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Abstract

Random Forests (RFs) have emerged as a powerful machine learning(ML) technique,
offering high accuracy for a variety of tasks. Hardware accelerators are crucial for
the growing demand for high accuracy, more efficient processing capabilities in RFs
applications, particularly involving big data and real-time processing. This thesis
introduces an innovative RISC-based accelerator design that prioritizes flexibility,
addressing a significant gap in current designs that struggle with frequent RFs
model updates.

In this thesis, a pipelined RISC-based hardware accelerator and a parallel RISC-
based hardware accelerator have been developed. The design of each accelerator
unfolds in several stages, beginning with adopting RISC principles, and transform-
ing the RFs model into different types of instruction sets, then dynamic mapping
instructions in Field-Programmable Gate Arrays (FPGAs) memory. The mapping
method enables efficient RFs classification without the need for extensive hardware
reconfiguration, significantly reducing both time and costs. A specific hardware
architecture consisting of multiple processing elements (PEs) is used to efficiently
support the inference of RFs, by encoding and executing the generated instructions.
The final design has been deployed on the PYNQ Z2 FPGA board to validate
the function and evaluate the performance of the implemented hardware accelerator.

Experimental results showed speedup compared with an ARM Cortex-A9 pro-
cessor, analyzed resource utilization, and power consumption by supporting the
various RFs models with different depths and numbers of trees. In particular, the
initial architecture employs a pipelined approach. By configuring the FPGA’s
Programmable Logic (PL) section to leverage 30 Block RAMs (BRAMs), this
hardware accelerator demonstrates remarkable flexibility, efficiently evaluating all
tested RFs models. It achieves a maximum speedup of about 34.69x. Notably,
this setup maintains consistent latency and throughput across all test RF models,
regardless of variations in tree depth and number of trees, at 45 ns and 22.22 MS/s
(Million samples per second), respectively. The power consumption of the final
design is 0.171 watts. The results show a notable enhancement in the acceleration
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performance as the complexity of the RFs model increases. The architecture in-
curs significant occupation of BRAM resources and Look-Up Table (LUT). The
second accelerator implementation uses a parallel architecture, when employing
the identical RFs models as utilized in the pipeline results, the parallel accelerator
achieves a maximum acceleration ratio of 16.99x. At its optimal speed-up, the
parallel accelerator exhibits a latency of 76 ns and a throughput of 13.16 MS/s.
The power consumption is 0.149 watts. Although the parallel accelerator exhibits
a slightly lower speedup ratio compared to the pipelined accelerator, it vastly
surpasses the latter in terms of resource efficiency. The BRAM resources required
by the pipelined accelerator are 6 times that of the parallel accelerator, and this
figure exponentially increases with the complexity of the RFs models, represented
by tree depth and the number of trees. Therefore, by using the same number of
BRAM, the parallel hardware accelerator supports a larger number of trees for
classification compared to the pipelined structure.
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Chapter 1

Introduction

1.1 Motivation

Random Forests (RFs) [1] is a popular and powerful ensemble learning method,
offering robust performance for classification and regression problems. The algo-
rithm combines multiple decision trees and outputs the class that is the mode of
the classes (classification) or mean prediction (regression) of the individual trees.
RFs showed great performance in the number of variables much larger than the
number of observations [2].

Due to its simplicity, ease of parallelization, and high accuracy, RFs has been
widely used in various practical applications, including, but not limited to med-
ical diagnosis, environmental modeling, financial forecasting, [3][4][5][6] etc. For
instance, in the domain of remote sensing, RFs have been extensively utilized to
extract information from multispectral, radar, and thermal remote sensing imagery,
showing its ability to handle high data dimensionality and multicollinearity effec-
tively [3]. Another significant application of RFs is in the medical field, where
they have been employed for disease diagnosis and prognosis, including predicting
diabetes and its complications, demonstrating the capability of algorithms to deal
with complex biological data [4]. Moreover, in the financial sector, RFs have been
applied for credit scoring and fraud detection, benefitting from their ability to
model the nonlinear relationships often present in financial data [5]. The versatility
of RFs also extends to environmental science, where they have been used to predict
water quality and model species distribution, highlighting their effectiveness in
ecological modeling and conservation planning [6].

However, in all of these scenarios, as the volume of data and feature dimensions
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Introduction

increase, achieving high accuracy with RFs becomes computationally intensive, de-
manding substantial resources for both training and inference. This computational
demand poses challenges to deploying RFs on memory and energy-constrained
Internet of Things (IOT) edge nodes, significantly limiting application scenarios
[7].

A hardware accelerator is a specialized processor designed to perform specific func-
tions more efficiently to overcome this limitation. Hardware accelerators tailored
for specific tasks have become a promising paradigm, to significantly improve the
inference efficiency of RFs than the original inference execution on a general-purpose
Central Processing Unit (CPU). By optimizing the computational tasks running
on the specific hardware, these accelerators can perform the necessary calculations
with lower energy consumption and higher speed. This is crucial for sustainable
computing and for applications where power availability is limited, such as embed-
ded systems.

The platform to implement hardware accelerators can be categorized into the
Graphics Processing Unit (GPU), Field Programmable Gate Arrays (FPGAs), and
Application Specific Integrated Circuit(ASIC). They provide significantly speed up
the training and inference of RFs.

ASICs typically provide the highest performance and energy efficiency. However,
compared to FPGAs, their logic is fixed after manufacturing and cannot be re-
programmed. Therefore, the trade-off between flexibility and efficiency can be
explored by making the design partially programmable or configurable. In the case
of RFs, this trade-off translates into the one between an accelerator capable of
executing a single, specific, RF model, and one able to support a variety of models
through programmable instructions. The former could achieve extreme efficiency,
but would not be able to support changes in the model structure (e.g. number or
depth of the trees in the ensemble), while the latter would.

This thesis aims to design a high-flexibility RFs hardware accelerator, belonging
to the latter group (i.e., partially programmable). Although our final target is an
ASIC deployment, we prototype our accelerator architectures on FPGA, due to
their low cost and fast reprogrammability.

Currently, much research focuses on how to train random forest models quickly or
speed up the inference of RFs. However, the flexibility of hardware accelerators for
RFs has been largely underestimated. Addressing this gap in research, this thesis
proposes to implement two variants of RISC-based hardware accelerators for RFs.
In particular, one implementation involves fully pipelined stages, while another
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Introduction

achieves inference through highly parallel processing. The key to the implemented
accelerators is to achieve highly flexible solutions that can accommodate modifica-
tions to random forest models without requiring hardware adjustments, thereby
reducing the time and financial costs associated with hardware reconfiguration.

1.2 Thesis Structure
This thesis is organized as follows.

• Chapter 1 provides a brief introduction to RISC-based flexible hardware
accelerators for RFs, and the corresponding motivation and context.

• Chapter 2 presents the background respect to RFs algorithms, FPGAs
hardware platform, and RISC architecture.

• Chapter 3 provides a detailed summary of the state-of-the-art FPGAs-based
hardware accelerator for RFs and the limitations and challenges in existing
solutions

• Chapter 4 illustrates the first of the two proposed RF accelerator architec-
tures.

• Chapter 5 presents a second variant of the implemented hardware accelerator,
based on a highly parallel processing strategy.

• Chapter 6 shows the experimental results of the evaluation of the two variants
of implemented hardware accelerators and provides a detailed analysis and
discussion.

• Chapter 7 concludes the main contributions of the thesis and suggestions for
future work.
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Chapter 2

Scientific Background

2.1 Random Forests

Ensemble learning is a machine learning (ML) technique which in multiple models,
often called classifiers are combined to solve a particular problem [8][9]. This
ML method is widely used thanks to its superior classification and regression
performance on target tasks.[10]. By pooling the predictions of multiple models,
ensemble methods can compensate for the limitations of a single model, often
resulting in better performance on varied datasets.

Random Forests (RFs) stand out as a prominent ensemble learning method for
classification. RFs build on the concept of decision trees, which are simple yet
powerful for handling complex decision-making tasks. However, a single decision
tree can be prone to overfitting, where it performs well on training data but poorly
on unseen data. RFs addresses this by creating a forest of decision trees, each
trained on a random subset of the training data and using a random subset of
features at each split [1]. The aggregation of predictions from multiple trees through
majority voting further mitigates the risk of overfitting, making RF-based solutions
popular for classification tasks across various domains.

In RFs, each decision tree makes a a classification prediction by independently
processing the input data through its hierarchical structure, based on the features
selected during training. Each tree produces a vote for a particular class based on
its learned patterns. For classification tasks, the collective decision is often derived
via a consensus mechanism, where the output class is determined by garnering the
majority of votes from the ensemble of trees.

Algorithm 1 proposed an example for RFs classification. In line 1, the function for
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random forest classification is defined. Line 2 introduces a variable named votes
for storing classification outcomes, which is then initialized to 0. Starting from
line 3, the algorithm iterates over all trees within the random forest. The detailed
classification process is delineated from lines 4 to 11. Beginning with the root node
of a tree, if it is not a leaf node, the input feature value is compared with the node’s
threshold to determine the direction of the next node, either left or right. This
process is repeated for the subsequent node until a leaf node is encountered. The
class label of the leaf node is stored in the votes array, as demonstrated in lines 12
and 13. After obtaining the results from all trees, a majority voting is conducted
in line 15 to output the final classification result.

