Yali Kang
Flexible RISC-Based Hardware Accelerators for Random Forests.
Rel. Daniele Jahier Pagliari, Alessio Burrello, Chen Xie. Politecnico di Torino, Corso di laurea magistrale in Ingegneria Elettronica (Electronic Engineering), 2024
|
PDF (Tesi_di_laurea)
- Tesi
Licenza: Creative Commons Attribution Non-commercial No Derivatives. Download (7MB) | Preview |
Abstract: |
Hardware accelerators are crucial for achieving the necessary speed in high-accuracy prediction tasks based on Machine Learning models. This thesis focuses in particular on Random Forests (RFs) and introduces two novel accelerator architectures that prioritize flexibility, addressing a significant gap in current designs that struggle with supporting varying model hyper-parameters. By allowing partial programmability of the accelerators through compact RISC-like instructions, the research develops two architectures based on pipelined and parallel processing respectively. A compiler to automatically translate an RF model into accelerator configurations (i.e., instructions) has also been developed. Experimental results on an FPGA platform demonstrate that these architectures can swiftly adapt to a variety of RF models, achieving substantial speed-ups without reconfiguration. |
---|---|
Relatori: | Daniele Jahier Pagliari, Alessio Burrello, Chen Xie |
Anno accademico: | 2023/24 |
Tipo di pubblicazione: | Elettronica |
Numero di pagine: | 73 |
Soggetti: | |
Corso di laurea: | Corso di laurea magistrale in Ingegneria Elettronica (Electronic Engineering) |
Classe di laurea: | Nuovo ordinamento > Laurea magistrale > LM-29 - INGEGNERIA ELETTRONICA |
Aziende collaboratrici: | Politecnico di Torino |
URI: | http://webthesis.biblio.polito.it/id/eprint/30837 |
Modifica (riservato agli operatori) |