 0.5. Further-

more, in Fig. 2 we show three examples of digital images of domain size N1×N2 = 512×512

mapped to fractal surfaces with reference to the color intensity, i.e. to the level of red, green

and blu (RGB). Hurst exponents estimated by the proposed method for the three images

are, respectively, H = 0.1, H = 0.5, H = 0.9. In Fig. 2 it can be seen how the Hurst

exponent is a direct indicator of the correlation of the image’s pixels. For 0 < H < 0.5

the system is anticorrelated (see Fig. 2(a)), for H = 0.5 the system is completely random

(see Fig. 2(b)) and for 0.5 < H < 1 the system is positively correlated (see Fig. 2(c)). In

order to test the reliability of our method, we generated a dataset of nine artificial fractal

surfaces of domain size N1×N2 = 490× 480 with the CLF algorithm, with Hurst exponent

H ranging from 0.1 to 0.9 with 0.1 increment. This artificial dataset was analysed via the

two-dimensional DMA algorithm (see Sec. II B). In Fig. 3 are shown the resulting slope

estimates (i.e. the Hurst exponents H for each fractal surface) for the artificial dataset. For

each Hurst exponent Hin given, in Table I are reported the estimation values of the DMA

algorithm and the errors associated.

B. UIUC dataset

Among the many texture databases available in the literature, we analysed the University

of Illinois Urbana Champaign (UIUC) database [22–24] since its textures exhibited self-
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FIG. 3: Log-log plot of σ2DMA as a function of s for the nine rough surfaces of the artificial dataset

of domain size N1 ×N2 = 480× 480.

Hin Hest ∆Hest

0.1 0.1156 +1.56× 10−2

0.2 0.2067 +6.7× 10−3

0.3 0.3013 +1.3× 10−3

0.4 0.4000 +0.0000

0.5 0.4935 −6.5× 10−3

0.6 0.5964 −3.6× 10−3

0.7 0.7013 +1.3× 10−3

0.8 0.8288 +2.88× 10−2

0.9 0.9041 +4.1× 10−3

TABLE I: For each artificial fractal surface it is indicated its Hurst exponent Hin, its relative

estimation through the DMA algorithm and the resulting error ∆Hest in the estimation.

similar behaviour in previous studies [21]. The UIUC database contains 1000 images of

resolution 640×480 pixels each. The images are organized in 25 different texture classes (T01

- T25) which contain 40 images each. The materials depicted are imaged under significant

viewpoint variations and some also have considerable surface deformations (see Fig. 5, 6, 7, 8

for examples). However, a drawback of the dataset is that it has very few instances of a given
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FIG. 4: T14-15 fractal surface in terms of RGB content. The original image can be seen in Fig. 6(c).

material so that it is difficult to perform categorisation experiments or deduce generalisation

properties of features [19, 20]. Nevertheless, as far as scale and other viewpoint variations

are concerned, the UIUC database is fairly challenging and therefore we test the proposed

method on it. In Fig. 4 we can see how the fractal surfaces of the UIUC dataset can be

graphically exploited by mapping their color intensity in terms of RGB content.

As for the synthetic fractals, before implementing the DMA algorithm we had to choose

the upper sliding windows n1max , n2max such that the deviations at large scale were minimized.

Since the lower size dimension of the UIUC database images is 480 pixels, we set n1max =

n2max = 48. By doing so we constructed square sliding windows n × n increasing with n,

from the trivial case s = 1 to s = 48, whre s = n× n.

C. Results on the UIUC dataset

We show in Figs. 5, 6, 7, 8 the log-log plots of σ2
DMA as a function of s for the set of UIUC

database textures analysed through the DMA algorithm. In order to better understand the

behaviour of the fractals surfaces treated, for each class of the UIUC dataset we compared

the slopes of the articial rough surfaces generated by the CLF algorithm (see Sec. III A)

with the ones computed for the UIUC dataset’s images, for similarity in the values of the

Hurst exponents H found. The relative plots are shown in Figs. 9, 10, 11, 12.
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(a) T11− 01 (b) T11− 02 (c) T11− 03

(d) H1 ' 0.74, H2 ' 0.33 (e) H1 ' 0.85, H2 ' 0.36 (f) H1 ' 0.83, H2 ' 0.39

(g) T11− 08 (h) T11− 10

(i) H1 ' 0.83, H2 ' 0.35 (j) H1 ' 0.75, H2 ' 0.42

FIG. 5: UIUC textures from the material class T11. Below each image it is shown the log-log plot

of σ2DMA as a function of s. In the log-log plots we can see how the DMA algorithm detects the

scaling law of the characteristics size of the pixel clusters, in this case there are two characteristic

slopes. The slopes are more evident when the pixel variability is low. The slopes of this class are

compared with the closest slopes of the artificial dataset in Fig. 9.