Algorithm 1 Random Forest Classification
1: function Random Forest Classification(forest, instance)
2: votes← array for class votes initialized to 0
3: for tree in forest do
4: n← Root(tree)
5: while n not in Leaves(tree) do
6: if instance[Feature(n)] > Threshold(n) then
7: n← RightChild(n)
8: else
9: n← LeftChild(n)

10: end if
11: end while
12: P ← Prediction(n)
13: votes[P ]← votes[P ] + 1
14: end for
15: final prediction← class with maximum votes in votes
16: return final prediction
17: end function

2.2 Field Programmable Gate Arrays
Field Programmable Gate Arrays (FPGAs) are semiconductor devices that are
based on a matrix of configurable logic blocks (CLBs) connected via programmable
interconnects [11]. This allows FPGAs to be programmed to perform a wide array
of digital computations, making them highly versatile and adaptable to various
applications.

The development of FPGAs involves using Hardware Description Languages (HDLs),
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such as VHDL or Verilog, which describe the logic and behavior of the digital
circuit to be implemented on the FPGAs. Modern FPGAs design tools also pro-
vide high-level synthesis options, allowing developers to work with higher-level
programming languages, thereby simplifying the design process and making it more
accessible.

Unlike CPUs that execute instructions sequentially, FPGAs can process multiple
operations in parallel. By decomposing the target algorithms into a set of concur-
rent tasks, FPGAs can achieve significant computation acceleration for specific
applications, thanks to its parallel processing capability.

One of the typical features of FPGAs is their reconfigurability. They are repro-
grammable to execute different logical functions or tasks. This allows the same
FPGAs device to be used in different applications or stages of a project, offering a
flexible and cost-effective solution for digital design [12].

FPGAs are utilized in a wide range of applications, from signal processing, data
analytics, and financial modeling to embedded systems, telecommunications, and
high-performance computing [13]. Their adaptability also makes them ideal for
prototyping and research, where design flexibility and iterative development are
critical. Considering these distinct advantages of FPGAs, this work is based on an
FPGAs platform, to develop a flexible hardware accelerator for RFs. FPGAs offer
unparalleled flexibility and reconfigurability, enabling the hardware to be precisely
tailored to fit the requirements.

2.3 Reduced Instruction Set Computer
Reduced Instruction Set Computer, or RISC, is a CPU design philosophy that em-
phasizes efficiency through a simplified set of instructions. This approach contrasts
with Complex Instruction Set Computer (CISC), which utilizes a comparatively
larger set of instructions [14]. The RISC philosophy is predicated on the observation
that a simplified instruction set can perform operations more quickly and efficiently,
as it allows faster execution times and lower power consumption. The key principles
and innovations of the RISC architecture include [15] [16]:
Simplified Instruction Set: RISC architectures streamline the number of in-
structions by focusing on a smaller set of simple and general instructions. This
simplification enables each instruction to be executed within a single clock cycle,
improving the processor’s speed.

Load/Store Architecture: In RISC systems, memory operations are limited to
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specific instructions (load to bring data from memory to CPU registers and store
to write data from registers back to memory). This separation of memory and
arithmetic/logical instructions simplifies the executions and allows for more efficient
pipelining.

Pipelining: Pipelining is a fundamental feature of RISC processors, where multi-
ple instructions are executed concurrently by overlapping their execution stages. A
RISC processor divides the processing of instructions into separate stages, allowing
each stage to handle a different instruction simultaneously. This process increases
the throughput of instructions, enhancing overall performance.

Uniform Instruction Format: RISC architectures employ a fixed-length instruc-
tion format, which simplifies instruction decoding and execution. This uniformity
allows for simpler hardware design and enhances the efficiency of the stages includ-
ing Instruction Fetch (IF) and Instruction Decode (ID).

In this thesis, the implemented hardware accelerator is inspired by the characteristics
of RISC architectures, including uniform instruction format, load architecture, and
pipelining, which will be instrumental. These features are fundamental to improving
the efficiency and performance of design in this thesis. The detailed process and
implementation of these RISC features in the accelerators will be thoroughly
elucidated in Chapter 4.
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Chapter 3

Related Works

This chapter reviews existing literature on the acceleration of RFs classifiers and
decision tree-based models on different hardware platforms, including FPGA, GPU,
and multi-core processors.

3.1 GPU based Acceleration
GPUs are well-known for their high throughput in parallel computations, making
them ideal for accelerating complex ML algorithms. Recent research has explored
the potential of GPUs in speeding up RFs classification and decision tree-based
models, achieving considerable reductions in execution time compared to CPU-
based implementations.

The paper [17] proposes accelerating RFs classification on GPUs by introducing
a hierarchical memory layout, which balances the efficiency of compressed sparse
row (CSR) format with more regular array-based representations. The approach
divides each decision tree into subtrees, optimizing for GPU’s memory hierarchy
to reduce irregular memory accesses and improve data locality. Three variants of
tree traversal code were developed to explore different parallelization approaches
and memory layouts. This method significantly enhances performance over the
CSR baseline, demonstrating speed-ups from 5x to 9x over CSR and up to 2x over
Nvidia’s cuML library on an Nvidia Xp GPU.

3.2 FPGA based Acceleration
FPGAs have become popular due to their reconfigurability, which enables fine-
tuning of hardware resources to meet specific algorithmic requirements. This feature
is particularly beneficial for the implementation of an RFs classifier, where the
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parallelism of decision trees can be exploited to enhance performance and efficiency.

Several previous works have targeted hardware acceleration to RFs. But all of these
works are less flexible due to the constrain of BRAM depth or BRAM number
in FPGA. Mingyu Zhu et al.[18] proposed an FPGA-based hardware accelerator
for Deep Forest models, aiming to achieve high speed up, and lower power con-
sumption. Their approach involves designing an efficient Node Computing Unit
(NCU) for rapid logic calculations and an optimized storage scheme for effective
tree storage within limited memory resources. Furthermore, the proposed archi-
tecture incorporates specialized hardware and adaptive dataflow to manage node
computing imbalances during classification, thereby achieving high accuracy and
low power consumption. This paper focuses on minimizing the amount of node
information stored in memory to reduce the usage of BRAM resources. However,
due to the depth limitations of BRAM, once the depth of the tree exceeds the limit,
it requires a reconfiguration of the FPGA. Xiang Lin et al. [19] explored three
FPGA architectures for RFs in their paper, aiming at multiple applications. They
investigated memory-centric, comparator-centric, and synthesis-centric architec-
tures, focusing on the trade-offs between area reconfiguration and context switch
time. Among these three architectures, The memory-centric architecture uses the
most FPGA resources but has the lowest context switch time. The flexibility of
the memory-centric method is limited by BRAM depth and resource utilization is
also a crucial problem for resource-limited application

Studies have demonstrated the capability of FPGA to achieve significant speedups
in model inference times while maintaining high accuracy. For instance, Adrián
Alcolea and Javier Resano [20] propose an FPGA accelerator for Gradient Boost-
ing Decision Trees (GBDT) aimed at embedded systems to optimize execution
while reducing energy consumption. They focus on a case study involving pixel
classification of hyperspectral images. This accelerator achieved 2X speed up and
72X less energy compared with a high-performance processor running optimized
software. Compared to an embedded processor, it is 30 times faster and consumes
23 times less energy. This design is similar to the first related work demonstrated.
Use a method to minimize the node information to 32-bit to reduce memory usage.
In contrast, this limitation makes it more sensitive to model changes resulting in
more FPGA reconfiguration work.

Shuang Zhao et al. [21] proposed a novel flexible random forest accelerator based on
FPGA. This work targets the accelerator suit RFs models that frequently change,
aiming to reduce the need for reconfiguration on FPGAs and enhance flexibility. It
proposes an optimization based on the memory C approach, organizing random
trees in levels where each BRAM stores information for a single level, significantly
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boosting flexibility. However, this method can greatly consume resources, leading
to waste in scenarios where models have small depths but are numerous.

Given the focus on flexibility, this thesis addresses a critical gap identified in
various approaches to hardware acceleration for RFs models. Existing research
primarily concentrates on speedup performance, resource, and energy consumption
on platforms like FPGAs and GPUs. The exploration of flexibility, particularly in
accommodating model modifications without hardware adjustments, while main-
taining high acceleration ratios and optimizing resource usage, is still not thoroughly
addressed. While this flexibility is not critical for FPGAs, which can be reconfig-
ured easily and at runtime, it would be fundamental if one would like to realize a
dedicated RF accelerator in ASIC technology. This thesis introduces two distinct
accelerator architectures designed for deployment across various random forest
tree models. It seeks to find a balance between flexibility, resource utilization,
and acceleration ratios suitable for different applications of Random Forests (RFs)
models, which vary in tree depth and the number of trees. This thesis’s emphasis
on flexibility could lead to innovative solutions that offer not only high performance
but also the adaptability needed for RFs hardware accelerators.

10



Chapter 4

Pipelined Hardware
Accelerator

4.1 Overall Flow

This thesis does not focus on the training aspect of RFs models. Instead, it focuses
on the inference acceleration of trained RFs. The first accelerator architecture
implemented uses a pipelined architecture allowing simultaneous memory access can
significantly accelerate the inference of RFs. This accelerator is strongly inspired
by Shuang Zhao et al. [21]. Generally, the design process can be divided into the
following parts as shown in Figure 4.1.

Step 1: Define a specialized instruction set that can support the efficient inference
for RFs.

Step 2: In the software platform, use a specific script to encode the RFs model
into a set of instructions in the format defined in step 1..

