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Abstract

This Master of Science thesis is presenting the study for the transposition of the
Path Planning ideas first tackled during Squadra Corse Driverless experience into
a real world application: as the number of available Advanced Driver Assistance
Systems grows higher, even on medium-end cars, the horizon of a Level 3 SAE
Automation level is becoming increasingly closer. This thesis aims at defining a
possible Decision Making strategy for a Level 3 automated vehicle to decide how to
behave in a realistic extraurban road, prioritizing the Safety above all, and strongly
evaluating whether the conditions for overtaking exist in a continuous manner.
The thesis covers the aspects of Decision Making, Path Planning for overtaking as
well as the high level controls that are needed to enact the decisions taken; a short
section is also dedicated to a brief explanation of the sensing configuration to be
employed on the vehicle in order to be able to perform the Decision Making.
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Chapter 1

Introduction

While the environment in which this thesis work was started - Formula SAE
competitions - does not have races wheel by wheel between its participants [2][3],
its natural outlet is the application on the road vehicles, as it has always been
with vehicle racing [4][5][6]. A focal point of the Squadra Corse Driverless - which
constituted its main difference with respect with the "traditional" Squadra Corse
Electric - was the presence of a Perception and Path Planning Division[7]: this
work of thesis represents the translation of the author’s experience into an everyday
use for civilian traffic application.
As the team’s aim is to build a fully autonomous racing car and to develop its
software[7][8], the step to the development of the software side for a road-going
vehicle so that it is able to autonomously decide whether it needs and it can
overtake a slower leading vehicle was quite natural to be taken; this argument was
tackled not only because of its correlation with the Path Planning concept, but
also because it was a challenging and relatively novel theme, which can deliver
great safety improvements to the road traffic, as overtaking is among the riskiest
tasks to be taken during travelling.

1.1 Problem assessment
During this work, we concentrated our focus on an extra-urban road environment,
where the overtaking maneuver is often made difficult or impossible because of
the presence of vehicle on the oncoming lane: even though the first SAE level
3[9] Automated Vehicles are appearing in highway environment[10][11], we put
ourselves into the rural road environment because it is where the overtaking is
most difficult and dangerous, due to the presence of oncoming vehicles. The reason
for the use of rural roads and highways as Scenarios lies, other than its highest
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simplicity compared to urban roads, also in the higher danger intrinsically linked
to such roads: as we can see in Table 1.1, the fact that the percentage of fatal
accidents on motorways is double the percentage of all accidents [empty citation]
is a sign of the fact that motorways are more dangerous than urban roads This

Table 1.1: Table recapping the shares of accidents and deaths in Great Britain,
from [12]

percentage of fatal accidents over total accidents gets even worse if we take into
account also the rural roads and not just the motorways: in light of a percentage of
47.35% of total accidents taing place on major roads, 58.38% of the fatal accidents
took place there. This unbalance in percentages is due mainly to:

• Lack of pedestrians on major roads.

• Lack of intersections on major roads.

• (For motorways) Lack of Oncoming traffic.

Leading to less accidents on Major roads and

• Higher total speeds.

• Larger differences of speeds.

• Longer trips, leading to more tired drivers.
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increasing the fatality and the danger of the accidents on Rural Roads and Motor-
ways/Highways.
Moreover, a study about the road accidents in the state of Maine[13] highlighted
that more than two thirds of road accidents occur on rural roads, consistent with
the percentage across the whole pool of OECD (Organization for Economic Co-
operation and Development, OCSE for the Italian speakers) countries, around 60%.
Moreover, [13] found out that even though head-on crashes - occurring when one
vehicle invades the oncoming lane - account for only 5% of the total crashes in the
study pool, they were responsible of almost half of the fatalities.
Other than the straight fact that driving on the oncoming lane exposes to the risk
of a head-on accident, the overtaking maneuver is imposing a high mental workload
on the driver[14], making him more prone to committing mistakes and crashing
by himself in case of a long travel. In addition to this, the actions of overtaking
and of changing the lane are indicated as the cause of around 5% of the accidents
in a study about the distribution of crashes[15], where a correlation between the
drivers’ age and the accidents caused by improper lane change of said driver was
found, as seen in Table 1.2

Table 1.2: Table recapping the causes of accidents from [15]

Even though such accidents account to less than 5%, - following the approach of
[16], who discounted the failure to yield way as the less problematic, yet the most
frequent cause of accident - we should not underestimate the risks present in the
overtaking maneuver, which is a quite rare occurrence during travel, yet causes a
noticeable amount of accidents.
In order to further stress out the magnitude of the problem, we can point out that
over 1 million people die every year in car accidents, with over 50 million people
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injured[17][18]. This means that a "tiny" 5% can mean, on average, 50 thousand
deaths a year and 2.5 million injuries.

Table 1.3: 2008 Road accident deaths from [17]

1.2 The SAE levels of automation

In order to tackle the matter of driver lack of attention (as well as exhaustion
due to long drives) and therefore to reduce the accidents, Driver Assistance Sys-
tems were introduced, although very primitive, already in the 1950s [19] with the
introduction of the Cruise Control; however, it wasn’t until the mid 1980s that
electronic CC came to the series market in full swing[20]. The second main family
of Driver Assistance Systems is represented by the Lane Keeping Assist (LKA),
which however came much later [20] because of their need for more complicated
perception systems[21].
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Figure 1.1: The Automation levels as defined by SAE in [9]

The aforementioned CC (later replaced by its evolution ACC) and LKA are the
backbone of the definition of SAE levels of automation as per [9], which can be
seen in Figure 1.1: if only one of the two systems is present or both are present but
for whatever reason they can not work together, the car is classified as SAE level 1;
on the contrary, if both LKA and ACC can be enacted together, the car can be
classified as SAE level 2, but the driver is still legally responsible for everything
happening during the operation of the vehicle.
As of the time of writing, only Mercedes-Benz has obtained the Level 3 certifica-
tion[11], which offloads the human driver of legal responsibility while the car is
driving itself, for its Drive Pilot system, making the first step towards the so-called
Highway Chauffeur[22]. It is to be noted, however, that even this project is still far
from a "real" application: the car is limited to a speed of 60 km/h (this limit makes
it classified as "Traffic Jam Chauffeur", rather than "Highway Chauffeur"[23]), can
only be operated autonomously during the day and with low levels of moisture on
the road and only on the Autobahn, with controlled access and no intersections.
Because of this, we can affirm that the technology is still in its first days, therefore
it should be no surprise that this work of thesis is still unrefined.
In our idea, the SAE level associated with our vehicle should be at least 3, as
the design of the system was carried out to activate both the LKA and the ACC
together continuously and the cases in which the driver would be asked to take
back the control of the vehicle should be very limited, making the model on the
threshold of a Level 4 vehicle. Because our car is able to perform lane changes and
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overtakes, while running at speeds well higher than 60 km/h, we will refer to the
Automated Driving function offered by our vehicle as "Highway Chauffeur"; it is to
be noted, however, that the scenario on which we developed it is the much more
challenging rural road environment, with oncoming vehicles and intersections.

1.3 State of the Art

1.3.1 State of the Art: Perception and Localization

In order to ensure that the car is able to travel autonomously, we need to be able to
give information to the car about where it is placed. The process of Localization can
be conducted in an absolute manner or in a relative manner, both of which have
their strengths and weaknesses and require different hardware to be installed[24].

Absolute Localization

The process of Absolute Localization aims at finding the position of the vehicle in
a global set of coordinates, generally the GPS coordinates set; Global Navigation
Satellite System (GNSS) is the most common localization system on the market,
with a share of 13% of all the 200 millions traveling in Europe[25], and is now
almost guaranteed on all new production cars. Despite their penetration in the
market and the maturity of the technology, which is about to enter its 50th year of
existence[26], yet the GPS alone is not enough for a real autonomous car, as its
precision can be in the range of the tens of meters[27][28]; this precision level is
satisfying for the navigation of a manned vehicle, where the low level control is
performed by the human driver and the GNSS is only giving high level indication
("in 300 meters, turn left"), but this value is absolutely inadequate for the lateral
localization of an unmanned vehicle, where even an error of just 1 meter could
lead to a mistake in the lane placement and - most severely - it could endanger the
safety of pedestrian and cyclists on the road[29].
Another possibility to localize the vehicle in an absolute reference system is the
Inertial Navigation System (INS), which is based on the double integration of the
the accelerations that the Inertial Measurement Unit (IMU) undergoes, in order to
know the position change with respect to the starting position; the latter, however,
has to be input to the INS in some way[30], like for example through GNSS itself.
What was pointed out as the main weakness of the GNSS (the low precision),
however, is present with the INS as well, since the signals of the IMU are quite noisy.
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Relative Localization

A completely different approach, however, consists of localizing the road features
like the lane boundaries and the other road users into a reference frame which is
centered on the car itself[31][32].
This is the approach that was followed during this work of thesis, as computing
the global positions of the lane boundaries resulted too computationally heavy for
the computer used to run the simulations as the Matlab Simulink block which
performs lane recognition from the Driving Scenario outputs the results in said
local reference frame.

Our Approach

Even though the work of thesis was only simulated on Matlab Simulink and did
not reach such a readiness level as to be put into practical experimentation, yet the
working of the Simulink block performing lane recognition has an output which is
mimicking the one of a real Lane Detection method[33].
The goal in general is to obtain the lateral offset of the two lane boundaries[34] as
well as their orientation in order to get the lateral distance and orientation error of
the car with respect to the centerline which is to be followed, by mean of a Stanley
controller[35].

1.3.2 The Algorithms for the Overtaking
Since this is a thesis on the Path Planning for Autonomous Overtaking, the main
part of the State of the Art section is going to be devoted to the State of the Art
of the Path Planning in Autonomous Overtaking and - more in general - in the
Obstacle Avoidance (of which we can consider Autonomous Overtaking a subcase).
The different methods which were evaluated are:

• Ellipses of Influence [36]: this method deals with not only Autonomous
Overtaking, but with the whole matter of Collision Avoidance.

• Polynomial Curves: these can be like [37], where the polynomial is used to
describe the local errors or like [38][39], where instead the polynomial function
describes the planned path itself.

• Driving Corridors [40][41] approach consists of the minimization of a cost
function in global coordinates with the prediction of the obstacles’ movement
inside a feasibility corridor.
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• State Lattices [42] are a way in which all the possible movements of the vehicles
are previously discretized in primitive movements and then a lattice grid of
all the possible resulting paths are represented.

• Sigmoid Curves [43][44][45]: with this approach, a path resembling a sigmoid
function is drawn and then the vehicle is required to follow the path.

Below, we will give a quick explanation of the strengths and weaknesses of each
approach, compared to our needs and in the end highlight which one we chose
and why. A more complete and exhaustive review on the subject can be found in
[46][47].

Ellipses of Influence

This method, proposed by [36], attempts to obtain a safe navigation by a mobile
robot in a populated environment, avoiding collisions with the obstacles which are
there placed. The choice of an ellipse, the generic shape for a circle, is justified by
the desire to "have a more generic and flexible mean to surround and fit accurately
different kind of obstacles shapes" [36], as can be easily seen in Figure 1.2.

Figure 1.2: The comparison between circle (a) and ellipse (b) enveloping of
obstacles. From [36]

The solution with circles (a) yields a much bigger forbidden area compared to
the one with ellipses (b), which is much more representative of how much space the
obstacle is taking; the way the obstacle is defined is coherent with our proposed
hardware, as the use of a RADAR would yield a series of points, which are then
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used to define the ellipse as shown once again in 1.2 (b). However, this is a weakness
too, as the radar of the Ego Vehicle will most likely only detect points belonging
to the rear end of the vehicle, therefore the car would be perceived as an obstacle
only for a smaller portion than what it actually is; of course, the car would detect
other points when being side by side, but in our view this is undesirable.
Another reason which led us to discard this solution is the fact that the controls
are then selected among 4 different possibilities:

• Clockwise target attraction.

• Counter-clockwise target attraction.

• Clockwise obstacle avoidance.

• Counter-clockwise obstacle avoidance.

Apart from the fact that counter-clockwise would not be of course a possibility,
as overtaking on the right is extremely dangerous and prohibited, the definition
of two different sets of controls would be a bit pointless in our opinion as well as
computationally heavy. The shortcomings that we have pointed out are due to the
fact that this is not an algorithm designed specifically for automotive applications,
but rather for a holonomic robot in a crowded environment (as could for example
be a warehouse), therefore the counter-clockwise evasion maneuver is feasible, as
well as the fact that objects can be placed obliquous to the trajectory of the vehicle,
an occurrence which is rather unusual for a road vehicle. Nevertheless, it was
an interesting approach and we still decided to include it in the State of the Art
section, especially considering that most unmanned vehicle applications come from
this sector.