12

(a) T14− 01 (b) T14− 06 (c) T14− 15

(d) H1 ' 0.47, H2 ' 0.26 (e) H1 ' 0.45, H2 ' 0.25 (f) H1 ' 0.44, H2 ' 0.18

(g) T14− 20 (h) T14− 38

(i) H1 ' 0.5 (j) H1 ' 0.46, H2 ' 0.21

FIG. 6: UIUC textures from the material class T14. Below each image it is shown the log-log plot

of σ2DMA as a function of s. In the log-log plots we can see how the DMA algorithm detects the

scaling law of the characteristics size of the pixel clusters, in this case there are two characteristic

slopes. The slopes are more evident when the pixel variability is low. The slopes of this class are

compared with the closest slopes of the artificial dataset in Fig. 10.
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(a) T24− 01 (b) T24− 06 (c) T24− 15

(d) H ' 0.78 (e) H ' 0.78 (f) H ' 0.86

(g) T24− 16 (h) T24− 20

(i) H ' 0.91 (j) H = 0.71

FIG. 7: UIUC textures from the material class T24. Below each image it is shown the log-log plot

of σ2DMA as a function of s. In the log-log plots we can see how the DMA algorithm detects the

scaling law of the characteristics size of the pixel clusters, in this case there is one characteristic

slope. The slopes are more evident when the pixel variability is low. The slopes of this class are

compared with the closest slopes of the artificial dataset in Fig. 11.
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(a) T25− 011 (b) T25− 08 (c) T25− 18

(d) H1 ' 0.87, H2 ' 0.39 (e) H1 ' 0.73, H2 ' 0.45 (f) H1 ' 0.66, H2 ' 0.34

(g) T25− 19 (h) T25− 32

(i) H1 ' 0.67, H2 ' 0.39 (j) H1 ' 0.57, H2 ' 0.39

FIG. 8: UIUC textures from the material class T25. Below each image it is shown the log-log plot

of σ2DMA as a function of s. In the log-log plots we can see how the DMA algorithm detects the

scaling law of the characteristics size of the pixel clusters, in this case there are two characteristic

slopes. The slopes are more evident when the pixel variability is low. The slopes of this class are

compared with the closest slopes of the artificial dataset in Fig. 12.
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FIG. 9: Comparision between the σ2DMA log-log plots of the T11 textures (see Fig. 5) and the

σ2DMA log-log plots from the reference artificial fractal surfaces generated by the CLF algorithm

(see Fig. 3) with Hurst exponent H1 = 0.4 and H2 = 0.8. The plot has two y-axes, one for the

normalized artificial surfaces (right y-axis) and one for the UIUC dataset images (left y-axis).

FIG. 10: Comparision between the σ2DMA log-log plots of the T14 textures (see Fig. 6) and the

σ2DMA log-log plots from the reference artificial fractal surfaces generated by the CLF algorithm

(see Fig. 3) with Hurst exponent H1 = 0.2 and H2 = 0.5. The plot has two y-axes, one for the

normalized artificial surfaces (right y-axis) and one for the UIUC dataset images (left y-axis).
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FIG. 11: Comparision between the σ2DMA log-log plots of the T24 textures (see Fig. 7) and the

σ2DMA log-log plots from the reference artificial fractal surfaces generated by the CLF algorithm

(see Fig. 3) with Hurst exponent H1 = 0.8 and H2 = 0.9. The plot has two y-axes, one for the

normalized artificial surfaces (right y-axis) and one for the UIUC dataset images (left y-axis).

FIG. 12: Comparision between the σ2DMA log-log plots of the T25 textures (see Fig. 8) and the

σ2DMA log-log plots from the reference artificial fractal surfaces generated by the CLF algorithm

(see Fig. 3) with Hurst exponent H1 = 0.4 and H2 = 0.8. The plot has two y-axes, one for the

normalized artificial surfaces (right y-axis) and one for the UIUC dataset images (left y-axis).
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IV. DISCUSSION AND CONCLUSION

From the results reported in Sec. III C, the DMA algorithm seems to be able to detect

the underlying structures of the input UIUC textures, detecting scale, aspect and rotation

changes. From the log-log plots of σ2
DMA as a function of s (see Figs. 5, 6, 7, 8) it is evident

that the method proposed captures the different structures of the random textures. In

particular, when the pixel variability is low, the method proposed is able to detect quite

precisely the different shapes present in the texture analysed, as for the case of the different

color and size in the bricks of Fig. 6 and the different sizes of the squares in the patchwork

fabric of Fig. 8. If the pixel variability increases or if the texture itself does not have

structures and shapes over multiple scales (as in Fig. 7), then the DMA algorithm exhibits

a saturation or even a drop off (see Fig. 7). As for the Hurst exponent values, these resulted

to be higher for the images that presented more evident pixel clusters (i.e., higher pixel-

pixel correlation) and low for the images with no clear pixel clusters (i.e., lower pixel-

pixel correlation). From the comparison with the fractal surfaces generated with the CLF

algorithm (see Figs. 9, 10, 11, 12), the σ2
DMA values of the UIUC dataset textures typically

saturate well before the synthetic rough surfaces, as it was expected since the UIUC surfaces

have not the ideal properties of true mathematical fractals, due to their finite domain size

and lack of structures over all scales.

In view of the results obtained, the present work has shown that the DMA algorithm is

a robust and informative method to inquire the properties of random textures, and that it

is able to recognize the typical behaviour of a class texture also in different conditions of

lighting, rotations and deformations within certain limits. The applications can be various,

and the method could be used for image classification and segmentation.

Future developments could include the statistical analysis of clusters formed by the in-

tersections between the fractal surface and its moving average function as done for the

one-dimensional case [25], an entropy-based analysis of the rough surfaces as for the one-

dimensional case and the extension of the present work to other texture databases.
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