Step 3: Develop the hardware to support the instruction set. This hardware
accelerator is written by the SystemVerilog hardware description language. After
the accelerator top file is simulated correctly, package it and add it as a part of
a block design in the Xilinx Vivado tool. Then synthesize and implement this
block design, generate bitstream, and export the hardware. Next, use the Xilinx
Vitis tool to load (mapping) the instruction set containing the efficient RFs model
information into the memory of FPGAs and execute them to infer the classification.
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Figure 4.1: Overall flow of the RFs accelerator

4.2 Instruction Set
Building on the understanding of the prediction process within random forest
algorithms, a RISC-oriented instruction set to encode the RFs model efficiently
has been designed. Embracing the RISC principles, this instruction set comprises
three distinct types of instructions, each precisely 72 bits in length. The simplicity
and uniformity of this instruction architecture facilitate streamlined decoding and
execution, aligning with the RISC philosophy of optimizing performance through a
reduced set of simple instructions. This design choice simplifies hardware imple-
mentation and RFs inference process, leading to potential gains in both speed and
energy efficiency.

The first type is the Node Operation Instruction (NOInst). Other types of instruc-
tion are First-layer instruction (FLInst), and Control Instruction (CTInst). The
information of the node is stored mainly inside NOInst. FLInst is used to indicate
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the root node of each tree. Only these two types of instructions participate in the
prediction process. CTInst only used to control load the NOInst into BRAM and
FLInst into a register.

4.2.1 Node Operation Instruction
As shown in Figure 4.2, Each NOInst stores information for one internal node.
The information of the leaf nodes is not stored specially in a NOInst but is stored
as additional information for the internal nodes. NOInst can be divided into 7

Figure 4.2: NOInst for internal nodes

segments as in Figure 4.3. All of them will be detailed and illustrated as follows.

Figure 4.3: Node operation instruction

13
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Node Relative Address

Figure 4.4: Node Relative Addres

Node relative address is used to do the mapping instructions into BRAM of FPGAs.
It is the highest 8 bits in NOInst. As demonstrated before, NOInst will be loaded
into BRAM, but not all 72 bits will be stored, only the lower 64-bit which is used
to perform inference will be stored in memory. The NOInst will be loaded into
different BRAM, this process will be controlled by CTInst. This mapping method
will be detailed later. Unlike CTInst, the relative address of the node helps in
mapping the instruction in a specific BRAM. It denotes the relative address where
the lower 64-bit segment is allocated storage within a solitary BRAM. As shown in
Figure 4.4.

Threshold

The threshold is the constant value of each node in a trained model RFs that
performs compare and branch operations. It accounts for 12 bits in the NOInst
format. During the inference, from the root node of the tree, compare a specific

14



Pipelined Hardware Accelerator

feature value with the threshold in that node to decide the next branch. This
process will be iterated until it reaches a leaf node that contains a class label.

Feature ID

Feature ID is an 8-bit information. It is used to indicate which feature value will be
used. The samples that needed to be classified contained several features. In each
internal node, only one feature value will be used to compare with the threshold
of that node. The Feature ID decides which feature is needed to do a comparison
in the node. This information will be used as an address in hardware parts. On
the hardware side, the sample information will be stored in a register. When
performing the prediction process, it will be decoded to address that register to get
the correct feature value that is needed.

Child Node Information

Figure 4.5: Prediction in a tree and corresponding instructions

If the current internal node is not a leaf node, child node information stores the
node-relative information as demonstrated before.

Like the instruction executed in a RISC system, in this hardware system, first, it
requires addressing the instructions needed. This corresponds to the prediction
process in an individual tree of the RFs model shown in Figure 4.5. The system first
addresses the NOInst0, which contains the root node information. After decoding
the instruction and executing the comparison operation, it decides to execute node
1 in the next step. Then address the BRAM to get the NOInst1 that contains the
information of node 1. The branch direction is determined by the comparison result
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of the feature and threshold in each internal node. There exists plenty of BRAM
to store instructions. If already know which BRAM stores the next instruction,
it still needs the relative address in the specific BRAM to address the instruction
since one BRAM has a lot of address information. That address information is in
the child node information.

There is another possibility that the children node is not an internal node but a
leaf node. In this scenario, the child node information stores the class label of the
leaf nodes.

• Left Child Node Information stores 8-bit child node information of the
left child node.

• Right Child Node Information stores 8-bit child node information of the
right child node.

Child Node Type

Similar to the information of the child nodes, the information of the type of child
presents two different meanings depending on whether the child node of the current
internal node is a leaf node or not. If the next child node is not a leaf node, then it
implies the target BRAM for next NOInst. As it can be seen in Figure 4.5, NOInsts
have been stored in different BRAM. When the address process, the child node
type will help to find the relative address from the current BRAM to the target
BRAM. A noticeable thing is that this relative address can be 0, which means that
the next instruction will always be executed in a different BRAM and never be in
the current BRAM.

If the child node of the current internal node is a leaf node, then 0 will be stored
in this segment. This will be used to indicate whether a tree has finished the
inference.

• Left Child Node Type stores 12-bit child node type information of the left
child node.

• Right Child Node Type stores 12-bit child node type information of the
right child node.

The NOInst will be used in different phases. First, during the mapping process,
CTInst and node relative address will both be used to store the lower 64 bits of
NOInst in BRAM. Then in the inference process, an instruction will be addressed.
In this instruction, feature ID will be used as an address to obtain a feature value,
then compared with the threshold in this instruction. If the feature is larger than
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the threshold, the next part of the execution will be based on left child node
information and left child node type. Otherwise, it will be based on right
child node information and right child node type. For instance, assume that
the feature value is greater than the threshold. If the left child node type is not
equal to 0, then it will be used to find the target BRAM. The information from
the left child node will be used as the relative address of that specific BRAM. If
the left child node type is 0, then it means that a leaf node is reached and the
predication label is in the left child node information.

4.2.2 First Layer Instruction

Figure 4.6: FLInst Format

FLInst is 72 bits and it will be stored in a specific register. Each bit of FLInst
indicates whether the BRAM has a root node of one tree. Figurev4.6 clearly showed
the meaning of it. Internal nodes loaded into different BRAM. If the BRAM stores
a root node, then a bit of FLInst will be set to 1, otherwise, it will be set to 0. The
most significant bit (MSB) indicates the BRAM 0 that stores the root node of tree 0.

The FLInst will be used to infer the whole structure of the RFs model in hardware.
For example, in Figure 4.6, it can be seen that 72 BRAMs were used to store 5
trees. Tree 0 uses 3 BRAMs, and tree 1 uses two BRAMs. The whole structure
can be obtained if all FLInst were analyzed.

4.2.3 Control Instruction
As discussed before, CTInst is used to store NOInsts and FLinsts in the memory.
CTInst has two segments as in Figure 4.7, the higher 60 bits is the instruction type.
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Figure 4.7: CTInst format

For the NOInst, this part will be set as 0, and for the FLinst, all 60 bits will be set
as 1. The lower bits indicate which BRAM the instruction should be loaded for
NOInst or the relative address of a specific register for FLInst.

Figure 4.8: An example of whole instruction for an RFs model

A noticeable thing is in the load instruction phase, a CTInst means a group load
operation for NOInst but only means one load operation for FLInst. This is because
after converting an RFs model into a set of instructions, a CTInst will follow more
than one NOInst, but only one FLInst.

4.3 Instructions Mapping Method
After generating instructions, these instructions need to be mapped to BRAM to
support further operations. Figure 4.9 shows the working method of this step. It
assumed that each BRAM can store 3 64-bit instructions. All BRAMs are organized
adjacently.

This approach can be seen from the Figure 4.9.

Step 1: Divide trees in RFs into layers: Start by dividing each tree within the RFs
model into layers. This ensures that the NOInsts can be processed layer by layer,
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Figure 4.9: Mapping Method of Pipelined Hardware Accelerator

from the top layer down to the bottom.

Step 2: Store NOInsts layer by layer, from left to right: For each layer, start
storing nodes from the leftmost node to a BRAM. If the nodes of a layer are too
many to fit in a single BRAM, then store the remaining nodes in the adjacent next
BRAM. It is important that each BRAM only stores nodes from the same layer to
maintain the integrity of the layer structure.

Step 3: Follow storage principles for cross-tree node storage: After storing all
layers of one tree, begin storing the nodes of the next tree in the same manner
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(from top to bottom, from left to right). During this process, it’s necessary to
adhere to the previously mentioned storage principles.

Step 4: Sequentially store nodes of all trees: Start with the 0th tree and proceed
to store the nodes of each tree following the steps mentioned above, until all nodes
of the last tree (the n-th tree) have been stored. This method ensures that all
nodes of the entire random forest are organized and stored in a clear hierarchical
and sequential order, facilitating subsequent data access and processing.

For more details, Figure 4.9 shows one example, in particular, store the root NOInst
of tree 0 in BRAM 0 at first. Then store node 0 of layer 1 of tree 0 at the address
0 of BRAM 1. Next, still load node 1 of layer 1 to the second address 1 of BRAM
1. Then begin to store other layers. It should be noticed that for layer 2 of tree 1,
BRAM 5 is not enough to store all NOInst, so BRAM 6 is used to store node 3 in
this layer. NOInsts from other layers will never stored in this BRAM since one
BRAM is only allowed to store NOInst of one layer.

4.4 Instruction generation
In this section, a discussion of the process to generate instructions for a trained
RF model [22] is presented.

4.4.1 Function of NOInst and CLInst Generation
As mentioned above, CLInst will be used to map both NOInst and FLInst. In this
part, the generation process of NOInst and CLInst used for NOInst is detailed.
The steps are shown below.

Get Node Depth

This part uses a function to obtain the depth of each node in a tree as show in
Algorithm 2.

CTInst Generation

This part is to iterate each tree of the RF model and organize all trees by layers.
Then for each layer, assign the BRAM ID to it. The process is like the following
Algorithm 3.