Polynomial Curves

The first polynomial curves approach that we are going to consider is the one
followed by [37],in which the polynomial function is used to define the trend of the
pose error e = [ex ey eθ]T .
In [37], the definition of the aforementioned pose error is then reduced to e = [ex ey]T
and it is found by solving the equation 1.1

edx(t) = a0x + a1x(t− t0) + a2x(t− t0)2 + a3x(t− t0)3

edy(t) = a0y + a1y(t− t0) + a2y(t− t0)2 + a3y(t− t0)3 (1.1)

with the boundary conditions 1.2 defined with the goal of achieving maximum
smoothness in the transition between the previous LKA scenario and the current
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Lane Change scenario

edx(t0) = ex0

ėdx(t0) = ėy0
;
edy(t0) = ey0

ėdy(t0) = ėy0
(1.2)

and the other four boundary conditions 1.3 defined to obtain a stable nil error at
the end of the lane change maneuver.

edx(tf ) = 0
ėdx(tf ) = 0

;
edy(tf ) = ∆vRx(tf )

ėdy(tf ) = 0
(1.3)

for a total of eight equation for eight unknowns (a1 ... a8).

Opposite to this approach by [37], [38][39] computes directly [x, y].
On one hand, [38] defines the trajectory through a pair of equations where we need
to find 11 coefficients to optimize (equation 1.4).

px = g0x + g1xt+ g2xt
2 + g3xt

3 + g4xt
4

py = g0y + g1yt+ g2yt
2 + g3yt

3 + g4yt
4 + g5yt

5 (1.4)

On the other hand, [39] solves the path planning by using three different approaches:

• Approach I: used for the LKA, where the longitudinal coordinate x is described
through a fourth order equation, while the lateral coordinate y is described
through a function of x, as seen in equation 1.5 in order to define the trajectory
starting from the path

x = a1t
4 + a2t

3 + a3t
2 + a4t+ a5

y = f(x) = f(a1t
4 + a2t

3 + a3t
2 + a4t+ a5)

(1.5)

the boundary conditions, which are then imposed, lead to solve the matricial
equation 1.6 which give out the coefficients q = [a1 ... a5]T

A · q = B (1.6)

where the A matrix depends on the initial time t0 and the final time interval
tf as of equation 1.7, while the B matrix depends on the initial x coordinate
x0 and the "final" position xe, belonging to the local point on the path from
equation 1.8:

A =
C
t40 t30 t20 t0 1
t4f t3f t2f tf 1

D
(1.7)

B =
C
x0
xe

D
(1.8)

10



Introduction

• Approach II: is used in the overtaking/lane change scenario, where the y
coordinate is not defined anymore as a function of x, but as a polynomial
function with different coefficients, as is pointed out in equation 1.9:

x = a1t
4 + a2t

3 + a3t
2 + a4t+ a5

y = b1t
7 + b2t

6 + b3t
5 + b4t

4 + b5t
3 + b6t

2 + b7t+ b8
(1.9)

as it can be easily seen, it requires to find 13 different coefficients; the definition
of the boundary conditions is beyond the scope of this work and, therefore,
we redirect to the original paper [39]. The scope we had in presenting such
equations was to highlight the large complexity of the polynomial formulation
to solve this problem.

• Approach III: is used in order to keep the safety distance from the leading
vehicle and it complies with parts of the A approach.

The reason for such a wide tractation of this type of solution is simple: among the
approaches presented in the SotA section, this is one of those which most influenced
us and, therefore, we felt like we needed to dedicate a large portion of the work of
thesis to introduce it.

Driving Corridors

This approach, presented by [40][41], has similarities between the two presentations,
which both start from an a priori defined map, where the Ego Vehicle is localized
by mean of camera recognition [40]. Both approaches then have a part concerning
with the prediction of the movements of all the other vehicles around, together
with their occupancy areae and related uncertainty, which allows to recognise if
the corridors are suitable or not.
The reason why we refused to use such method from the very beginning is linked to
both the need for an a priori map and, most importantly, the need for a prediction
on the trajectories of all the vehicles around, which would prove too heavy for our
hardware.

State Lattices

This approach to path planning was first introduced by Pivtoraiko, Knepper and
Kelly in [48] to discretize the search space, in order to reduce the computational
cost, by avoiding to search the whole continuum.
The term lattice is used to define a vectorial space which represents the space
discretization applied by [48], as can be seen in Figure 1.3.
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Figure 1.3: "Regular Lattices. Top: rectangular, diamond, and triangular (hexag-
onal) lattices. Bottom Left: Controls for a 4-connected lattice. Bottom Right:
Discontinuous heading change", from Figure 1 of [48]

The robot can then move between these points with a series of movements which
are predetermined, like driving straight or turning with a constant radius; even in
the case of a single possible turn radius chosen (Figure 1.4), it is easy to see how
after just three movements in series the path space is already quite dense and -
most importantly - the resulting path is something which looks very natural for a
car trajectory, as we can see from Figure 1.5.
The way this type of path planning is then integrated with the Autonomous
Overtaking task is similar to the way it is performed in the Driving Corridors
approach: the best path is selected through a cost function and all the possible
paths to be weighted are those descending from the lattices matrix.
The reason why we discarded this method is therefore similar to the one which led
us to discard the Driving Corridors one: in order to compute a cost function we
would have to generate several different paths and then evaluate them all in order
to compute their cost, therefore multiplying the computational cost of the Path
Generation. The lattices method was developed to reduce the computational cost,
but this solution did not appeal to us, because the cost reduction was achieved
through the constraint on the possible maneuvers, by discretizing the steering angle
in few possible values; we wanted to leave all the possible steering angle values
available to our vehicle and, most importantly, we wanted a function which planned
a Path and then computed the steering angle to follow such Path, similarly to the
solution adopted in the Squadra COrse DRIVERLESS experience.
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Figure 1.4: Image of the expansion of a lattice matrix with respectively 1 maneuver
(left), 2 (center) and 4 (right). From Figure 2 of [48]

Figure 1.5: In top left: a single position with all the primitive maneuvers included
in its particular model. Main image: the resulting lattice space; in thick black, the
selected path. From Figure 3 of [48]

Sigmoid Curves

The last approach to the Path Planning for the Overtaking is represented by the
use of the Sigmoid Curves; this method, unlike all the ones previously reported, is
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intrinsically connected to the concept of Lane Change. In fact, differently from the
other State of the Art methods, the Sigmoid Curves see application only in case of
overtaking, to define the path to follow for the Lane Change maneuver [43][44][45];
the reason for this peculiarity can be easily found by the definition of the Sigmoid
function in equation 1.10

σ(x) = 1
1 + e−x (1.10)

which yields a profile as the one shown in Figure 1.6. The name sigmoid, in fact,
comes from the S-shaped curve, ranging from 0 to 1;

Figure 1.6: A Sigmoid Curve

that particular shape, with a steep increase around the 0 mark is the reason
why this function is so used in sectors like Artificial Intelligence [49][50][51], to
represent a binary function "GO - NO GO" by using a continuous variable, trying
to mimick the firing of the neurons [52][53]; on the other hand, such sharp and
rapid movement between two parallel lines can be a very good approximation of
an overtake or a Lane Change maneuver, where the car wants to stay in its own
lane for as long as possible, in order to both exploit as much as possible the draft
effect as well minimize the risk of frontal crash with oncoming vehicles [54][55].
The approach used by [43] requires to draw a path to be followed which has a fixed
length, named Horizon length, which is recomputed once the vehicle has followed
part of the trajectory, for a length of Horizon step length, in a rolling horizon
fashion like the one of the Model Predictive Controller (MPC) [56][57]; however,
because of the heavy computational cost involved, we did not consider this part
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and only focused on the mathematical formulation for the path generation in case
an obstacle is detected.
In order to obtain the path [Xr Yr], a circular curve is designed around the obstacle,
which is located in [X0 Y0] of radius S (S being the lateral distance we want to
have while overtaking, because of Safety reasons), which is defined as a vector of
length N as of equation 1.11

Yr(N) =
ñ
S2 − (X(N) − X0)2 + Y0 (1.11)

The main weakness of this formula, which makes it unusable for driving purposes
lies in the fact that the passage from a straight line to the circular part makes the
path not derivable, and therefore impossible to be followed, as shown in Figure 1.8.

Figure 1.7: Figure 6 of [43], showing the need for a smoother curve

In order to obtain a feasible path from this otherwise useless geometry, a
smoother profile is obtained, shown in Figure 1.8 as a dashed line: as can be seen,
it is obtained as the composition of two sigmoids, one for the lane change on the
left and one to come back to the rightmost lane; the equation governing such shape
is 1.12

Ym(N) = Yw
(1 + eC(d(N)−Sm)) (1.12)

where Yw is the width of the movement that the car must perform, to change the
lane, C is a factor influencing the slope of the sigmoid (the higher C, the sharper
is the sigmoid, as of Figure 1.8), d is the distance from the leading vehicle and Sm
is a safety distance we should keep from the leading vehicle.
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Figure 1.8: Figure 2 of [43], giving a sensitivity analysis on the value of C, here
called a

Overall speaking, the solutions for the sigmoid presented by [44] and [45] are
the same as the one presented above, differing only for the conventions regarding
the names of the variables and the way the path is then followed, so we will assume
to have covered the whole class of solutions by presenting just [43].

1.3.3 Conclusions about the Algorithms for Overtaking
After having presented in a brief way the main options for the Overtaking Al-
gorithms, with their strengths and weaknesses, we want to conclude the section
by pointing out what was our decision; because of all was said above, the choice
ultimately fell on the Sigmoid Curves: the reason for doing so, lies in the absolute
freedom of movement, without a series of primitive maneuvers (which led us to
the discard of the State Lattices together with their computational cost) and the
relatively easy function, differently from the Polynomial Curves, which requires to
be solving a system with many Equations and Unknowns; moreover, the presence of
a coefficient in the exponential part of the Sigmoid (C in equation 1.12) allows for
an adaptive slope of the Sigmoid Curve as a function of Speed, as will be pointed
out in Section 2.1.

1.4 Thesis Outline
The thesis will follow this structure: in Section 2 we will present the methodology
we have followed during the work, from the approach we had to the models we used
(including their constituting equations); in Section 3 we will present and comment
the results obtained during the experimental testing; finally, in Section 4, we will
take a look at the whole project and the results we obtained, to sum up the whole
work and we will expose some potential future developments for this work.
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Chapter 2

Methodology

This chapter is devoted to the exposition of the Methodology we followed during
this work of thesis: a first look will be given to the actual process of thought
and the bottom-up construction we have adopted during the tests of the decision
making functions and the Sigmoid function; after this, we will devote a section to
the complete vehicle model we have introduced for the extensive testing. Later on,
the algorithms used for the lane recognition and the Oncoming/Leading vehicle
analysis will be shown; a further section will be dedicated to the methodology of
the above-mentioned equations for the Path Planning itself, while the last section
of this chapter will be used to point out the principles of our validation processes
and the step-by-step approach we followed, whose results will be expressed and
commented in Section 3.

