Alberto Ponso
Decision Making and Path Planning algorithms for an Autonomous overtaking Vehicle on public road scenario.
Rel. Andrea Tonoli, Nicola Amati, Eugenio Tramacere. Politecnico di Torino, Corso di laurea magistrale in Automotive Engineering (Ingegneria Dell'Autoveicolo), 2022
|
PDF (Tesi_di_laurea)
- Tesi
Licenza: Creative Commons Attribution Non-commercial No Derivatives. Download (6MB) | Preview |
Abstract: |
This Master of Science thesis is presenting the study for the transposition of the Path Planning ideas first tackled during Squadra Corse Driverless experience into a real world application: as the number of available Advanced Driver Assistance Systems grows higher, even on medium-end cars, the horizon of a Level 3 SAE Automation level is becoming increasingly closer. This thesis aims at defining a possible Decision Making strategy for a Level 3 automated vehicle to decide how to behave in a realistic extraurban road, prioritizing the Safety above all, and strongly evaluating whether the conditions for overtaking exist in a continuous manner. The thesis covers the aspects of Decision Making, Path Planning for overtaking as well as the high level controls that are needed to enact the decisions taken; a short section is also dedicated to a brief explanation of the sensing configuration to be employed on the vehicle in order to be able to perform the Decision Making. |
---|---|
Relatori: | Andrea Tonoli, Nicola Amati, Eugenio Tramacere |
Anno accademico: | 2022/23 |
Tipo di pubblicazione: | Elettronica |
Numero di pagine: | 220 |
Soggetti: | |
Corso di laurea: | Corso di laurea magistrale in Automotive Engineering (Ingegneria Dell'Autoveicolo) |
Classe di laurea: | Nuovo ordinamento > Laurea magistrale > LM-33 - INGEGNERIA MECCANICA |
Aziende collaboratrici: | Politecnico di Torino |
URI: | http://webthesis.biblio.polito.it/id/eprint/24348 |
Modifica (riservato agli operatori) |