Sets up various counters and lists to track the allocation of nodes across BRAMs,
the instruction sets, and other details from line 3 to line 9. Then iterates over each
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Algorithm 2 Node Depth Calculation
1: function GetNodeDepths(Tree, NodeID = 0, Depth = 0)
2: Initialize NodeDepths as a dictionary with NodeID as the key and Depth as the

value
3: LeftChildID ← Tree.children_left[NodeID]
4: RightChildID ← Tree.children_right[NodeID]
5: if LeftChildID /= −1 then
6: LeftChildDepths← GetNodeDepths(Tree, LeftChildID, Depth + 1)
7: Update NodeDepths with LeftChildDepths
8: end if
9: if RightChildID /= −1 then

10: RightChildDepths← GetNodeDepths(Tree, RightChildID, Depth + 1)
11: Update NodeDepths with RightChildDepths
12: end if
13: return NodeDepths
14: end function

tree in the classifier. Marks the root BRAM ID of each tree in line 11 for FLInst
generation. Calculate the depth of each node to organize nodes by layer in line 16
to line 18. Determines how many BRAMs are needed for each layer based on a
single BRAM depth, then generates CTInst from line 19 to line 27. From line 38
to line 40, it assigns each node to a BRAM and calculates its address within that
BRAM to get NOInst in the next step.

NOInst Generation

Each internal node (nodes with children) generates an instruction that includes
details about the node’s feature ID, threshold, child node information, child node
type, and node relative address). Algorithm 4 shows the process.

Identify the internal node from all nodes in lines 2-4. Generate the child node type
and child node information for each internal node based on the child node from
line 6 to line 7. Construct the NOInst for each internal node in lines 8 to line 11.
Finally return NOInst, CLinst, node index of each layer from left to right, and
maker of root node BRAM ID.

4.4.2 Function of FLInst and CLInst Generation
Algorithm 5 introduces a function to generate FLInst and CTInst based on the
makers of root nodes.
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Algorithm 3 BRAM ID and Node Relative Address Calculation
1: function GetOInst(clf , MaxNodesPerBRAM , M)
2: ▷ Initialize variables
3: CurrentBRAMId← 0
4: TotalLayer ← 0
5: NoInst← array
6: ClInst← array
7: NodeIndexInLayer ← array
8: NtreeNlayer ← array
9: V ← [0] * M ▷ Tracks if a BRAM is used for root node

10: for each tree in clf.estimators do
11: V [CurrentBRAMId]← 1 ▷ Mark the current BRAM as used
12: ▷ Initialize lists for BRAM ID and address for each node
13: RamId← [0] * tree.node_number
14: Ra← [0] * tree.node_number
15: ▷ Retrieve nodes and calculate depths
16: Nodes← tree.nodes
17: NodeDepths← GetNodeDepths(tree)
18: MaxDepth← tree.max_depth
19: for Layer from 0 to MaxDepth do
20: ▷ Identify internal nodes in the current layer
21: LayerNodes← [index for index, node in Nodes if NodeDepths[index] == Layer

and not leaf node
22: if LayerNodes then
23: Generate layer instruction (ClInst) and calculate needed BRAMs
24: ClAddr ← CurrentBRAMId
25: ClIns← (0 << 12|ClAddr & 0xFFF )
26: Append ClIns to ClInst
27: NeededBRAM ← (len(LayerNodes)//MaxNodesPerBRAM) + 1
28: Index← 0
29: TotalLayer ← TotalLayer + 1
30: for each j in LayerNodes do
31: RamId[j]← CurrentBRAMId + (Index//MaxNodesPerBRAM)
32: Ra[j]← Index%MaxNodesPerBRAM
33: Index← Index + 1
34: end for
35: CurrentBRAMId← CurrentBRAMId + NeededBRAM
36: Append LayerNodes to NodeIndexInLayer
37: end if
38: end for
39: Append TotalLayer to NtreeNlayer
40: end for
41: end function

Calculate the number of FLInst needed based on the total number of BRAM and
the length of an instruction in line 2. Obtain the root node indicators for each tree
from the GETOInst function in line 3. Get the address of the register that stores

22



Pipelined Hardware Accelerator

Algorithm 4 NOInst Generation
1: ▷ Generate NOInst for each internal node
2: for each k in range(0, tree.node_node) do
3: Identify internal nodes
4: NInternalNode ← [k for k, node in enumerate(Nodes) if tree.children_left[k] /= −1

and tree.children_right[k] /= −1]
5: NodeNoInst← Initialize list of node_count elements to 0
6: for each k in NInternalNode do
7: Determine node type and node information of left and right children
8: Construct NOInst for the node
9: Update NodeNoInst for k

10: end for
11: Append NodeNoInst to NoInst
12: end for
13: ▷ Check if the allocated BRAMs are sufficient
14: if CurrentBRAMId > M then
15: Print "The number of BRAMs allocated is not enough!"
16: end if
17: return NoInst, ClInst, NtreeNlayer, NodeIndexInLayer, V

Algorithm 5 FLInst Generation
1: ▷ Calculate the number of instruction lines needed
2: NFLins←M ÷ instruction_length + 1
3: Node_indicator ← get_OInst(clf, max_nodes_per_BRAM, M)[4]
4: function GetFLInst(NodeIndicator, M , NFLins, InstructionLength)
5: ▷ Initialize CTInst and FLInst arrays with zeros
6: Initialize CTInst as an array of size NFLins with all elements set to 0
7: Initialize FLInst as an array of size NFLins with all elements set to 0
8: for i from 0 to M − 1 do
9: Calculate the register ID (RegID) based on the current BRAM index and instruction

length
10: RegID ← i÷ InstructionLength
11: Calculate the reverse address within the instruction line (FlRa)
12: FlRa← InstructionLength− (i mod InstructionLength)− 1
13: Set the control instruction for the current register ID
14: CTInst[RegID]← (0xFFFFFFFFFFFFFFF ≪ 12) ∨ (RegID & 0xFFF )
15: Update the FLInst at this register ID with the node indicator
16: FLInst[RegID]∨ = (NodeIndicator[i]≪ FlRa)
17: end for
18: return FLInst, CTInst
19: end function

FLInsts and use it to generate CTInst from line 8 to line 14. Generate FLInsts at
last.

23



Pipelined Hardware Accelerator

4.5 Hardware Design

4.5.1 Overview of Hardware Architecture
As shown in Figure 4.10, the hardware system is divided into two parts, majority
voting belongs to datapath, datapath is responsible for the classification inference,
while the controller for generating control signals for the accelerator.Generally, the
operational status is as follows.

Figure 4.10: Overall framework of hardware accelerator

In the state of load, commands are loaded into the FPGAs for storage in the FLinst
the NOInst. When the state is run, samples are fed into the accelerator, followed
by the execution of the predictions. In the idle state, no operations are performed,
and the system waits. The function of each unit is:

The control unit receives all bits of instruction and controls the reading, writing,
and address decoding operations of devices within the datapath and the major
voting unit, based on the type and content of instructions.

The datapath contains a pipelined structure circuit and a major voting unit. The
pipelined structure circuit is a particularly complex segment responsible for most
of the classification process. The major voting unit determines the final class label
based on the frequency of occurrence of predicted labels from various trees.
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4.5.2 Datapath

Figure 4.11: The Main Architecture of Datapath
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In Figure 4.11, BRAMs are structured as interconnected units, serving the purpose
of storing the lower 64 bits of NOInsts. Each BRAM is used to store only one
layer. In instances where a single BRAM’s capacity is insufficient for the NOInsts
of a specific layer, these instructions can be sequentially allocated across multiple
BRAMs, as illustrated by Layer N in the figure. Adjacent to the PE, each red
rectangle is a single bit of all FLInst indicating the root node. The presence of
a 1 indicates that the BRAM is allocated to store a root node. The dynamic
mapping of NOInsts to the BRAMs requires that each BRAM is equipped with a
Processing Element (PE) to facilitate pipelined comparison operations. Additionally,
the architecture incorporates buffers designed to retain intermediate data, which
include both the relative BRAM ID and Node relative Address of the next NOInst
to be executed and their corresponding prediction outcomes. This arrangement
ensures a more efficient handling and retrieval of data, facilitating the smooth
operation of the system.

4.5.3 Processing Element
Let’s first direct our attention towards the PE’s input ports in Figure 4.12.

As previously mentioned, the BRAM_ID is utilized to retrieve the relative location of
the BRAM containing the next instruction to be executed. Within the PE, the
BRAM ID undergoes a subtraction operation. When the output of this operation
equals zero, it indicates that the required NOInst is located within the BRAM
corresponding to this PE. Consequently, it can fetch this instruction to perform
the comparison operation.

The NodeRA (Node Relative Address) also plays a crucial role in fetching the next
NOInst, originating from the output of the previous Basic Block. When the BRAM
within this PE does not store the root node, the NodeRA is employed to address
the BRAM to retrieve the corresponding instruction.

The port attribute refers to the value of a feature that is used for comparison with
a threshold. This attribute is utilized exclusively during the comparison operations
performed by the Processing Element (PE).

The data_in parameter represents the lower 64 bits of the NOInst. During load
operations within the accelerator, data_in is written into the BRAM. This process
is integral to the accelerator’s functionality, facilitating the efficient handling and
storage of instruction data necessary for subsequent processing and execution tasks.