2.1 Bottom-Up Approach
As already pointed out in the section 1.3.2, the main advantage of the Sigmoid
Curves, which ultimately led us to choose them as our Path Planning algorithm is
their high customability, which allows for a good tuning: in particular, we decided
to tune the K parameter, which defines the slope of the sigmoid curve, as a function
of speed.
In order to tune this, we put ourselves in an empty environment, with just a car
in front and our "vehicle" as a simple DSTP (Dynamic Single Track with Pacejka
Tyre) model, also known as Single Track Model, Monotrack model or Bicycle model
[58], which will be described later in section 2.2; the reason for the use of such a
simple model lies in the high computational cost of the simulation that we were to
run: in order to build up a Look-Up Table of values of K for different velocities, we
ran a series of simulations for each constant velocity, with a K value running from
0.011 to 0.061 with a step of 0.0005, for a total of 101 simulations. The metric to
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evaluate the best K value for that particular speed was the mean of the tracking
error ey and then the best K value was saved up in a vector.
This K-sweep is extremely time consuming, taking more than 15 minutes on a very
performing PC per a single speed value by just using the simpified DSTP model,
therefore the reason for its use is quite clear. Moreover, once the K for the overtake
Sigmoid Curve was obtained (as seen in Figure 2.1), the same sweep was performed

Figure 2.1: First step of the sensitivity analysis on the Kovertake value

on the go-back Sigmoud Curve, in order to get the K values for the LUT used for
the go-back path (Figure 2.2), which presents different characteristics compared
to the one for the overtake, as will be seen in the relative sections 2.9 and 2.10;
once the correct Kgoback value was obtained, the sweep on the first K, the Kovertake

was repeated: if the best K was not different from the first one found before the
determination of the ideal Kgoback (as shown in Figure 2.3, then the two values
are saved each in the corresponding LUT, otherwise, the sweep on the Kgoback is
repeated and so on in a trial-and-error fashion until both values converge. Such
trial-and-error process was repeated for a wide range of speeds, resulting extremely
time-consuming, but in the end providing a good LUT for both the Kovertake and
the Kgoback values as a function of the speed, thereby providing a novel approach
not yet present in literature, given the fact that throughout the research phase of
this work of thesis we found no paper presenting the idea of an adaptable Sigmoid
Curve slope as a function of vehicle speed at the moment of the start of overtaking.
The resulting values of the LUT are shown in Figure 2.4 and Figure 2.5; one thing
which can be noticed is that, for low speeds, the K can be outside of the range
previously defined for the sweep: this is due to the fact that, at low speeds, the
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Figure 2.2: First step of the sensitivity analysis on the Kgoback value

Figure 2.3: Second step of the sensitivity analysis on the Kovertake value

trajectory can be much sharper and still ensure a stable behaviour, plus - at low
speeds - the car takes a longer time to complete the overtake (the key value is
actually the speed difference, but a slower car still takes longer time to run the
sigmoid).
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Figure 2.4: Result of the sensitivity analysis on the Kovertake value

Figure 2.5: Result of the sensitivity analysis on the Kgoback value

2.2 The bicycle model

As already stated at the beginning of the Section 2.1, the first tests and sensitivity
analyses were conducted using a simplified vehicle model in order to speed up
the first phase of experimentation. The simplified vehicle model in object is the

20



Methodology

so-called Bicycle Model [58] or DST (Dynamic Single Track) which collapses the
two wheels of an axle into a single wheel.
The model is schematized into Figure 2.6 and keeps as characteristic geometries

Figure 2.6: DSTP model scheme, from Figure 25.12, page 265 of [58]

of the vehicles only the wheelbase and the longitudinal position of the centre of
gravity, while neglecting the front and rear track and the vertical position of the
centre of gravity; these are not directly accounted for the kinematic of the vehicle
but can still be considered when computing the load transfer due to the lateral
acceleration. According to Section 25.3 of [58], in order to use the most simplified
single track model, the following assumptions need to be fulfilled:

• The vehicle is moving at constant speed on a constant radius curve.

• The road is level.

• The radius of the path R is much larger than the car wheelbase l.

• Aerodynamic forces are neglected.

• Aligning torques are neglected.

While the assumption on the level road is acceptable and the curvature radius R is
generally much larger than the wheelbase l, the assumption on the constant speed
and especially the constant radius is not acceptable, and the aerodynamic forces
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are difficult to neglect, considering we will operate on rural roads or even highways.
Therefore, the model equations we used are following the theory from Section 25.5
of the same reference, which require the following assumptions (integrally quoted
from [58]):

• The sideslip angle of the vehicle β and of the wheels α are small. The yaw
angular velocity ψ̇ can also be considered a small quantity.

• The vehicle can be assumed to be a rigid body moving on a flat surface, i.e.
roll and pitch angles are neglected as well as the vertical displacements due to
suspensions.

In this way, we managed to achieve the DSTP model without sacrificing too many
assumptions, also known as the 3-DOF model because of its 3 degrees of freedom,
namely [x y ψ]T ; the strength of this model also lies in the fact that, despite
neglecting the pitch and the roll angles as degrees of freedom per se, it can account
for the longitudinal and lateral load transfer through their influence on the front
and rear axle cornering stiffnesses C1 and C2.
To start laying out the equations, first of all we point out the existence of two
different reference frames:

• The first reference frame is an inertial one, of coordinates [X Y Z]T and
[Φ Θ Ψ]T which will be later called "the Global Reference Frame" and is fixed
to the ground, with origin in the starting center of the vehicle at time t0. It
will be used to compute the position of the vehicle through integration.

• The second reference frame is a non inertial one, of coordinates [x y z]T and
[ϕ θ ψ]T which is the vehicle reference frame, fixed to its center of gravity.

We can now begin to analitically consider the model, starting with Newton’s second
law in equation 2.1 

mẌ = FX
mŸ = FY
Jzψ̈ = Mz

(2.1)

where the uppercase letters represent the global reference frame, with the lowercase
z due to the fact that the axis of rotation z and Z (yaw angle ψ and Ψ) are parallel
and therefore the same.
The forces in the global reference frame are of no interest to us, so we want to
move to the [FxFy]T vector of local forces, which can be done through equation 2.2C

FX
FY

D
=
C
cos(ψ) − sin(ψ)
sin(ψ) cos(ψ)

D C
Fx
Fy

D
(2.2)
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local forces are, compared to the global ones, much more useful, as they are the
forces resulting from the tires in the longitudinal and lateral directons, as can be
obtained from Pacejka magic formula, first defined in 1986 by Professor Pacejka,
which can be further elaborated in [59]. In order to link the equations of system
2.1 with the local forces, we need to pass to a system of local accelerations and
local forces like 2.3: 

mẍ = Fx
mÿ = Fy
Jzψ̈ = Mz

(2.3)

a possible way is through the Lagrangian approach, which goes out of scope of this
work of thesis: we refer to [58] for this approach; instead, we will use the speed
composition approach, based on the basic kinematic equation, from which we can
derive the derivative in time performed in the inertial frame of a generic vector
located in the local frame:

dV⃗

dt

------
inertial

= dV⃗

dt

------
local

+ Ω⃗ × V⃗ (2.4)

If we take as generic V⃗ the velocities vector v⃗, we have the following vectors:

v⃗ =

uv
0

 ; Ω⃗ =

0
0
ψ

 (2.5)

putting together equations 2.3 and 2.5, we end up with the Newton’s II Law for
the local reference frame 

m(u̇− ψ̇v) = Fx
m(v̇ + ψ̇u) = Fy
Jzψ̈ = Mz

(2.6)

which can be easily reconducted to the intuitive F = m. . . a formula on a straight,
where the yaw rate is considered nil.
Further on, it is possible to introduce the side slip angle β, the angle between the
speed vector and the longitudinal axis of the vehicle

β = atan
3
v

u

4
(2.7)

from which we can revert I
u = V cos(β) ≈ V
v = V sin(β) ≈ V β

(2.8)
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which, going into equation 2.6 yield
m( ˙V cos(β) − ψ̇V sin(β)) = Fx
m( ˙V sin(β) + ψ̇V cos(β)) = Fy
Jzψ̈ = Mz

(2.9)

Since the side slip angle β is generally small and seldom goes above 10° [58][60],
we can therefore perform first order Taylor expansion on equation

m(V̇ − ψ̇V β) = Fx
m( ˙V β + ψ̇V ) = Fy
Jzψ̈ = Mz

(2.10)

However, since the term ψ̇v is much smaller than u̇ and the side slip angle β is
small, the equations of 2.6 can be simplified directly into

mV̇ = Fx
m(v̇ + ψ̇V ) = Fy
Jzψ̈ = Mz

(2.11)

The system of equations 2.11 can be easily decoupled, provided that we can decouple
the longitudinal and lateral forces on the wheels (i.e. we neglect the elliptical model
correlation between Fx and Fy); in this way the first equation accounts only for
the longitudinal dynamics, while the other two are influencing only the lateral
dynamics.
The final equations we used are the ones simplifying the Pacejka Magic Formula
[59] - which will be fully used in the Full Model and is described in Section 2.5.4 -
in order t reduce the computational cost. The simplified equation is presented in
Equation 2.12

Fyi
= p1sin

A
p2atan

3
p3,iαi − p4

1
p3,iαi − atan(p3,iαi)

24B
(2.12)

Starting by the definition of side slip angle (equation 2.7) and the geometry of
Figure 2.6, it is easy to demonstrate that

αf = β + a

V
ψ̇ − δ1

αr = β − b

V
ψ̇

(2.13)

2.3 The Experimental Approach
After we have obtained the trend of the K for different values of the speed V with
a simplified DSTP model, we moved towards a more realistic application of our
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model for decision making and controls: to do so, we have moved towards a more
complete Vehicle Model, featuring a real Electric Motor, thus giving limits on the
acceleration we can obtain in every instant, and 4 separate wheels with their own
slip and dynamics, as is presented in Section 2.5.
Once we have "installed" on the Full Vehicle model the different controls that
we want to use and the needed sensors, we will test the controls by running the
vehicle in different scenarios and check that the behaviour of our EgoVehicle in
said scenario is going according to what we expected, therefore "validating" the
controls and the working principles of that particular state of the State Machine
(each state is going to be fully detailed in Section 2.11).
The scenarios have been developed with Matlab app Driving Scenario Designer,
of which an example is shown in Figure 2.7.
Just like we did for Section 2.1, we are going to follow a Bottom-Up approach also

Figure 2.7: A screenshot from the Driving Scenario Designer App

for the experiments on the Full Vehicle model: in fact, the first Driving Scenarios
we used are going to be simple Scenarios which can be assessed as Level 1 on
the SAE Automation levels (Figure 1.1), as we are going to start by testing the
controls singularly in order to ensure that the single control is properly designed;
a following step will be to try the vehicle on a hybrid Scenario between the first
two Scenarios in order to perform a verification of the Level 2 Automatic Driving;
of course, when we say "verification" we of course also refer to a very long process
of trial and error involving the tuning of controllers, sensors and post-processing
functions for the sensors which took several hours for every Driving Scenario.
Once the model has been confirmed to work in Level 2 Automated Driving, we moved
to a series of Scenarios with both Leading and Oncoming vehicles in progressively
more complex environments to try and put our system in difficulty and force errors,
so that we could improve on what was wrong.
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2.4 The Driving Scenarios
This section will present a short list of the various Scenarios we used to test our
system, in a "chronological order": the first Scenarios in the list are going to be
the first ones we tested, which - according to Section 2.3 are also going to be the
easiest ones. After the shortlist, we will comment on them one by one and give
some basic information of them.

• ACC_Scenario, which we used to test the Adaptive Cruise Controller.

• Skidpad, a simple circular road we used to test the Lane Keeping Assist (LKA)
in an easy environment, with constant radius cornering.

• Empty Turn Scenario, a rural road with a wide bend and oncoming vehicles.

• Mountain Road, a rural road with challenging turns to test the LKA in a real
world environment.

• Mountain Road Circuit, a closed loop version of Mountain Road.

• Overtake Scenario, a simple straight where the EgoVehicle completes an
Overtake maneuver.

• Corner Overtake, where the Overtake is performed on a road which is not
straight.

• Double Overtake, where the EgoVehicle successfully completes an Overtake
maneuver, comes back in its lane and then performs a second one.

• Multiple Overtake, where the second Overtake maneuver involves two vehicles
in a column.

• Abort Scenario, where the vehicle is forced to abort its Overtake maneuver.

• Emergency Overtake, where the vehicle performs an Emergency Overtake
maneuver.

• Abort Oncoming Vehicle, where the EgoVehicle has to abort the Overtake in
order to avoid an oncoming vehicle.

• Abort Brake, where the EgoVehicle has to heavily brake after the Overtake
was aborted in order to avoid rear-ending the lead vehicle.
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2.4.1 ACC_Scenario
This Scenario was used to test and tune the Adaptive Cuise Controller: to do so, a
road with two lanes - one per direction - was created through the Driving Scenario
Designer App; the centerline is continuous, so that the overtake is never made
possible and the EgoVehicle is forced to follow the LeadVehicle. Such LeadVehicle
has a varying speed, in order to put the ACC in a difficult situation and starts with
a consistent advantage on us, so that at the beginning we do not have a leading
vehicle. Below are the specifics of this Scenario:

• Lane Width: 3 m (constant).

• Number of Lanes: 2.

• Double direction road: YES.

• Lane Marker: [100% dashed].

• Starting EgoVehicle speed: 85 km/h.

• Starting EgoVehicle acc command: 0.