The is_root_node flag originates from the FLInst (First Level Instruction), serving
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as an indicator of the node’s status within the structure. When set to 1, it means
that the node is the root node. Under such circumstances, the NodeRA becomes
invalid and the addressing mechanism for the BRAM automatically defaults to an
address of 0. This mechanism ensures efficient instruction retrieval in scenarios
where the PE’s BRAM stores the root node.

The Prediction port within the figure is an array designated for storing the class
label outcomes of individual trees within the RFs model. This array is derived
from the output of the preceding basic block. The internal data of this prediction
array undergoes modification exclusively upon the traversal of a tree to its leaf
node. This mechanism ensures that the prediction outcomes remain static until
the leaf node of a tree is reached, thereby reflecting the final classified results of
the RFs model with precision and reliability.

During the Run step of the hardware accelerator, read_enable for BRAM will be
set as 1.

In the load step of the hardware accelerator, write_enable for BRAM will be set
as 1.

The write_address is also employed during the load phase of operations. It is
derived from the upper 8 bits of the NOInst, the Node Relative Address section.
This allocation of bits for the write address facilitates the identification and selection
of the precise location within the BRAM where NOInst should be written during
the load operations.

PE_state serves as an indicator of the specific task to be executed by the PE. It
can be in one of three states, each signifying a different operational mode:

• Value 00: This state indicates that the next NOInst to be executed is not
located in this BRAM. Consequently, no computation is performed during
this state.

• Value 01: When the PE state is 01, it means that the NOInst required
for execution resides within the current BRAM. Under this condition, the
PE proceeds to fetch the instruction based on the input and performs the
comparison operation, moving forward with the processing workflow.

• Value 10: This state indicates that the tree traversal has culminated in
obtaining a class label. In this state, no comparison operations are conducted.
But if this BRAM contains a root node NOInst, at that juncture, regardless
of the PE_state value, comparison operations resume to facilitate further
decision-making processes within the Random Forest model.
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Figure 4.12: Processing Element Circuit

The next part discusses output ports.

The Next_BRAM_ID port is strategically connected to the input of the subsequent
basic block. This connection is pivotal for the flow of information and instructions
through the accelerator’s architecture. The value assigned to the Next_BRAM_ID
depends critically on the current state of the Processing Element (PE) as follows:

• When the PE state is 00: the value of the Next_BRAM_ID is set to the current
"BRAM id" minus one. This adjustment facilitates the sequential navigation
through the BRAMs to locate the required NOInst.

• When the PE state is 01: The value for the Next_BRAM_ID is then derived
from the fetched NOInst’s Child Node Type.

The port Next_NodeRA is linked to the current state of the PE

• When the PE state is 00: In such a scenario, Next_NodeRA is set to mirror the
input NodeRA albeit with a one-clock cycle delay. This delay accounts for the
time taken to pipeline the NodeRA to the next stage of operation, ensuring
that the data flow remains consistent and uninterrupted.

• When the PE state is 01: The value of the Next_NodeRA is derived directly
from the NOInst’s Child Node Information.

Attribute_ID is routed to the input address of the register array associated with
input samples, serving the purpose of addressing the appropriate feature value.
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Figure 4.13: Basic Block

Subsequently, this feature value is provided as input to the PE unit. The value
of the Attribute_ID exclusively originates from the NOInst housed within the
current BRAM. It remains internal to the Basic Block, with no transmission to the
subsequent Basic Block as in Figure 4.13.

Both Next_PE_state and Next_prediction ports serve as connections to the
input of the following basic block. The roles and implications of these signals have
previously been outlined in the input ports section.

4.5.4 Prediction Process
This section will elaborate in detail on the classification process based on the
hardware accelerator.

Step 1: Initialize the input variables NodeRA, BRAM_ID, Prediction Array to 0.

Step 2: Loop through all available BRAMs to find the relevant NOInst for classifi-
cation.

Step 3: In each BRAM, fetch the NOinst located at the address specified by
BRAM_ID and NodeRA. This instruction contains the Attribute_ID and threshold
for decision-making.

Step 4: Use Attribute_ID to address the samples register array and get the
feature value.

Step 5: Determine the direction (left or right) for the next node based on the
current attribute’s value compared to the threshold in the fetched instruction.
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Step 6: Handle the fetched node based on its type. If the node is a leaf node,
update the Prediction Array by incrementing the count for the predicted class.
If the node is not a leaf, adjust BRAM_ID and NodeRA to point to the next node’s
location based on the direction determined earlier. The BRAM_ID is adjusted by
adding the child node type, and NodeRA is set to child node information.

Step 7: After iterating through all Basic Blocks and updating the Prediction
array, output the label corresponding to the maximum value in the result. This
label is the predicted class for the input samples.

It is imperative to note that despite the entire process being pipelined, for the
prediction of the first sample, a waiting period of M clock cycles is necessitated.
Here, M represents the total number of BRAMs utilized in the operation. This
reflects the latency inherent to the initialization of the pipelined process.
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Chapter 5

Parallel Hardware
Accelerator

5.1 Overall Flow
The primary distinction between the parallel hardware accelerator and the pipelined
hardware accelerator lies in their design aspects, yet the overarching workflow
remains consistent across both types. Consequently, this section will not delve
extensively into the general operational process shared by both. Instead, the
subsequent discussion will focus predominantly on elucidating the differences
between the two, highlighting the unique characteristics of the parallel hardware
accelerator.

5.2 Instruction Set
In this section, a notable modification is the reduction of bit width from 72 bits
to 64 bits. This adjustment primarily stems from changes in the accelerator’s
architecture, which obviated the need for the Node Relative Address (NodeRA)
segment within the NOInst. Furthermore, the categorization of instruction types
has been simplified to two, eliminating the necessity for First Level Instruction
(FLInst). The reasons behind these changes will be elaborately discussed in the
subsequent sections.

5.2.1 Node Operation Instruction
As depicted in Figure 5.1, the format of the NOInst has changed. Compared to
Figure 4.3, the Node Register Address (NodeRA) is no longer utilized, while the
rest of the components, including their content and bit width, remain unchanged.
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Figure 5.1: New Node Relative Instruction

This change is attributed to the change from the previous approach where each
BRAM only stored the internal nodes of one layer of a tree. In contrast, like Figure
5.2, now each tree is allocated one Bram, which stores all of the internal nodes
of the tree. This will significantly reduce the demand for resources. Meanwhile,
such a modification eliminates the need to ascertain the relative position of each
internal node within the layers. In other words, it obviates the need for NodeRA.
During the software phase, in the process of generating the NOInst, it suffices
to traverse the nodes within the tree sequentially, generating instructions for the
internal nodes in order. This allows for the sequential loading of NOInst into the
designated Bram during the load phase.

5.2.2 Disappearance of First Layer Instruction
When transitioning from a pipelined architecture to a parallel one, a significant
change is that there is no longer a need to specify which Bram stores the root node.
As mentioned previously, each Bram now stores the Next Operation Instruction
(NOInst) for an entire tree, leaving no doubt that each Bram contains the root
node.

5.2.3 Control Instruction
For the CTInst, although currently, only the NOInst type of instruction requires
loading into the FPGA’s memory, the necessity of utilizing the Instruction Type
field to identify the instruction type remains significant. This is because this data
segment is transmitted to the Control Unit section. When this segment is entirely
zeros or ones, the CU will recognize the instruction as a CTInst. Consequently,
the instruction format will same as shown in Figure 4.7.

5.3 Instructions Mapping Method
The change mentioned above will result in a transformation of the Mapping Method,
with specific details as follows.

• Internal nodes are stored in sequence according to the order of the tree nodes’
indices
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Figure 5.2: Mapping Method for parallel accelerator

• Store the NOInst of all trees from tree 0 to tree n.

• Each BRAM stores NOInsts of one tree.

As shown in Figure 5.2, storing the NOInst of node 0 of tree 0 in Bram 0 at address
0, node 1’s NOInst at the position corresponding to address 1, and node 2’s NOInst
at the position corresponding to address 2. Notably, node 6’s NOInst is stored at
the position corresponding to address 3. This is different from previous mapping
principles of pipelined structure. The same logic is applied to other trees as well.

5.4 Software Design
With minor adjustments to the existing code base, we can generate suitable
instructions for parallel hardware accelerators.

5.4.1 Function of NOInst and CLInst Generation
The Get The Depth function is no longer necessary. Previously, this function
was employed to assign layers to the tree. However, now that we no longer store
the Next Operation Instructions (NOInst) by layer, its utility has been rendered
obsolete.

CTInst and NOInst Generation Algorithm

The given Algorithm 6 is designed to compute CTInst and NOInst for decision trees
within a Random Forests classifier. The algorithm manages memory allocation
for these instructions in Brams, considering the hardware constraints like the
maximum number of nodes per BRAM and the total number of BRAMs available.
The operation of the algorithm is as follows:

Lines 2-4: Initialization. The algorithm begins by initializing the current_bram_id
to zero and creating two lists: no_inst for Node Operation Instructions and
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Algorithm 6 Generation of CLInst and NOInst for Each Internal Node
1: function GetInstructions(clf , max_nodes_per_bram, M)
2: current_bram_id← 0
3: no_inst← array ▷ Operation instructions
4: cl_inst← array ▷ Control instructions
5: Internal_node_index← array ▷ Indexes of internal nodes
6: for i, tree in clf.estimators_ do
7: current_bram_id← i
8: ra← [0] * node number
9: Internal_nodes← [index if the node has children]

10: if Internal_nodes then
11: Calculate cl_addr and cl_ins for current tree, append to cl_inst
12: Check if max_nodes_per_bram is sufficient for Internal_nodes
13: for j in Internal_nodes do
14: ra[j]← index % max_nodes_per_bram
15: end for
16: Append Internal_nodes to Internal_node_index
17: end if
18: for k in range(0 to node bumber) do
19: if Internal_nodes then
20: Determine node type/info of each child node for k
21: Calculate operation instruction for k, append to no_inst
22: end if
23: end for
24: end for
25: if current_bram_id > M then
26: print("Not enough BRAMs allocated.")
27: end if
28: return no_inst, cl_inst, Internal_node_index
29: end function

cl_inst for Control Instructions. Additionally, Internal_node_index keeps track
of internal node indices.

Lines 5-21: Tree Processing Loop. Each tree in the classifier’s ensemble is processed
individually. This includes initializing a tracking list for node allocation within
BRAMs and identifying all internal nodes.

Lines 10-14: Control Instruction Generation. For trees with internal nodes, control
instructions are calculated and appended to the cl_inst list, with a check for
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sufficient BRAM depth.

Lines 15-18: Node Address Assignment. Addresses within the BRAM are assigned
to each internal node, ensuring proper mapping to physical memory locations.

Lines 22-27: Operation Instruction Calculation. The algorithm calculates Node
Operation Instructions for all internal nodes, determining the type and information
of each child node.

Lines 28-30: BRAM Utilization Check. It concludes with a verification step to
ensure that BRAM usage does not exceed the available amount, issuing a warning
if necessary.

Line 31: Output. Finally, lists containing the Node Operation and Control Instruc-
tions, along with internal node index, are returned for further processing.

The primary differences between the current approach and the previous algorithm
can be summarized in two main points:

Firstly, regarding the address in the CLInst, complex calculations are no longer
required. Instead, the address is directly obtained based on the iterative index of
the trees within the RFs (Random Forests) model.

Secondly, the calculation of the Ra as listed in line 14 of Algorithm 4 is no longer
necessary, due to the instruction structure no longer requiring NodeRA.

5.5 Hardware Design
The hardware system is similar to the pipelined hardware accelerator. It consists
of a CU, a specific datapath that contains the parallel structure circuit for RFs
inference, and the major voting unit.

5.5.1 Datapath
As illustrated in Figure 5.3, the structure has significantly diverged from the pre-
vious serial pipeline configuration to a parallel architecture. Each tree’s internal
nodes are now stored within a single Bram. Each basic block is equipped with
a dedicated register array to store the input sample’s feature values, facilitating
simultaneous access to specific feature values by all Processing Elements (PEs)
during the classification process. A PE is assigned to each Bram for the task
of classification; after performing a comparison operation with a fetched Next
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Figure 5.3: Datapath of Parallel Acceletator

Operation Instruction (NOInst) from the Bram, it continues to fetch the next
instruction from the same Bram until the tree’s classification process is complete
and the correct class label is determined.

Once all the trees have completed their classification tasks, the output results from
all trees are sent to the majority voting unit to conduct voting and determine the
final outcome.

5.5.2 Processing Element
Let’s focus on the port differences from the previous approach. In Figure 5.4.

Figure 5.4: New PE Circuit

Firstly, the Bram_ID is no longer required because the next instruction to be fetched
and then executed is always located within this Bram.
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The input value for NodeRA no longer originates from other basic blocks but instead
comes from the output of the Next_NodeRA within the same Processing Element
(PE).

Similay, the is_root_node flag is not needed anymore.

The Prediction Array port is unnecessary. With the discontinuation of the
pipeline architecture, it becomes superfluous to store the class label array following
each execution of NOInst. Instead, it suffices to output a single class label upon
completion of the prediction process.

The ports attribute, data_in,read_enable, write_enable and write_address
are same with previous one.

The significance of the PE_state has also undergone modification, now encompass-
ing two distinct states, as described below.

• Value 0: It indicates that the tree has not yet obtained a class label.

• Value 1: It signifies that the tree has completed its prediction and acquired a
class label.

Subsequently, the focus is shifted towards the output port. In the output port, the
only aspect that merits attention is the replacement of the original Next_prediction
output with the label out port. The rationale for this change has been sufficiently
discussed previously and will not be elaborated upon here.

5.5.3 Prediction Process
The prediction process will shift from a serial pipeline to a parallel configuration,
with the specific details outlined below:

Step 1: Initialize the input variables NodeRA to 0.

Step 2: Simultaneously traverse the basic blocks that have stored the trees.

Step 3: In each BRAM, fetch the NOinst located at the address specified by
NodeRA.

Step 4: Use Attribute_ID to address the samples register array.
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Step 5: Within this basic block, at every clock cycle, continue performing compar-
ison operations until its label is outputted.

Step 6: Once all basic blocks have produced their results, the outcomes are
outputted to the majority voting unit.
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Chapter 6

Experimental Results

6.1 Hardware Implementation
In this section, a comprehensive description of the hardware acceleration im-
plementation process is provided. Initially, hardware design is performed using
SystemVerilog within the Vivado software environment, culminating in the gen-
eration of a bitstream file. After that, the next step is exporting the so-called
hardware platform file. This file is then integrated into the Vitis software framework,
where the software driver, designated to operate on an ARM CPU, is developed.
Subsequently, the Random Forest algorithm is accelerated in the programmable
logic segment of the FPGA. Detailed implementation is delineated in the following
sections.

6.1.1 PYNQ Z2
This section of the thesis presents the details of the PYNQ Z2 FPGA board. The
PYNQ Z2 board is selected for its flexibility, integration capabilities, and ease of
use. The key specifications of the PYNQ Z2 board are as follows:

Processor: Xilinx Zynq-7020 SoC, featuring a dual-core ARM Cortex-A9 processor
with a clock speed of up to 650MHz.

Programmable logic:

• 13300 logic slices, each with four 6-input LUTs and 8 flip-flops

• 630 KB of fast block RAM

• 220 DSP slices
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Figure 6.1: PYNQ Z2 [23]

Memory: 512MB DDR3 RAM with a data rate of up to 1050Mbps, complemented
by a MicroSD slot for external storage.

Power: Powered from USB or 7V-15V external power source.

Programmable Mode JTAG, Quad-SPI flash, and MicroSD card

Connectivity: Includes Gigabit Ethernet for network connections and USB ports
for programming and UART communication.

In the implementation, an external power source will be used for the power supply.
Communication will be facilitated through UART, and the programming mode
will be set to JTAG.

6.1.2 Design Process Using Vivado
Figure 6.2 displays the overall interface of Vivado. The design flow in Vivado
encompasses several key stages, each critical for optimizing the performance and
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Figure 6.2: The Vivado Tool

resource utilization of the FPGA. These stages are:

Project Creation and Environment Setup: Launching Vivado and creating
a new project specific to the PYNQ Z2 board by selecting the appropriate board
definition files. Then Configure the Vivado environment to match the project
requirements, setting up the design language (Verilog).

Design Entry and Simulation Writing the Hardware Description Language
(HDL) code (SystemVerilog) that defines the hardware accelerator’s functionality.
Running simulations to validate the design under various conditions and inputs,
ensuring that correctness and performance targets are met. Utilizing Vivado’s
Block Design for visually constructing the design using IP (Intellectual Property)
cores and custom modules. In this section, two IPs provided by Xilinx are utilized.
The first is the ZYNQ7 Processing System, which is employed to configure various
parameters for both the PS (Processing System) and PL (Programmable Logic)
sides. The second is the AXI Direct Memory Access, which facilitates communica-
tion between the PS and PL sides. Figure 6.3 represents the final Block Design of
the Pipelined Hardware Accelerator, and Figure 6.4 depicts the final Block Design
of the Parallel Hardware Accelerator.

Synthesis: Translating the HDL code into a gate-level representation that maps
onto the FPGA’s resources, optimizing for speed, area, and power consumption.
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Figure 6.3: Block Design of Pipelined Hardware Accelerator

Figure 6.4: Block Design of Parallel Hardware Accelerator

Bitstream Creation: Generating the bitstream file, which is the binary file
that will be loaded onto the FPGA to configure its logic blocks and interconnects
according to the design.

6.1.3 Driver Development Using Vitis
This section details the development of custom drivers for the hardware accelerator,
utilizing the Vitis software platform. The drivers facilitate communication between
the hardware accelerator and the application software, ensuring data transfer and
command execution. The interface of Vitis is shown in Figure 6.5.

Initial Setup: Launching Vitis, select a workspace and create an application
project using the XSA file export from Vivado.

Driver Development Process: Writing a DMA-based data transfer and acceler-
ator execution driver.
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Figure 6.5: The Vitis Tool

Run: Running the driver, this step performs the execution of inference based on
the hardware accelerator.

6.2 Results Evaluation
This section presents a comprehensive evaluation of the pipelined hardware ac-
celerator and the parallel hardware accelerators implemented on the PYNQ Z2
FPGA board. The objective is to assess their performance in terms of speed up
compared with CPU, resource utilization, power consumption, and flexibility in
various operational scenarios.

6.2.1 Speed up
In this part, the inference time used is compared between the hardware accelerator
and CPU of PYNQ-Z2. The C codes of RFs that run in the CPU are obtained
from the Eden library [24].

This library use methodology put forth by Daghero et al.[25] hinges on the concept
of early stopping, which is a set of policies determining when the execution of
decision trees within an ensemble can be halted without significant loss of accuracy.
Notably, these policies adaptively halt the inference process, conserving energy
by avoiding redundant computations for easy-to-predict inputs. The researchers
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meticulously designed data structures and memory allocation strategies that are
optimized for the constrained computing environment of IoT devices.