• leading vehicle trajectory
X [m] Y [m] V [km/h]
300 0 72.0
500 0 64.8
1000 0 54.0
5000 0 72.0

• oncoming vehicle trajectory
X [m] Y [m] V [km/h]
160 3 72.0
139 3 72.0
0 3 72.0

-300 3 72.0

• Parked Truck
X [m] Y [m] V [km/h]
33.6 -3.5 0

We can see from the above tables that the scenario is not empty, but still not too
complicated, given that it was used to validate the Adaptive Cruise Control. In
order to validate the working of the ACC, the leading vehicle has a variable speed,
so that the ACC system is put into a complex situation.
To perform a validation of the ACC, we want to also test the data analysis function
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(Section 2.7), which is tasked with the recognition of Leading and Oncoming
vehicles: if this function was not working properly, we would see a random Leading
vehicle while we encounter the Oncoming vehicle or we would have a very noisy
Speed profile, with random peaks due to miscalculations of the Leading vehicle
speed.
Another actor which is a constant through many of the Scenarios is the presence of
a Parked vehicle on the right side of the road, to ensure that the State Machine
works properly and the car does not move into the GO BACK state as soon as it
passes a car which is on the right of the Ego Vehicle.

2.4.2 Skidpad
This second Scenario is probably the simplest of all the ones we tested: in fact this
is an empty Scenario, without any other vehicle, not even a Parked vehicle on the
side; it was used as a very simple test Scenario in order to check that everything
was right with the Stanley controller, from the sign of the command to the gain
value (Section 2.8.3) and to check the use of the correct units of measurement; it
was a very trivial check, but it was important to perform it in order to avoid silly
mistakes and nevertheless we wanted to include it in this thesis work to show all
the steps we followed in the testing of our controls and our decision making.
Below are the specifics of this Scenario:

• Lane Width: 3 m (constant).

• Number of Lanes: 1.

• Double direction road: NO.

• Lane Marker: NO.

• Starting EgoVehicle speed: 85 km/h.

• Starting EgoVehicle acc command: 0.

• Road Trajectory
X [m] Y [m] Yaw [°]

0 0 0
300 300 90
0 600 180

-300 300 270
0 0 0
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Figure 2.8: The map of the Skidpad track from the Driving Scenario Designer
App

2.4.3 Empty Turn Scenario

This third Scenario was used to perform a first easy test on the LKA performed
through the Stanley Controller; in order to do so, we drew two straights and linked
them with a sharp left turn (Figure 2.9); the goal was to try and check the limits
for the whole Perception and Planning pipeline while trying to take said corner at
a moderately high speed, over the 80 km/h mark. As with ACC_Scenario, there
is also an oncoming vehicle which is used to test the Leading/Oncoming function
and - most importantly - to check that the Lane Detection, and therefore the LKA,
is working also in case of an oncoming vehicle.
Below are the specifics of this Scenario:

• Lane Width: 3 m (constant).

• Number of Lanes: 2.

• Double direction road: YES.

• Lane Marker: [100% dashed].

• Starting EgoVehicle speed: 85 km/h.

• Starting EgoVehicle acc command: 0.

• Road Trajectory
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Figure 2.9: The map of the Empty Turn Scenario track from the Driving Scenario
Designer App

X [m] Y [m] Yaw [°]
0.0 1.5 0

191.2 1.5 0
245.6 11.3 16.35
325.4 56.8 53
385.6 136.7 53
686.5 536.0 53
987.4 935.3 53
1288.3 1334.6 53

• oncoming vehicle trajectory
X [m] Y [m] V [km/h]
137.7 3 108.0
115.6 3 108.0
58.0 3 108.0

-300.0 3 108.0
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2.4.4 Mountain Road

In order to test the working of the Stanley Controller at low speeds and for small
radius corners, we created a fourth scenario (Figure 2.10), characterized by said
low speed small radius corners, which was dubbed "Mountain Road" because of its
inspiration from winding roads which are characteristic of mountains.
Below are the specifics of this Scenario:

Figure 2.10: The map of the Mountain Road track from the Driving Scenario
Designer App

• Lane Width: 3 m (constant).

• Number of Lanes: 2.

• Double direction road: YES.

• Lane Marker: [100% dashed].

• Starting EgoVehicle speed: 50 km/h.

• Starting EgoVehicle acc command: 0.

• Road Trajectory
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X [m] Y [m] Yaw [°]
-1.8 1.8 0
48.2 1.8 0
106.8 22.6 40.44
142.5 67.4 53.35
168.9 93.1 30.61
206.1 101.7 -3.25
231.1. 97.1 -14.95
261.2 86.2 -27.46
279.4 75.0 -33.13
317.3 48.8 -40.07
340.3 25.3 -50.08
366.6 -15.3 -66.07
377.9 -60.2 -84.91
378.8 -88.2 -89.67

X [m] Y [m] Yaw [°]
380.1 -220.4 -90.00
365.5 -278.6 -113.30
332.6 -334.9 -129.57
278.7 -376.4 -155.99
206.3 -389.7 178.72
180.5 -389.3 -176.70
78.2 -518.7 -88.60
93.2 -630.8 -89.57
66.4 -738.9 -112.21
-13.8 -881.7 -130.24
-129.8 -982.7 -142.59
-233.8 -1078.7 -128.03
-292.8 -1589.7 -81.60

2.4.5 Mountain Road Circuit

Figure 2.11: The map of the Mountain Road Circuit track from the Driving
Scenario Designer App

After the Mountain Road Scenario, we concluded our LKA testing with a closed
loop version of that Scenario (Figure 2.11) whose details are listed below:

• Lane Width: 3 m (constant).
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• Number of Lanes: 2.

• Double direction road: YES.

• Lane Marker: [100% dashed].

• Starting EgoVehicle speed: 50 km/h.

• Starting EgoVehicle acc command: 0.

• Road Trajectory
X [m] Y [m] Yaw [°]
-1.8 1.8 0
48.2 1.8 0
106.8 22.6 40.44
142.5 67.4 53.35
168.9 93.1 30.61
206.1 101.7 -3.25
231.1. 97.1 -14.95
261.2 86.2 -27.46
279.4 75.0 -33.13
317.3 48.8 -40.07
340.3 25.3 -50.08
366.6 -15.3 -66.07
377.9 -60.2 -84.91
378.8 -88.2 -89.67
380.1 -220.4 -90.00
365.5 -278.6 -113.30
332.6 -334.9 -129.57
278.7 -376.4 -155.99
206.3 -389.7 178.72
180.5 -389.3 -176.70
78.2 -518.7 -88.60
93.2 -630.8 -89.57
66.4 -738.9 -112.21

X [m] Y [m] Yaw [°]
-13.8 -881.7 -130.24
-129.8 -982.7 -142.59
-233.8 -1078.7 -128.03
-310.8 -1281.7 -95.51
-292.8 -1589.7 -87.20
-296.0 -1668.0 -100.09
-324.0 -1732.0 -131.40
-390.0 -1772.0 -159.30
-478.0 -1792.0 -178.71
-566.0 -1779.0 167.08
-678.0 -1744.0 152.89
-745.0 -1694.0 134.76
-819.0 -1587.0 115.97
-880.0 -1401.0 103.47
-949.0 -998.0 95.45
-960.0 -735.0 89.37
-952.0 -579.0 84.23
-898.0 -327.0 70.82
-784.0 -118.0 49.79
-590.0 11.0 14.85
-355.0 21.0 -1.09
-50.2 9.1 -11.47
-1.8 -1.8 0

2.4.6 Overtake Scenario
After concluding the tests on the LKA system, we moved to finally testing the
Autonomous Overtaking system, the core of this thesis work. To do this, we designed
several different Scenarios which start from the base of the ACC_Scenario of
Section 2.4.1, differing between them only for the other actors involved in the
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Scenario.
This first Overtaking Scenario was used to perform a simple test of the Sigmoid
Creation and the Overtake Maneuver with the Full Vehicle Model and a leading
vehicle perceived through the Sensing equipment instead of simply copying the
exact value of position from the leading vehicle as we did in Section 2.1.
Below are the specifics of this Scenario:

• Lane Width: 3 m (constant).

• Number of Lanes: 2.

• Double direction road: YES.

• Lane Marker: [100% dashed].

• Starting EgoVehicle speed: 85 km/h.

• Starting EgoVehicle acc command: 0.

• leading vehicle trajectory
X [m] Y [m] V [km/h]
64.41 -0.15 54.0
75.70 0 54.0
81.80 0.10 54.0
95.30 0.10 54.0
100.10 0.10 54.0
4800.00 -1.50 54.0
5000.00 -1.50 54.0

• Parked Truck
X [m] Y [m] V [km/h]
23.48 -3.88 0

2.4.7 Corner Overtake Scenario
This Scenario was developed in order to have an environment in which the EgoV-
ehicle overtakes the leading vehicle even in a situation in which the road is not
perfectly straight; this test was needed in order to demonstrate what we will later
state in Section 2.9.2 i.e. that the local Sigmoid Curve definition allows us to
perform an Overtake even if the road is not perfectly straight, in counterposition to
what was instead true for the global Sigmoid Curve definition that was discussed
in Section 2.9.1.
Of course, since the Overtake is a dangerous maneuver per se and we want to
perform it at a high speed, the Scenario Track can not be as curved as the one
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presented in Section 2.4.4 or even Section 2.4.3, therefore we designed a Road which
is only slightly curved, but is anyway enough to prove our point; the map can be
seen in Figure 2.12
We have run two different simulations onto this Scenario, with two different starting
positions of the lead vehicle in order to test two different overtaking spots. Below
are the details:

Early Overtake

• Lane Width: 3 m (constant).

• Number of Lanes: 2.

• Double direction road: YES.

• Lane Marker: [100% dashed].

• Starting EgoVehicle speed: 85 km/h.

• Starting EgoVehicle acc command: 0.

• Road Trajectory
X [m] Y [m] Yaw [°]

0 1.5 0
200 1.5 0.70
900 50.0 5.60

• leading vehicle trajectory
X [m] Y [m] V [km/h]
63.46 -0.26 36.0
85.45 -0.26 36.0
129.71 -0.36 36.0
171.23 -0.26 36.0
227.00 0.40 36.0
276.30 1.60 36.0
327.10 3.20 36.0
415.00 7.30 36.0
462.80 10.40 36.0
518.50 14.40 36.0
555.20 16.90 36.0
638.30 24.00 36.0
683.70 27.90 36.0
788.10 37.50 36.0
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Late Overtake

• Lane Width: 3 m (constant).

• Number of Lanes: 2.

• Double direction road: YES.

• Starting EgoVehicle speed: 85 km/h.

• Starting EgoVehicle acc command: 0.

• Road Trajectory
X [m] Y [m] Yaw [°]

0 1.5 0
200 1.5 0.70
900 50.0 5.60

• leading vehicle trajectory
X [m] Y [m] V [km/h]
397.01 6.54 36.0
462.80 10.40 36.0
518.50 14.40 36.0
553.70 17.10 36.0
638.30 24.00 36.0
683.70 27.90 36.0
787.40 37.60 36.0
810.20 40.00 36.0
867.10 45.20 36.0

2.4.8 Double Overtake
We developed this Scenario, which is not much more complex than the previous
Scenarios Overtake Scenario and Corner Overtake, in order to check that, after
a first Overtake maneuver, everything was reset and a second Overtake could be
performed just like the first one. In order to be sure that the Overtakes take place
as we would expect, the centerline marker is dashed and there is only an oncoming
vehicle at the very beginning of the Scenario, while the Track is the usual straight
road. Below are the specifics of this Scenario:

• Lane Width: 3 m (constant).

• Number of Lanes: 2.
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Figure 2.12: Map of the Corner Overtake Scenario

• Double direction road: YES.

• Lane Marker: [100% dashed].

• Starting EgoVehicle speed: 85 km/h.

• Starting EgoVehicle acc command: 0.

• First leading vehicle trajectory
X [m] Y [m] V [km/h]
300 0 72.0
500 0 64.8
1000 0 54.0
5000 0 72.0

• Second leading vehicle trajectory
X [m] Y [m] V [km/h]
1000 0 54.0
5000 0 54.0
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• oncoming vehicle trajectory
X [m] Y [m] V [km/h]
160 3 72.0
139 3 72.0
0 3 72.0

-300 3 72.0

• Parked Truck
X [m] Y [m] V [km/h]
33.60 -3.50 0

2.4.9 Multiple Overtake
This Scenario was developed as a further evolution of the Double Overtake Scenario,
in order to not only check that the EgoVehicle can perform two separate overtake
maneuvers in the same Scenario, but also that in a single maneuver we are able to
overtake two vehicles. We can say that this Scenario was more to test our decision
making capabilities (Section 2.11) than the Controls themselves. Below are the
specifics of this Scenario:

• Lane Width: 3 m (constant).