The authors underscore the practicality of their approach by conducting extensive
benchmarking across three IoT-relevant datasets, encompassing applications such
as hand gesture recognition from electromyography signals, hard drive failure predic-
tion, and human activity recognition using accelerometer data. These applications
reflect diverse challenges in the IoT domain, including varying input signal types,
data dimensionalities, and class imbalances.

The toolchain developed auto-converts a Python ensemble into optimized C code,
efficiently mapping the ensemble model to the device’s multicore architecture
and memory hierarchy. This optimized C code achieved speed-ups ranging from
3.15× to 7.92× for tree execution from 1 core to 8 cores for the SOC GAP8 platform.

In this thesis, the acceleration ratio is calculated by comparing the inference time
of the hardware accelerator against that of a dual-core ARM Cortex-A9 processor.

Speed up of Pipelined Hardware Accelerators

Table 6.1: Speed-up Performance of Pipelined Acceletor

Test Case SD_C(ns) T_C(ns) N_bram T_HD(ns) Speed-up

N_tree2_Depth2 61.83 550 4/30 45 12.22x
N_tree2_Depth3 95.96 599 6/30 45 13.31x
N_tree2_Depth4 114.87 621 8/30 45 13.80x
N_tree2_Depth5 100 607 9/30 45 13.49x
N_tree3_Depth2 70.69 796 6/30 45 17.68x
N_tree3_Depth3 125.95 874 9/30 45 19.42x
N_tree3_Depth4 132.15 881 12/30 45 19.58x
N_tree3_Depth5 151.49 898 14/30 45 19.96x
N_tree4_Depth2 73.48 1063 8/30 45 23.62x
N_tree4_Depth3 135.63 1156 12/30 45 25.69x
N_tree4_Depth4 126.67 1176 16/30 45 26.13x
N_tree4_Depth5 175.38 1227 19/30 45 27.27x
N_tree5_Depth2 112.77 1291 10/30 45 28.69x
N_tree5_Depth3 190.13 1407 15/30 45 31.27x
N_tree5_Depth4 290.51 1561 20/30 45 34.69x
N_tree5_Depth5 247.87 1524 23/30 45 33.87x

In Table 6.1, different configurations of RFs models are tested, denoting the number
of trees and their maximum depth, with experiments conducted using 240 input
samples. N_tree2_Depth2 indicating a model with two trees, each with a max
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Figure 6.6: Speed Up

depth of two. T_C represents the average time to classify a sample using a C
language implementation of the RF running on the Cortex-A9, with this code
derived from the Eden library. N_bram signifies the number of BRAMs needed for
a specific test case. T_HD denotes the classification time using a pipelined hardware
accelerator. Speed-up is the ratio of prediction time needed in the CPU and time
needed in the accelerator. SD_C is the standard deviation of the C code’s prediction
time.

As depicted in Figure 6.6, a marked escalation in speed-up correlates with the
augmentation in both the number of trees and the increment of their depth within
the RFs models. It is observed that, with a fixed number of trees, an enhancement
in tree depth yields a marginal improvement in speed-up. Conversely, maintaining
a constant tree depth while amplifying the number of trees results in a substantial
increase in speed-up. This trend is attributable to the fact that augmenting the
number of trees considerably elevates the complexity of the RF model to a greater
extent than an increase in tree depth does. Consequently, the larger and more in-
tricate the RF model becomes, the more pronounced the acceleration ratio realized
by the hardware accelerator.

Table 6.2: Prediction Time for Different Bram Configuration

N_Bram_used=10 N_Bram_used=30

T_HC (ns) 45 45

45



Experimental Results

In this test, setting the FPGA’s PL part to utilize 30 BRAMs resulted in a max-
imum acceleration ratio of approximately 34.69x. However, this is not the limit
of acceleration. Increasing the complexity of the RFs model, such as the number
of trees, will further enhance the acceleration ratio. This is because increasing
complexity extends the CPU’s execution time, whereas the hardware accelerator’s
time remains unchanged due to its pipelined structure, depending solely on the
PL’s clock cycles as shown in Table 6.2. The only drawback is the need for more
BRAMs than the 30 initially configured, necessitating FPGA reconfiguration.

It is pertinent to note that the test clock cycle was set at 50 MHz, which translates
to a theoretical throughput of 50 Million samples per second (MS/s). However,
the actual observed acceleration latency was approximately 45 ns, and the corre-
sponding throughout was 22.22 MS/s. The deviation from the theoretical time
can be attributed to the fact that the measured inference time of the accelerator
encompasses not only the intrinsic processing time of the accelerator itself but
also the time taken to transfer the input feature data from the PS memory to the
accelerator in the PL part via the AXI stream DMA, as well as the time required
to relay the output results back from the PL part to the PS. In this context, the
transfer time of the DMA constitutes a significant portion of the time expenditure.

Table 6.3: Inference time for different quantities of samples utilizing DMA

30 samples 60 samples 120 samples 240 samples

185ns 105ns 65ns 45ns

Table 6.3 elucidates the impact on the results, reflecting the accelerator inference
time per sample when transmitting different quantities of samples utilizing DMA.
The pipelined architecture of the accelerator ensures consistent results across various
RFs model test cases, thus the table does not distinguish between different models.
It is evident from the table that the greater the number of transmitted samples,
the shorter the inference time per sample, indicating a more effective acceleration.
In fact, the intrinsic inference time for the accelerator on the PL side is a constant
20ns per sample, regardless of the number of samples processed. The additional
time expenditure is attributable to DMA transfer overheads. While increasing the
amount of data for transmission does incur more time, this increase is negligible
for the DMA itself, given the substantial inherent transfer time of the DMA IP. As
such, it is a wiser choice to transmit a larger batch of samples, as this fixed time
cost is then amortized over each sample. The results presented in Table 6.1 and
the following speed-up of the parallel hardware accelerators are based on tests of
240 sample transmissions.
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Speed up of Parallel Hardware Accelerators

Table 6.4: Speed-up Performance of Parallel Acceletor

Test Case T_C(ns) N_bram T_HD0(ns) Speed-up T_HD1(ns) Drawback

N_tree2_Depth2 550 2/5 70 7.86x 45 1.56x
N_tree2_Depth3 599 2/5 77 7.78x 45 1.71x
N_tree2_Depth4 621 2/5 85 7.31x 45 1.89x
N_tree2_Depth5 607 2/5 86 7.06x 45 1.91x
N_tree3_Depth2 796 3/5 70 11.37x 45 1.56x
N_tree3_Depth3 874 3/5 82 10.66x 45 1.82x
N_tree3_Depth4 881 3/5 86 10.24x 45 1.91x
N_tree3_Depth5 898 3/5 87 10.32x 45 1.93x
N_tree4_Depth2 1063 4/5 77 13.81x 45 1.71x
N_tree4_Depth3 1156 4/5 89 12.99x 45 1.98x
N_tree4_Depth4 1176 4/5 93 12.65x 45 2.07x
N_tree4_Depth5 1227 4/5 109 11.26x 45 2.42x
N_tree5_Depth2 1291 5/5 76 16.99x 45 1.69x
N_tree5_Depth3 1407 5/5 91 15.46x 45 2.02x
N_tree5_Depth4 1561 5/5 101 15.46x 45 2.24x
N_tree5_Depth5 1524 5/5 109 13.98x 45 2.42x

In Table 6.4, the term Test Case and the notation T_C retain their meanings
consistent with prior usage. N_bram denotes the number of BRAMs required for
different test cases within the parallel accelerator, illustrating the hardware resource
allocation. T_HD0 represents the inference time of the parallel accelerator, while
Speed-up quantifies the acceleration ratio of the parallel accelerator in comparison
to the CPU for random tree inference tasks. T_HD1 indicates the inference time
under identical configurations for the pipelined accelerator. The drawback metric
compares the latency of the parallel accelerator with that of the pipelined acceler-
ator, thereby illustrating the extent to which the parallel accelerator’s inference
time is slower compared to the pipelined accelerator.

Table 6.4 displays the speed-up results of the parallel pipelined accelerator compared
to the CPU. Under identical settings with the pipelined accelerator, a maximum
speed-up of 16.99x was achieved. This occurs in the scenario where the RFs consist
of five trees with a tree depth of 2. At this juncture, the average inference delay
for a single sample is 76 ns, and the throughput reaches its peak at 13.16 MS/s.
Theoretically, for parallel accelerators, the inference time primarily depends on the
tree depth and is less affected by the number of trees. This is because the inference
process for each tree is independent and non-interfering, making the inference
time largely dependent on tree depth. However, as observed in the table, even
with the same tree depth, cases with fewer trees tend to have shorter inference
times. For instance, the delay for test case N_tree5_depth5 is 109ns, while that for
N_tree2_depth5 is 86ns. This discrepancy can be attributed to the fact that, one
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is that the models used in this thesis are optimized through early stopping strate-
gies via the Eden library; and the other is that for a given input sample, it has a
higher likelihood of reaching a deeper depth in models with a larger number of trees.

Figure 6.7: Speed-up for Varying Numbers of Trees at a Fixed Tree Depth

Figure 6.8: Speed-up for Varying Tree Depth at Fixed Numbers of Trees

In Figure 6.7, it is observed that with a constant tree depth, the acceleration
ratio significantly increases as the number of trees grows. This phenomenon occurs
because, under conditions where the tree depth remains unchanged while the number
of trees increases, the inference time on the CPU surges drastically, whereas the
parallel accelerator incurs only a marginally higher time cost. Furthermore, due to
the parallel accelerator’s inference time being influenced by tree depth, Figure 6.8
reveals that keeping the number of trees constant while increasing the depth results
in a decreased acceleration ratio. These findings validate the design of the parallel
accelerator, demonstrating its suitability for applications with a large number of
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trees but fixed tree depths.