• Number of Lanes: 2.

• Double direction road: YES.

• Lane Marker: [100% dashed].

• Starting EgoVehicle speed: 85 km/h.

• Starting EgoVehicle acc command: 0.

• First leading vehicle trajectory
X [m] Y [m] V [km/h]
300 0 72.0
500 0 64.8
1000 0 54.0
5000 0 72.0

• Second leading vehicle trajectory
X [m] Y [m] V [km/h]
1000 0 54.0
5000 0 54.0
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• Third leading vehicle trajectory
X [m] Y [m] V [km/h]
1050 0 54.0
5000 0 54.0

• oncoming vehicle trajectory
X [m] Y [m] V [km/h]
160 3 72.0
139 3 72.0
0 3 72.0

-300 3 72.0

• Parked Truck
X [m] Y [m] V [km/h]
33.60 -3.50 0

2.4.10 Abort Scenario
This Scenario was the first of a series of Scenarios we developed in order to test
and experiment the Abort process and the stability of the vehicle in such situation
as well as of the Decision Making. In the first Scenario, carrying on the bottom-up
approach we followed throughout the entire thesis work, we started with a quite
easy situation, with no Oncoming vehicles at the moment of the Overtake (just
the one at the very beginning of the simulation) and the OvtCounter which gets
raised through the Detection of a continuous Lane Marker instead of the previous
Dashed Marker. In order to create a Scenario in which the Abort maneuver took
place while the EgoVehicle was already partially steering, but not late enough to
trigger an Emergency Overtake instead of the Abort, we fiddled with the starting
position of the leading vehicle and the percentage of road to be marked with Dashed
Marking and the one with Solid Marking. Below are the specifics of this Scenario:

• Lane Width: 3 m (constant).

• Number of Lanes: 2.

• Double direction road: YES.

• Lane Marker: [16% dashed, 22% solid, 62% dashed].

• Starting EgoVehicle speed: 85 km/h.

• Starting EgoVehicle acc command: 0.
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• leading vehicle trajectory
X [m] Y [m] V [km/h]
235 0 72.0
500 0 64.8
1000 0 54.0
5000 0 72.0

• oncoming vehicle trajectory
X [m] Y [m] V [km/h]
160 3 72.0
139 3 72.0
0 3 72.0

-300 3 72.0

• Parked Truck
X [m] Y [m] V [km/h]
33.60 -3.50 0

2.4.11 Emergency Overtake
This Scenario has been created by mean of simply receding the position of the
lead vehicle compared to where the lead vehicle was starting in the Abort Scenario,
so that when the Lane Marker becomes Dashed the EgoVehicle is already too
committed in the Overtake maneuver and therefore cannot go into Abort State, but
needs to move into Emergency Ovt State. Below are the specifics of this Scenario:

• Lane Width: 3 m (constant).

• Number of Lanes: 2.

• Double direction road: YES.

• Lane Marker: [16% dashed, 22% solid, 62% dashed].

• Starting EgoVehicle speed: 85 km/h.

• Starting EgoVehicle acc command: 0.

• leading vehicle trajectory
X [m] Y [m] V [km/h]
195 0 72.0
500 0 64.8
1000 0 54.0
5000 0 72.0
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• oncoming vehicle trajectory
X [m] Y [m] V [km/h]
160 3 72.0
139 3 72.0
0 3 72.0

-300 3 72.0

• Parked Truck
X [m] Y [m] V [km/h]
33.60 -3.50 0

We can see that it is heavily inspired by the previous Double Overtake Scenario
as is evident from the Actors involved, which are the same with the addition of a
Third leading vehicle, located just 50 meters in front of the Second one.

2.4.12 Abort Oncoming Vehicle

This Scenario was created in order to test the working of the Abort State: particu-
larly, after having ensured that the EgoVehicle could abort the Overtake (Section
2.4.10) in case we met a Solid Lane Marker, we wanted to ensure that the EgoVehicle
could detect a second oncoming vehicle after it had detected one at the beginning
of the Scenario and that it could detect it while already being following the lead
vehicle; in order to build this Scenario, we placed a Second oncoming vehicle so
that it could enter in range of the Side Radar of our EgoVehicle around the same
time when - in Abort Scenario (Section 2.4.10) - we encountered the Solid Lane
Marker. On the contrary, this Scenario has only the Dashed Lane Marker, so that
the only factor raising OvtCounter can be the oncoming vehicle. Below are the
specifics of this Scenario:

• Lane Width: 3 m (constant).

• Number of Lanes: 2.

• Double direction road: YES.

• Lane Marker: [100% dashed].

• Starting EgoVehicle speed: 85 km/h.

• Starting EgoVehicle acc command: 0.
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• leading vehicle trajectory
X [m] Y [m] V [km/h]
195 0 72.0
500 0 64.8
1000 0 54.0
5000 0 72.0

• First oncoming vehicle trajectory
X [m] Y [m] V [km/h]
160 3 72.0
139 3 72.0
0 3 72.0

-300 3 72.0

• Second oncoming vehicle trajectory
X [m] Y [m] V [km/h]
1140 4.1 72.0
940 4.1 72.0
600 4.1 72.0

(this Actor is scripted to appear and start the trajectory only at 24.7 s of the
simulation)

• Parked Truck
X [m] Y [m] V [km/h]
33.60 -3.50 0

2.4.13 Abort Brake
This Scenario was a sort of a "Final Test" for our Decision Making and Path
Planning System: we fiddled with the position of the leading vehicle, so that the
transition between Dashed Lane Marker and Solid Lane Marker happened during
the Overtake in a way that when the State jumped from 3 (OVERTAKE) to 5
(ABORT), we were on the boundary between the two Lanes; this meant that the
Abort maneuver was the most difficult possible maneuver because

• The Overtake maneuver was in its most possible advanced status (if the Ovt-
Counter was raised later, we would have moved into State 4 (EMERGENCY
OVT).

• The lead vehicle was very close, so the risk of rear-ending it was actually very
high.

Below are the specifics of this Scenario
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• Lane Width: 3 m (constant).

• Number of Lanes: 2.

• Double direction road: YES.

• Lane Marker: [16% dashed, 22% solid, 62% dashed].

• Starting EgoVehicle speed: 85 km/h.

• Starting EgoVehicle acc command: 0.

• leading vehicle trajectory
X [m] Y [m] V [km/h]
228 0 72.0
500 0 64.8
1000 0 54.0
5000 0 72.0

• oncoming vehicle trajectory
X [m] Y [m] V [km/h]
160 3 72.0
139 3 72.0
0 3 72.0

-300 3 72.0

• Parked Truck
X [m] Y [m] V [km/h]
33.60 -3.50 0

2.5 The Full Vehicle model
We are going here to present the Full Vehicle model which was employed in order
to test the Finite State Machine (FSM); because the main focus of this thesis work
is not the development of a Full Vehicle model, we are going to discuss just briefly
the systems we use, with references to sources to deepen the knowledge on them.
Said Full Vehicle model is divided into 3 main blocks:

• Steering.

• Motor and Driveline.

• Vehicle and Terrain.

which we are going to discuss one by one with the addition of the Gear Selector.
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2.5.1 Gear Selection System

The Gear Selection System is a very simple algorithm where the Selected Gear
Number is a function only of the Vehicle Speed and of the previous Gear Number, as
shown by the following PseudoAlgorithm: As said, the Gear Selection Algorithm is

Algorithm 1 Gear Shifting
function GN(V,GN(n− 1)) ▷ where GN(n− 1) is the previous GN and V is
expressed in m/s

if GN(n− 1) is 1 then
if V > 25 then

GN(n) = 2
else

GN(n) = 1
end if

else if GN(n− 1) is 2 then
if V > 40 then

GN(n) = 3
else if V < 20 then

GN(n) = 1
else

GN(n) = 2
end if

else
if V>33 then

GN(n) = 3
else

GN(n) = 2
end if

end if
output GN(n)

end function

extremely basic, without even accounting for the required Power or considering the
Efficiency Map of the Electric Machine or similar. We would also like to highlight
that the shift-up speeds do not correspond to the reverse shift-down speed, i.e. the
speed at which we shift down to I gear from II gear is lower than the speed at
which we shift up from I gear to II gear; this is due to avoid a "noisy" gear profile,
with continuous shift up and down when the EgoVehicle is around the shift speed.
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2.5.2 Steering System
The description of the steering System is going to be even briefer than the description
of the Gear Selection System: while the Steering System Model from [61] is designed
to be able to mount a 4 Wheel Steering System, we decided to use only the Front
Axle to steer, with a gain of 1 from the desired Steering Angle coming from the
Stanley Controller of Section 2.8.3.

2.5.3 Motor and Driveline
The Power Unit of our EgoVehicle is going to be an Electric Machine, whose
parameters are going to be available in the Appendix, which is activated by a
command called acc command which is one of the two Look-Up Table (LUT)
arguments, together with the EM rotational speed.
The EM rotational speed is linked to the speed of the EgoVehicle through the
rotational speed of the wheels and, actually, is only related to the speed of the
wheels, rather than the speed of the EgoVehicle: since this is a Full Vehicle model,
in fact, it would be incorrect to assume that Vveh = Rw · ωw, since the slip is a
factor to be considered; therefore the logical chain of dynamic equations is the
following:

• Dynamic Equation of Equilibrium of the 4 wheels.

• (Since the Vehicle is a 2WD Front Wheel Drive) Front Differential.

• Gear Ratio of the Differential.

• Gear Ratio of the selected gear.

To write the equation for the rotational speed of the EM, we consider the above
steps and the result is:

ωem = ωFL + ωFR
2 τfτgb (2.14)

Because of the smaller Moment of Inertia of the Electric Machine, compared to the
one of an Internal Combustion Engine (about half, comparing [62] and [63]), we
assumed that the torque output by the EM was equal to Tem obtained from the
LUT instead of

Tout,em = Tem − Jemω̇em (2.15)

The total torque input to the Front Differential is

Tin,diff = Temτgbτf (2.16)
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which is then split to the two Front Wheels by mean of a Limited Split Differential
which transfers a percentage of the Torque proportional to the difference between
the two wheel speeds as in Equation 2.17



∆T = K · tanh(ωFL − ωFR)

TFL = Tdiff
2 − ∆T

TFR = Tdiff
2 + ∆T

(2.17)

One important point we want to mention here is that, for the sake of simplicity,
we excluded the braking command from the Full Vehicle model, demanding it to
the EM negative torque; this was actually one of the main reasons, together with
the fastest transient and the fact that Electric Vehicles (EV) penetration is fastly
increasing [64], which led us to choose the electric propulsion in opposition to an
Internal Combustion Engine.
To represent the braking power, we assumed that, in case we are braking, the rear
axle is able to provide the same Torque (negative) as the one which the EM is
outputting to the front axle; this is represented by a switch on the value of the
State which enables torque (upperbounded to 0) on the Rear wheels only in case
we are in States 5 (ABORT), 6 (GO BACK) or 7 (BRAKE), as shown by Figure
2.13.

Of course, this solution would not be feasible in real life and is actually not a

Figure 2.13: Simulink scheme of the Braking System

realistic one: it is just a sort of "simplification" we used in order to reduce the
number of command variables while still leaving most of the complexity of the Full
Vehicle model.
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2.5.4 Vehicle and Terrain
This Section will deal with the two main topics of the Full Model, i.e. the Degrees of
Freedom of the Car Body and the Road-Wheel contact with the Pacejka tire model.
In discussing this section, we will follow the same approach followed by the Full Vehi-
cle model, i.e. from the ground contact to the equilibrium equations of the car body.