6.2.2 Resource Utilization
Resource Utilization of Pipelined Hardware Accelerators

Table 6.5: Resource Utilization of the Standalone Pipelined Accelerator IP

Resource Utilization Available Utilization %

LUT 4299 53200 8.08
LUTRAM 2 17400 0.01

FF 5502 106400 5.17
BRAM 30 140 21.43

Table 6.6: Resource Utilization of the Pipelined Complete System

Resource Utilization Available Utilization %

LUT 8515 53200 16.01
LUTRAM 315 17400 1.81

FF 11028 106400 10.36
BRAM 35 140 25.00

The final resource utilization is detailed in Table 6.5, showing that the customized
accelerator module used 30 BRAMs. Incorporating other IPs and adding units
to support AXI stream transmission resulted in the use of a total of 35 BRAMs.
Table 6.5 presents the resource utilization of the Standalone Pipelined Accelera-
tor, revealing that 30 BRAMs are employed. Table 6.6 shows the final resource
utilization after integrating the necessary DMA IP and other connectivity IPs for
communication with the ZYNQ 7000 processor. Comparing the data in these tables,
it becomes evident that these peripheral circuits account for a significant portion
of the final resource usage, consuming nearly half of the LUT and FF resources,
14.39% of the BRAM resources, and 99% LUTRAM resources.

Resource Utilization of Parallel Hardware Accelerators

Tables 6.7 and 6.8 respectively illustrate the resource utilization of the parallel
accelerator on its own and after the inclusion of circuits for connectivity with
the processor. Given that the resource consumption by the accelerator itself
is significantly lower compared to a pipelined architecture supporting the same
test cases, with the values being considerably minimal, the relative proportion
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Table 6.7: Resource Utilization of the Standalone Parallel Accelerator

Resource Utilization Available Utilization %

LUT 667 53200 1.25
LUTRAM 0 17400 0

FF 567 106400 0.53
BRAM 5 140 3.57

Table 6.8: Parallel Complete System Resource

Resource Utilization Available Utilization %

LUT 3021 53200 5.68
LUTRAM 190 17400 1.09

FF 3773 106400 3.55
BRAM 7.5 140 5.36

of resources utilized by the circuits external to the accelerator increases within
the overall resource usage. Within the configuration involving DMA and other
peripheral connectivity circuits, the external circuit represents 77.77% LUT resource
usage of the total resources utilized. LUTRAM utilization stands at 100%, Flip-
Flops (FF) consumption contributes to 84.97% of all FF consumption, and BRAM
usage constitutes 35.71% of the overall resource used.

6.2.3 Power Consumption
Figure 6.9 and Figure 6.10 respectively display the power consumption of the
pipelined and parallel accelerator. This thesis focuses on the power consumption
of the accelerators, thus the power consumption originating from the PS side, the
ZYNQ 7000 processor, is not considered within this study. The reason why the
measured power consumption includes the PS side is due to the implementation
requirement of incorporating the PS IP to address the compatibility issues of IO
ports caused by the wide bit-width inputs and outputs in this design. Ultimately,
the power consumption of the pipelined accelerator is 0.171 watts, while the power
consumption of the parallel accelerator is slightly less than that of the pipelined
accelerator, at 0.149 watts, attributable to its utilization of fewer resources.

6.2.4 Comparative Analysis of Pipelined and Parallel Ac-
celerators

Within Table 6.9, Ratio refers to the comparative value of each metric for the
pipeline accelerator relative to those of the parallel accelerator. It is immediately
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Figure 6.9: Power Consumption of the Pipelined Hardware Accelerator

Figure 6.10: Power Consumption of Parallel Hardware Accelerators

apparent that, based on all test cases previously mentioned, the pipelined accelera-
tor is capable of achieving a maximum speedup that is twice that of the parallel
accelerator. At its optimal speed-up, the parallel accelerator exhibits a latency of 76
ns and a throughput of 13.16 MS/s. However, it is noteworthy, as Table 6.4 reveals,
that the throughput at the maximum speedup does not correspond to its optimal
throughput of 14.29 MS/s with corresponding latency 70 ns, despite identical tree
depths in both models. This discrepancy arises because the acceleration ratio is
influenced by both the inference time of the CPU and that of the accelerator, with
the latter being affected not only by tree depth but also by the number of trees.
Meanwhile, the pipelined accelerator’s latency remains constant at 45ns, a figure
previously mentioned and consistent across all test cases.

Although the parallel accelerator exhibits a slightly lower speedup ratio compared
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Table 6.9: Pipeline VS. Parallel

Metric Pipelined Parallel Ratio

Throughput at Max Speed-up
Maximum Speed-up 34.69x 16.99x 2.04
Throughput (MS/s) 22.22 13.16 1.69

Resource Utilization of Standalone Accelerator
LUT Utilization (%) 8.08 1.25 6.46
FF Utilization (%) 5.17 0.53 9.75
BRAM Utilization (%) 21.43 3.57 6.00

Resource Utilization with Additional Circuits
LUT Utilization 16.01 5.68 2.82
FF Utilization 10.36 3.55 2.92
BRAM Utilization 25 5.36 4.66

Power Consumption (watts) 1.427 1.405 1.02
PS power Consumption (watts) 1.256 1.256 1
PL Power Consumption (watts) 0.171 0.149 1.15

to the pipelined accelerator, it vastly surpasses the latter in terms of resource
efficiency. Without the addition of external circuits, the pipelined accelerator’s
utilization of LUT resources is 6.46 times that of the parallel accelerator, its FF
resource consumption is 9.75 times higher, and the BRAM utilization is sixfold.
After incorporating peripheral connectivity circuits, these ratios decrease due to
the substantial resource consumption by the external circuits. Nonetheless, the par-
allel accelerator maintains superior resource utilization compared to the pipelined
accelerator.

The pipelined accelerator achieves high flexibility and a superior speedup at the
cost of considerable resource utilization. When ample memory resources such as
BRAM are available, it is well-suited for scenarios with large data input volumes
and extensive numbers of deep trees, albeit with significantly higher power con-
sumption compared to parallel accelerators. Although not evident in current tests,
the disparity in power efficiency between the two accelerators is expected to widen
with increasing model complexity. Additionally, the latency required to fully utilize
the pipeline increases with more BRAM usage. Under fixed resource conditions,
the pipelined accelerator is advantageous for scenarios with very deep trees and a
set number of trees.

Conversely, the parallel accelerator makes certain trade-offs in speedup to achieve
reduced resource usage and improved parallelism, resulting in better energy ef-
ficiency. It maintains excellent flexibility, surpassing the pipelined accelerator,
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especially when tree depth is fixed and BRAM allocation is similar. For instance,
in previous tests, only 5 BRAMs were necessary to meet requirements. While
both pipelined and parallel accelerators are compatible with numerous random tree
models, allocating the same 30 BRAMs to the pipelined accelerator allows testing
additional cases, like increasing the number of trees—without reconfiguration,
as long as the tree depth does not exceed the maximum allowed. This level of
adaptability is unattainable for the pipelined accelerator. Therefore, the parallel
accelerator is particularly well-suited for applications with a vast number of trees
at a fixed depth.
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Chapter 7

Conclusions and Future
Works

7.1 Conclusions
This thesis presented a detailed exploration and implementation of hardware ac-
celerators for Random Forests (RFs) utilizing a RISC-based architecture. The
work began with an analysis of the limitations of traditional software implemen-
tations of Random Forests, highlighting the need for accelerated processing to
meet the demands of big data applications. Then delve into the current landscape
of hardware accelerators, pinpointing a notable gap in the flexibility of existing
RFs hardware accelerators. This thesis has then addressed the critical shortfall,
and introduced an innovative accelerator architecture designed to enhance the
adaptability of RFs model deployment on hardware platforms. The proposed design
stands out by enabling dynamic adjustments to model parameters without requiring
extensive hardware reconfigurations, significantly reducing the time and resource
costs traditionally associated with hardware adaptations to evolving RFs models.

Key contributions of this thesis include the following.

• The development of a pipelined and a parallel hardware accelerator architecture
that optimizes the RFs inference acceleration for high flexibility.

• A comparative analysis of pipelined versus parallel approaches, reveals the
trade-offs between resource utilization, power consumption, classification speed,
and flexibility.

• Implementation of the proposed hardware accelerators on a PYNQ Z2 FPGA
board, showcasing the practical feasibility and scalability of the design.

54



Conclusions and Future Works

Experimental results validated the hypothesis that hardware acceleration of Random
Forests could achieve substantial speedups over traditional CPU-based implemen-
tations. Specifically, with great flexibility, both pipelined and parallel hardware
accelerators showed remarkable efficiency in handling multiple trees and deeper
depths, proving their effectiveness for complex models.

7.2 Future Works
While this research marks a significant step toward efficient hardware-accelerated
Random Forests, several avenues for future work have been identified:

Cross-Platform Adaptability: Exploring the adaptability of the proposed ar-
chitecture across different hardware platforms, including emerging technologies in
ASICs and SoCs, to validate and potentially enhance its flexibility and performance
benefits across a broader spectrum of computational environments.

Energy Efficiency Considerations: While focusing on flexibility, it is imper-
ative to concurrently evaluate and improve the energy efficiency of the proposed
architecture to ensure that increased adaptability does not come at the expense of
higher power consumption.

Optimization and Scalability: Further optimization of the proposed accelera-
tor architecture for scalability, ensuring that it can efficiently handle increasingly
complex RFs models, as well as other decision tree algorithms.
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