Road-Wheel contact

Therefore, we are going to address the whole Dynamics of the Full vehicle starting
from the Kinematics of the wheel: in fact, the forces acting on the tyres - which
are the main interface between the Car and the Ground [65][66] - are arising from
the kinematics of the tyre, like the side slip angle and the longitudinal slip [59].
As already said in Section 2.5.3, the wheel rotational speed ωw is the base of the
speed of the engine ωem as well (at least the front ones, given that our vehicle is
FWD) and so we start from the writing of the dynamic equation regarding each
single wheel:

Figure 2.14: Illustration of the equation of motion of the wheel

Iwω̇ = Cm − Crr − FxRw (2.18)
where Cm is the traction torque coming from the Propulsion, ωw is the rotation
speed of the wheel and Crr is the torque caused by the rolling resistance of the
wheel; this is caused by an offset between the vertical load Fz and the ground
reaction, due to histeretic phenomena in the rubber material, which can however be
modelled as only depending on the rotational speed, following a common approach
as for example in [67], as

Crr = Fz(f0 + f2ω
2) (2.19)
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Since the vertical load Fz is dependent from the geometry of the vehicle, Cm
depends from the acceleration command and the speed of the motor (Equation
2.14, from Equations 2.18 and 2.19, we conclude that per each of the four wheels
we have a free variable, namely the ωw rotational speed.
The longitudinal force is dependent on the rotational speed and the speed of the
vehicle through the slip according to the several Pacejka equations (in our Model,
we employed the Pacejka equations from 1991 [59]); the longitudinal slip is defined
as an adimensional value ranging from -1 (wheel locked and car moving) to 1 (car
stopped and wheel rotating in place) according to Equation 2.20

σ = 1 − V

Rω
for σ > 0 (traction)

σ = Rω

V
− 1 for σ < 0 (braking)

(2.20)

in order to have a Vehicle Model as realistic as possible, we accounted for the radial
deformation of the tire caused by the vertical load Fz acting on the wheel, hence R
is not constant.

σ((b1µ+ b2)µ)sin
3
b0atan

1
Γx − (b6µ

2 + b7µ+ b8) · (Γx − atanΓx
24

(2.21)

where for compactness we substituted Γx

Γx = (b3µ+ b4)µ · 2.71828(−b5µ)

b0
1
(b1µ+ b2)µ+ ϵ)

2 (100Fz + b9µ+ b10) (2.22)

with Fz being reported in kN instead of N and ϵ is a term used in case of nil µ
adherence coefficient to avoid computational problem.
The lateral force Fy generated by the tire is obtained through a similar formula,
coming from [59] as well, where the main variable linking the movement to the
Force is represented by the side slip angle α.

Fz

A(a1µ
2+a2µ)sin

3
a0atan

1
Γy−(a6µ+a7)(Γy−atanΓy)

24B
+a12µ+a13

 (2.23)

with Γy being

Γy =
a3sin

atanA2µ
a4

B
a0(a1µ2 + a2µ+ ϵ

(α + a9µ+ a10) (2.24)

Once we computed both Fx and Fy for a wheel, we need to account for the combined
slip through the elliptical model, a common equation which can be found - among
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other sources - in [67] and is represented by the following Equation
 Fy
fy,max

2

+
 Fx
fx,max

2

= 1 (2.25)

These forces were then delayed according to the "Relaxation Length" model [68] in
which the Force - computed according to the current slip - is delayed (in opposition
to the approach of Pacejka which delays the slip [69]) as follows:

Fx,rit
Fx,Pac

= 1
τLs+ 1

Fy,rit
Fy,Pac

= 1
τT s+ 1

(2.26)

where τL and τT are the time constants respectively of the longitudinal transient
and the lateral transient, computed as ratio between the speed in the center of
rotations and the relaxation lengths.

τL = Lrel,L
Vcr

τT = Lrel,T
Vcr

(2.27)

A detailed study on the relaxation length can be found in [69].
In order to compute the speed of the wheel mentioned in Equation 2.27, we need to
extend the concepts discussed in section 2.2: assumed u and v as the components
of the speed of the vehicle as of Equation 2.7, the speed of a wheel in the Reference
Frame of the vehicle has, as components

uw = u− ψ̇yw

vw = v + ψ̇xw

(2.28)

where the yw and xw are the coordinate of the wheel in the Reference Frame of the
vehicle

• Front Left, xw = a, yw = +Tf2
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• Front Right, xw = a, yw = +−Tf
2

• Rear Left, xw = −b, yw = +Tr2

• Rear Right, xw = −b, yw = +−Tr
2

By composing the vector module of the speed of each wheel we can obtain the
speed in the center of rotation Vcr, while by computing the arctangent of the ratio,
we can obtain the side slip of that wheel with respect to the longitudinal axis of
the vehicle as in Equation 2.29

βw = atan
3
vw
uw

4
= atan

3
v + ψ̇xw

u+ ψ̇xw

4
(2.29)

from which we can obtain the sideslip angle of the wheel with respect to its own
plane αw, which is used in the Pacejka model and is obtained in Equation 2.30
(Figure 2.15).

αw = βw − δw = atan

A
v + ψ̇xw

u+ ψ̇xw

B
− δw (2.30)

Car Body

After discussing the dynamics of the wheels and the 4 DOFs associated with them,
we can now move on to the part of the Full Vehicle Model dealing with the car
body and its DOFs; a common choice as the Vehicle Model is the 14DOF [70][71].
However, we chose to use a 10 DOFs Model; it is to be noted that such term can
indicate two different extensions of the 6 DOF Model:

• A Model in which - to the 6 DOFs have been added 4 DOFs linked to the
vertical travel of the wheels, let it be [z1...z4] or [zfzrϕfϕr] [72], which is useful
to analyze the comfort of the passenger in the NVH field.

• A Model in which - to the 6 DOFs have been added 4 DOFs linked to the
rotation of the wheels [73], which sacrifices the vertical motion anbalysis (i.e.
the comfort analysis) in order to be able to analyze the dynamic of each wheel.

As we want to deal with a precise study of the dynamic of the vehicle, we employed
the second of these. Since we have already discussed the 4 added DOFs in the
Road-Wheel Contact, we are now going to list here the 6 DOFs of the simple 6
DOF model.
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Figure 2.15: Figure 25.16 of [58], displaying the computation of the sideslip angle
of the wheel

• Global abscissa X

• Global ordinate Y

• Global vertical position Z

• Roll angle ϕ

• Pitch angle θ

• Yaw angle ψ

Even though we did not account for the vertical displacements of the wheels, yet
we could account for the vertical load of every single wheel, important since Fz is
an important factor in the computation of both Fx and Fy (Equations 2.21 and
2.23).
The vertical load on every wheel was computed as a sum of 4 different components

Fz,w = Fz,st + ∆Fz,acc + ∆Fz,aero + ∆Fz,lat (2.31)
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where the static vertical load is given by
Fz,stFL = Fz,stFR = mgb

2L

Fz,stRL = Fz,stRR = mga

2L

(2.32)

The load transfer due to the longitudinal acceleration is
∆Fz,accFL = ∆Fz,aeroFR = −mu̇Hg

2L

∆Fz,accRL = ∆Fz,aeroRR = mu̇Hg

2L

(2.33)

The load transfer due to the aerodynamic drag, which is applied not in the center
of gravity but in the aerodynamic center

∆Fz,aeroFL = ∆Fz,aeroFR = −Fx,aero
Ha

2L

∆Fz,aeroRL = ∆Fz,aeroRR = Fx,aero
Ha

2L

(2.34)

with the aerodynamic drag obtained from the longitudinal component u of the
speed

Fx,aero = 1
2CxAfρairu

2 (2.35)

while the load transfer due to the lateral forces are

∆Fz,latFL = −ϕKf + ϕ̇Cf + (Fy,FL + Fy,FR)(Hg −Hroll,f

Tf

∆Fz,latFR = ϕKf + ϕ̇Cf + (Fy,FL + Fy,FR)(Hg −Hroll,f

Tf

∆Fz,latRL = −ϕKr + ϕ̇Cr + (Fy,RL + Fy,RR)(Hg −Hroll,r

Tr

∆Fz,latRR = ϕKr + ϕ̇Cr + (Fy,RL + Fy,RR)(Hg −Hroll,r

Tr

(2.36)

Despite not appearing directly in Equation 2.36, lateral acceleration ay plays a
major role in the load transfer due to lateral forces, through the roll DOF ϕ. Since
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we are going to neglect the pitch movement, the last DOF we need to discuss is the
roll ϕ; we start from the computation of the lateral acceleration in the Roll Center,
which is different from the one in the center of gravity in case the two centers do
not correspond (i.e. if Hroll is not nil).

ay,RC = ay,G + ϕ̈Hrollcosϕ (2.37)

from which we can compute the roll acceleration ϕ̈

ϕ̈ =

1
may,RCHrollcosϕ

2
+
1
mgHrollsinϕ

2
−
1
Krollϕ+Gϕ̇

2
Jx +mH2

roll

(2.38)

2.6 The vehicle’s Sensing Equipment
This Section is going to be devoted to the exposition of the Sensing Equipment
we supposed to install on our EgoVehicle; even though we virtually had infinite
possibilities, given that this thesis work done entirely on Simulink, allowing us to
install as many sensors as we wanted, without any monetary constraint, and
that such sensors could be as powerful as we wanted: while a real radar has Range
Limits (for example a general range limit for Automotive application is 200 m or
lower [74][75]).
However, since our aim has always been to develop something that in a near future
can be used in real-life application if not even at a mass production level, we took
as a general rule to employ only realistic sensors and to try and reduce the number
in order to keep the costs low.
Here is the list of all the Sensors we have installed:

• Camera, used to detect the Lane Boundaries.

• Central Radar, used to detect Leading vehicles.

• Side Radar, used to detect Oncoming vehicles.

• BlindSpot Radar, used to detect the completed Overtake.

• Only in a Beta state: Left BlindSpot Radar, used to detect an Overtaking
vehicle.

In the following sections, we are going to discuss each sensor, one by one with their
specifics and their purpose.
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Figure 2.16: Map of the Sensors mounted on the EgoVehicle zoomed to see the
relative positioning. Colour code comes from Simulink and is blue Cameras and
red for Radars

2.6.1 Camera
The Camera was used for both Lane Detection and Object Detection, even though
its main domain is the former, as the Object Detection (of the leading vehicle) is
performed in cohabitation with the Central Radar of which we will discuss later.
For what concerns the Lane Detection, instead, the whole burden falls on the
Camera [21] [33], as Radar is not able to distinguish colours and therefore it would
not be capable of detecting the white lines delimiting the Lane, as well as geometric
limitations meaning a Lidar installed in place of the Radar would only be able to
recognize lane boundaries at some tens of meters from the Ego Vehicle. We are
here listing the main parameters of the Camera, most of which were kept as default
from the Simulink Vision Detection Generator block.
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Figure 2.17: Map of the Sensors mounted on the EgoVehicle from a larger distance
to see all the Sensors ranges

• Types of detections: Lanes and objects.

• Required interval between sensor updates: 0.1 s.

• Required interval between lane detection updates: 0.1 s.

• Sensor’s (x,y) position: [1.9 m, 0 m].

• Sensor’s height: 1.1 s.

• Yaw angle of sensor mounted: 0°.

• Pitch angle of sensor mounted: 1°.

• Roll angle of sensor mounted: 0°.
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• Coordinate system used to report detections: Ego Cartesian.

• Maximum detection range: 30 m.

• Smoothing filter noise intensity: 5 m/s2.

• Maximum detectable object speed: 100 m/s.

• Maximum allowed occlusion for detector: 0.5.

• Minimum detectable image size of an object: [5 px, 5 px].

• Probability of detecting a target: 0.9.

• Number of false positives per image: 0.1.

• Minimum lane size in image: [20 px, 1 px].

• Accuracy of lane boundary 1 px.

• Focal length: [500 px, 800 px].

• Optical center of the camera: [320 px, 240 px].

• Yaw angle of sensor mounted: [480 px 640 px].

• Radial distortion coefficients: [0 0].

• Tangential distortion coefficients: [0 0].

• Skew of the camera axes: 0.

2.6.2 Central Radar
The Central Radar is tasked with the detection and tracking of an eventual leading
vehicle and output the relative distance ∆X and the relative speed ∆V so that we
can perform the Decision Making.
Most of the parameters were left as the default ones from the Simulink Radar
Data Generator block, we are here reporting the most important ones.

• Update Rate: 10 Hz.

• Sensor mounting relative to Vehicle Origin: [1.9 m, 0 m, 0.2 m].

• Sensor rotation relative to Vehicle Frame: [0°, 0°, 0°].

• Azimuth resolution: 1°.
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• Range resolution: 2.5 m.

• Range rate resolution: 0.5 m/s.

• Angular field of view [Azimuth, Elevation]: [20°, 5°].

• Range Limits: [0 m, 150 m].

• Range rate limits: [-100 m/s 100 m/s].

• Detection probability: 0.9.

• False alarm rate: 1e-06.

2.6.3 Side Radar
The Side Radar is tasked with the detection and tracking of oncoming vehicles and
this guided us in its location and in the definition of its parameters.
In order to have a clear sight of the leftmost Lane, which is where we suppose to
be detecting oncoming vehicles, we positioned this Radar on the front bumper of
the EgoVehicle, on the leftmost part; meanwhile, we also rotated the Radar with
respect to the non-inertial Reference Frame of the EgoVehicle, in order to have a
detection area fully on the left of the vehicle.

• Update Rate: 10 Hz.

• Sensor mounting relative to Vehicle Origin: [3.7 m, 0.9 m, 0 m].

• Sensor rotation relative to Vehicle Frame: [7.5°, 0°, 0°].

• Azimuth resolution: 1°.

• Range resolution: 2.5 m.

• Range rate resolution: 0.5 m/s.

• Angular field of view [Azimuth, Elevation]: [15°, 5°].

• Range Limits: [0 m, 250 m].

• Range rate limits: [-100 m/s 100 m/s].

• Detection probability: 0.9.

• False alarm rate: 1e-06.
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2.6.4 Blind Spot Radar
The Radar located near the Rear Right Wheel was dubbed "Blind Spot Radar"
because of its purpose, to detect any object in the rear right blindspot, which in
Right-Hand Traffic countries (representing 65% of the world population and 70%
of the world roadways [76]) is where generally an overtaken vehicle is located. This
is the actual purpose of such Radar, as will be discussed in Section 2.7.6. Below
are reported the main parameters of the radar.

• Update Rate: 10 Hz.

• Sensor mounting relative to Vehicle Origin: [0 m, -0.9 m, 0.2 m].

• Sensor rotation relative to Vehicle Frame: [-105°, 0°, 0°].

• Azimuth resolution: 1°.

• Range resolution: 2.5 m.

• Range rate resolution: 0.5 m/s.

• Angular field of view [Azimuth, Elevation]: [150°, 5°].

• Range Limits: [0 m, 25 m].

• Range rate limits: [-100 m/s 100 m/s].

• Detection probability: 0.9.

• False alarm rate: 1e-06.

The main parameter is the very wide azimuth range, which was needed in order to
be able to detect and track an overtaken vehicle. Since the overtaken vehicle will
still be close to us, a long range was not needed, therefore we employed a short
range of just 25 m, which is still sufficient to detect when we have completed the
overtake. The relative yaw angle was chosen in order to have the boundary of the
detection zone parallel to the longitudinal axis of the EgoVehicle.

2.6.5 Left BlindSpot Radar
As stated before, this Radar is only in a Beta-state, i.e. we have started some
experimentation with it, but for reasons of simplicity and computational cost we
have decided to leave it out for now. Its purpose was to detect if some vehicle
behind us had already begun the Overtaking maneuver, meaning that we could
not begin it ourselves in order to avoid an accident. Even if it was not part of our
Sensor Configuration (hence why it is not present in Figures 2.16 and 2.17), we
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decided to discuss it as well, since it can be used for further developments. Below
are reported the main parameters of the radar.

• Update Rate: 10 Hz.

• Sensor mounting relative to Vehicle Origin: [0 m, 0.9 m, 0.2 m].

• Sensor rotation relative to Vehicle Frame: [135°, 0°, 0°].

• Azimuth resolution: 1°.

• Range resolution: 2.5 m.

• Range rate resolution: 0.5 m/s.

• Angular field of view [Azimuth, Elevation]: [90°, 5°].

• Range Limits: [0 m, 150 m].

• Range rate limits: [-100 m/s 100 m/s].

• Detection probability: 0.9.

• False alarm rate: 1e-06.

2.7 The handling of the Perception data
After having discussed the Vehicle Model we employed during the simulations, the
Sensing Equipment we "mounted" on it and the Scenarios on which we performed
the testing, we can finally move to the description of the Software pipeline that we
developed in order to be able to take decisions and plan our path.

2.7.1 How to deal with dangerous situations
At the beginning of this Section on the handling of the Perception pipeline data,
we want to describe the OvtCounter variable and its motivations.
The reason for the creation of this lies in the need for something to take into account
the fact that we have previously seen an oncoming vehicle; it is a common situation,
in fact, to see from distance an oncoming vehicle which is not seen anymore later
even if it is still there: this can happen if we are driving on a long winding right
curve and, as the oncoming vehicle moves closer, it is not seen anymore by us, as
our sight is occluded by a leading vehicle. A human driver would remember that
he has seen the oncoming vehicle before his view became occluded by the leading
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vehicle, but how to deal with this for a Decision Making Algorithm?
In order to account for this "memory" feature, we created a variable called Ovt-
Counter , which gets raised whenever we see an oncoming vehicle or we see the
Lane marker being dashed as in the following Algorithm.
Since the function is running at 10 Hz like the rest of the Simulink model, it is

Algorithm 2 OvtCounter
function OvtCounter(Oncoming, dashed)

if Oncoming|dashed == 0|UnderOvt then ▷ Where UnderOvt is in a beta
state, like the Left BlindSpot Radar

OvtCounter = 30
else

OvtCounter = max
1
0, counter − 1

2
end if

end function

clear that it acts as a 3 seconds delay. The value of 3 seconds was chosen empirically
by experience of the thesis author on his daily commute, where he monitored the
average and longest duration of leading vehicle occlusions of oncoming vehicles, in
order to come up to a value of time which both ensures safety and does not hinder
Overtaking Chances too much.

2.7.2 Flags
In order to perform the decision making, which will be later discussed in Section
2.11 we introduced two Flags, which have a binary logic:

• Leading Flag which can assume the value 0 to indicate that there is no
leading vehicle and 1 to indicate that there is a leading vehicle.

• oncoming vehicle which can assume the value 0 to indicate that there is no
oncoming vehicle and 1 to indicate that there is a oncoming vehicle.

The Leading Flag is coming from the Center Radar data analysis (Section 2.7.5),
while the Oncoming Flag can come from both the Center Radar or the Side Radar
data analysis, through a maximum block. (Figure 2.18)
A third Flag, the Overtaken flag, is obtained from the Right BlindSpot Radar
and is used in the Finite State Machine (Section 2.11) to move from the State 3
(OVERTAKE) to the State 6 (GO BACK).
One further Flag, which is not simply binary as the previous ones, is the Dashed
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Flag, which is used to know if the Lane Marker is dashed (= overtaking is possible)
or continuous (= overtaking is prohibited). Below is the series of possible values
assumed by this Flag:

• Dashed = 0: the Lane Markers are all Continuous

• Dashed = 1: the Left Lane Marker is dashed = we are in our Own Lane and
we can overtake

• Dashed = 2: the Right Lane Marker is dashed = we are in the Overtake Lane.

Figure 2.18: "Maximum" block to obtain the Oncoming Flag

2.7.3 GNN Tracker
Before starting to comment Sensor by Sensor, we want to carry out a precisation:
before running any function written by us, we applied to the perception pipeline
the so-called Global Nearest Neighbor Multi Object Tracker [77], which is a
preset block in the Matlab Simulink environment; such block performs a tracking
of the Lead and oncoming vehicles, collecting the detections from the Radars and
attributing them through a Nearest Neighbor Classification [78] to a track.
The main weakness of this block is that it slows down significantly our Simulink
model, as we have observed by running the same simulation and computing the
requested time per each of the two simulations through the Matlab tic ... toc
command; we know that tic ... toc is not a real time simulation and we can not
take these results as a perfect measure, nevertheless, we used it in order to get
an order of magnitude of the time taken as well as to compare the computational
cost of the system with and without GNN. The simulation was a 175 seconds long
simulation on the ACC_Scenario. Here are the results:

• Without the GNN blocks, the simulation took 233.5 s, which equates to
133.4% of the simulated time.
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• With the GNN blocks, the simulation took 271.7 s, which equates to 155.3%
of the simulated time.

The GNN increases the required time of about 16%, but since the time without the
GNN was still too much to be applied, since even a 90-95% time would be unfit,
given that a car’s CPU runs much slower than the PC on which we performed the
simulations.
Luckily, the main component in terms of computational costs are the Full Vehicle
Model itself, the Scenario Reader and the Radar blocks, which in the real vehicle
will not be simulated, as they will be real. Because of this, and because of the
results that we are going to present now, we decided to employ the GNN regardless
of the increase in the computational time.

Figure 2.19: Trend of the Leading Flag during the simulation run without the
GNN tracker

We can immediately notice, through the comparison of the Flags, that the version
without the GNN is immensely more noisy and it also sees oncoming vehicles when
there are none, therefore making the maneuvers much more dangerous.
The noisy results of the two Flags are of course heavily linked to the noisy results

on the radar in general, as can be seen by a rapid comparison of Figures 2.23 and
2.24. It is also to be noted that such simulations were run in an early build of the
Model: this can be seen by the fact that even the GNN model is assigning values
of ∆X and ∆V to oncoming vehicles, while this is not the case in the final build,
which assigns such values only to leading vehicles.
Most notably, the noisy trend in the radar signals is not important just in itself:
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Figure 2.20: Trend of the Leading Flag during the simulation run with the GNN
tracker

Figure 2.21: Trend of the Oncoming Flag during the simulation run without
the GNN tracker

the noise in the detection and recognition of Leading/oncoming vehicles and their
relative positions and speeds leads to a noisy behaviour in the EgoVehicle itself,
as can be seen by the comparison in the trends of Time gap (Figure 2.25 and
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Figure 2.22: Trend of the Oncoming Flag during the simulation run with the
GNN tracker

Figure 2.23: Radar signals during the simulation run without the GNN tracker

2.26) and - even more importantly for the comfort of the passengers - speed of the
EgoVehicle (Figure 2.27 and 2.28).

Below are the thresholds we used for the confirmation and deletion (History
logic) of every GNN Tracker:
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Figure 2.24: Radar signals during the simulation run with the GNN tracker

Figure 2.25: Time gap between the EgoVehicle and the lead vehicle during the
simulation run without the GNN tracker

• GNN on the Detection Concatenation between Center Radar and the Camera:

– Confirmation threshold [M N]: [5, 7]

– Deletion threshold [P Q]: [8, 10]
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Figure 2.26: Time gap between the EgoVehicle and the lead vehicle during the
simulation run with the GNN tracker

Figure 2.27: Trend of the EgoVehicle speed during the simulation run without
the GNN tracker

• GNN on the Side Radar

– Confirmation threshold [M N]: [3, 5]
– Deletion threshold [P Q]: [6, 10]
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Figure 2.28: Trend of the EgoVehicle speed during the simulation run with the
GNN tracker

• GNN on the Right BlindSpot Radar

– Confirmation threshold [M N]: [7, 7]
– Deletion threshold [P Q]: [6, 10]

2.7.4 The Camera data analysis: Lane Recognition
The first thing we want to point out is that these algorithms we are going to present
next have been developed in the Simulink environment and therefore they were
designed to extract information from the Matlab structures output by said GNN
Tracker; of course, in a real world application with real sensors we would need
different logic in unpacking the signals, but what we want to point out is the data
analysis logic, which is going to stay untouched by moving to another packing logic.
The first thing we do is a for cycle to save up in two vectors the Lateral Offset
(LatOff vector) and the Heading Angle (HeadAngle vector) of every LaneBoundary
object, up to the NumLaneBoundariesth; in the Matlab Simulink environment,
the Lanes are already ordered from left to right, while in a real application we will
need to be sorting them: to do this, when we save them up in the vector, we will
sort them by the value of the LatError, which is the highest on the left and the
lowest on the right. Once this is done, we want to clear the two vectors of every
possible NaN elements, in order to have only meaningful elements in those vectors.
Because n boundary lanes describe n− 1 proper Lanes, once we have sorted and
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cleared the two vectors we can simply compute the number of Lanes for the vehicles
by

Nlanes = length(LatOff) − 1 (2.39)

In case the number of Lanes - for any reason - is less than 1, we output

• Lane: 1.

• OvtOff: 0.

• OvtHead: 0.

• OwnOff: 0.

• OwnHead: 0.

• Dashed: 1.

This is to ensure that the EgoVehicle does not start any Overtaking maneuver and
does not try to steer in case the Camera fails for one frame.
If, on the other hand, a valid acquisition has been performed and at least two
Boundary Lanes are detected the algorithm goes on: we compute the LatOff and the
HeadAngle for each of the lanes, then we find which is the closest Lane centerline,
therefore attributing the EgoVehicle to that Lane.
Once we have detected the Lane in which we are, we need to check the value of
the BoundaryType variable corresponding to its left boundary: if it is 2, it means
that the boundary is dashed, therefore an overtaking is possible. Below we report
the PseudoAlgorithm. It is to be noted that in case we see just one lane or even

Figure 2.29: Coordinate system of the Lanes as used in this data analysis
algorithm

worse we see a single Lane Boundary, thus outputting a number of Lanes of 0,
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Algorithm 3 Camera data analysis
function data analysis(u) ▷ Where u is GNNoutput

for i from 1 to u.NumLaneBoundaries do
append u.LaneBoundaries(i).LateralOffset to LatOff vector
append u.LaneBoundaries(i).HeadingAngle to HeadAngle vector

end for
clear LatOff and HeadAngle from NaN
NumLanes = length(LatOff )-1
if NumLanes < 1 then

Lane = 1
OvtOff = 0
OvtHead = 0
OwnOff = 1
OwnHead = 0
Dashed = 1

else
CenterOffset =

1
LatOff(1 : end− 1) + LatOff(2 : end)

2
/2

LanesWidth = LatOff(1 : end− 1) − LatOff(2 : end)
CenterHead =

1
HeadAngle(1 : end− 1) +HeadAngle(2 : end)

2
/2

if NumLanes = 1 then
Lane = 1;
OvtOff = NaN;
OvtHead = NaN;
OwnOff = CenterOffset;
OwnHead = CenterHead;
Dashed = 1;

else
index = min

1
abs(CenterOffset)

2
▷ we find the Lane whose center

is the closest to the EgoVehicle
Lane = NumLanes+1-index ▷ to further understand the indices,

check Figure 2.29
OvtW = LanesWidth(max(NumLanes-Lane,1),1);
OvtOff = CenterOffset(max(NumLanes-Lane,1),1);
OvtHead = CenterHead(max(NumLanes-Lane,1),1);
OwnW = LanesWidth(max(NumLanes-Lane+1,1),1);
OwnOff = CenterOffset(NumLanes-Lane+1,1);
OwnHead = CenterHead(NumLanes-Lane+1,1);
if u.LaneBoundaries(NumLanes+1-Lane).BoundaryType == 2 then

Dashed = 1;
else if u.LaneBoundaries(NumLanes+2-Lane).BoundaryType == 2

then
Dashed = 2;

else
Dashed = 0;

end if
end if

end if
end function
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we imposed the output of the dashed flag to 1: this has been needed in order to
avoid sharp aborts of Overtaking maneuvers, which would be caused by the car not
seeing enough Lane Boundaries because the Camera is occluded by the presence of
the Lead vehicle.

2.7.5 The Front Radars data analysis: Leading and oncom-
ing vehicles

In this Section we are going to discuss the data analysis for the two Front Radars,
the central one - mainly but not only in task of tracking the leading vehicle - and
the Left side one, which is tasked with the tracking of oncoming vehicles.

Central Radar

This radar is mainly tasked with the recognition of the leading vehicle and its
tracking; the main way to discriminate a tracked Vehicle between a Leading and
oncoming vehicles lies in the value of the ∆V relative speed: if the value is lower
than the opposite of the speed of the EgoVehicle, it means that the car is Oncoming,
while the opposite is true in case the tracked Vehicle is Leading.
However, it is to be noted that, in order to avoid misrecognitions of lead vehicles
and Parked Vehicles as oncoming vehicles, we imposed that, to be recognized as an
oncoming vehicle, the detection must have a relative speed below −1.05V Because
the GNN can output more than one track with just a single Vehicle, the selection
of the best detection is tied to the one being closest to the EgoVehicle longitudinal
axis: once the closest Track is found, we save its ∆x and ∆V and at the end we
also raise eventual Leading and Oncoming flags. Once the ∆X and ∆V have been
obtained and the flags have been raised or dropped, we still need to correct the
value of ∆X; why do we need to do this? The reason lies in the fact that - with
the Simulink block - we obtain the relative distance and velocity with respect to
the Center of Gravity of the EgoVehicle: this means that if the ∆X is around 3 m,
it actually means that we are colliding with the rear bumper of the lead vehicle.
Because of how real Radars work, this further passage will not be needed in the
real application.
Another thing we want to point out is that it looks like the Central Radar is
not capable of detecting an oncoming vehicle if there is also a leading vehicle: in
fact, in this case, the vehicle with the lowest (in absolute value) θ angle would of
course be the Leading one. This is indeed true, but is not a problem, since the
oncoming vehicle would be detected by the Side Radar; the ability to output a
raised Oncoming Flag from this radar has been included only for the case in which
we are in the Oncoming Lane and there is an oncoming vehicle, since the Side
Radar would be looking outside of the road and therefore would not recognize any
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Algorithm 4 Central Radar data analysis
function PostProcess(u, Lane) ▷ Where u is GNNoutput

Initialize θmin to 10e6
Initialize both flags to 0
for i from 1 to u.NumTracks do

Retrieve x, y,∆X∆V from u.Tracks(i)

θ = min

A
atan2

3
y

x

4B
if θ < θmin then

θmin = θ
Save up ∆X and ∆V from u.Tracks(i)

end if
end for
if Lane==1 then

if ∆V > −V then
Leading = 1
Output Leading, Oncoming, ∆X and ∆V

else
Oncoming = 1
Output Leading, Oncoming. We decided not to output ∆X and ∆V

for this branch, leaving only the initialized NaNs
end if

else ▷ This means we are in the Overtake Lane, probably
if ∆V < −1.05V then

Oncoming = 1
Output Leading, Oncoming. We decided not to output ∆X and ∆V

for this branch, leaving only the initialized NaNs
end if

end if
end function
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Vehicle.

Side Radar

The Side Radar is tasked with the recognition of oncoming vehicles, as already
stated in Section 2.6.3, and this task has guided us in the location of said sensor.
In a way similar to what was done for the Central Radar, the discriminant between
a Leading and oncoming vehicle is represented by the ∆V relative speed, which is
of course lower than the opposite of the EgoVehicle speed only in case the tracked
Vehicle is Oncoming.
By the way, it is important to note that this Radar is not capable of recognizing
a leading vehicle, i.e. it does not output a Leading Flag value, since this is only
controlled by the Center Radar.

Algorithm 5 Side Radar data analysis
function PostProcess(u) ▷ Where u is GNNoutput

Initialize θmin to 10e6
Initialize Oncoming flag to 0
for i from 1 to u.NumTracks do

Retrieve x, y,∆X∆V from u.Tracks(i)

θ = min

A
atan2

3
y

x

4B
if θ < θmin then

θmin = θ
Save up ∆X and ∆V from u.Tracks(i)

end if
end for
if ∆V < −V then

Oncoming = 1
Output Leading, Oncoming, ∆X and ∆V

else
Oncoming = 0
Output Leading, Oncoming. We decided not to output ∆X and ∆V for

this branch, leaving only the initialized NaNs
end if

end function
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2.7.6 The Rear Radars data analysis: Overtake completed
and being overtaken

This Section deals with the data analysis function that is applied to the Right
BlindSpot Radar, in charge of the Overtake Flag as well as the one which would
be applied to the Left BlindSpot Radar, if it was in action and already "tested" in
our Scenarios.
On the contrary, the Left BlindSpot Radar would be raising a UnderOvt Flag, to
be used for the OvtCounter of Section 2.7.1, as it is unsafe to perform a Lane
Change to be overtaking, if we are being overtaken ourselves. The way the data
analysis on the Right BlindSpot Radar works is quite simple, we find the track
which is located the most forward and check its relative position to our vehicle, if
this is far behind enough, we can assume that the Overtaken flag can be raised.
The fact that this data analysis takes into account the Central Radar too is linked
to what we need in order to successfully perform a double Overtake in series, as
will be explained in Section 3.9, where we deal with this kind of maneuvers.

2.8 The Control of the Vehicle
The vehicle receives a sets of two commands, the Acceleration command in percent-
age [−100 100] and a steering angle on the ground in radians

5−35 ∗ π
180◦

−35 ∗ π
180◦

6
,

as already was discussed in Section 2.5. We also want to remember what we also
stated about braking, notice Figure 2.13: for sake of simplicity, we omitted a
braking command, in order to have only a command and in cases where a heavy
braking is needed (States 5 6 and 7), we assume to send the same torque to the
Front Differential as well as the Rear Differential.

2.8.1 The Cruise Control
Among the Driver Assistance Systems, the Cruise Control is probably both the
oldest and the most widely applied systems; in fact, while some speed regulators
were already used in the late XVIII century by James Watt with his flyball governor
[79][79], a Cruise Control System as we know it was developed in the late 1940s
[80][81], even though simpler applications were already around at the beginning of
the XX century.
The working of the base Cruise Controller is quite simple: the difference between
the actual EgoVehicle speed is computed and then fed to a PID controller [82],
which outputs the acc command.
In our particular system, the reference speed is the minimum between the speed
set by the user and 95% of the speed limit, as of Figure 2.30
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Algorithm 6 Right BlindSpot Radar data analysis
function PostProcess(u, u2) ▷ Where u is GNNoutput for the Right
BlindSpot Radar and u2 is GNNoutput for the Center Radar

if u.NumTracks > 0 then
Initialize minX to +1000, speed to NaN
for i=1:u.NumTracks do

if u.Tracks(i).State(1) < minx then
maxX = u.Tracks(i).State(1)
speed = u.Tracks(i).State(2)

end if
if u then.Tracks(i).State(3) > maxy

maxy = u.Tracks(i).State(3);
end if

end for
for i=1:u2.NumTracks do

if u2.Tracks(i).State(1) < minx then
maxX = u2.Tracks(i).State(1)
speed = u2.Tracks(i).State(2)

end if
if u then2.Tracks(i).State(3) > maxy

maxy = u2.Tracks(i).State(3);
end if

end for
if maxX < -3 && speed < 0 then

overtaken = 1
else

overtaken = 0
end if

else
Overtaken, maxX, minX, maxy = NaN

end if
end function
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Figure 2.30: The Simulink blocks of our simple Cruise Control system

2.8.2 The Adaptive Cruise Control
Moving forward from the "basic" Cruise controller, its next step and evolution is
the so-called Adaptive Cruise Controller, which debuted in the 1990s, with the first
application on a road-going vehicle in 1995 on the Mitsubishi Diamante [83].
The working of the ACC is completely different with respect to the traditional
CC: rather than aiming at keeping the EgoVehicle speed constant, it tries to keep
a constant distance between the EgoVehicle and the lead vehicle; moreover, the
variant of ACC that we decided to employ is the so-called Constant Time Gap
(CTG) [84][85] which aims at keeping a constant distance between the ego Vehicle
and the lead vehicle, but in the meaning of a "time distance" rather than "space
distance". Therefore, the desired distance is

Ldes = Vego,veh∆t (2.40)

with ∆t being the desired time gap. The usual value of Time Gap in literature is
around 1 s ([84][85]), but we chose to use a 3 seconds gap, because of our need for
a high safety, given the EgoVehicle will be unmanned and we want to be sure that
no rear-ending occurs: it is true that in our case we would not be subject to the
human reaction time (which is the reason for that 1 second value), but a human
possesses analysis skills that we could not implement in our System, because of
computational cost, which is regulated by the State Machine of Section 2.11. From
the comparison between the desired distance Ldes and the effective distance ∆X
we obtain the spacing error δ

δ = Ldes − ∆X (2.41)

This error is then inserted in a PD (Proportional Derivative) law as found in [84]

a = − 1
∆t(λδ − ˙Ldes) (2.42)

with λ being the main parameter to tune. In Figure 2.31 is shown the block diagram
representing such Control in our system.
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Figure 2.31: The Simulink blocks of our Adaptive Cruise Control system

The main thing which we can see is that - where there should actually be -1/3 as a
gain, is instead present a -20; the reason for this is simple, but can be easily missed:
while in Equation 2.42 the result a is the desired acceleration of the EgoVehicle
(ranging [−10m/s2 10m/s2]), in our case it is the acceleration command, which
ranges [−100 100] and must therefore be much larger.

2.8.3 The Stanley Controller for Lane Keeping Assist
Before starting the discussion of the Stanley Controller, we want to present the
Errors and the Coordinate Systems linked with it; in order to define such Controller
for a Lane Keeping Assist, we need to obtain the Cross-Track Error and the Heading
Error.

Figure 2.32: The Cross-Track and Hading Error

The Cross-Track Error

With Cross-Track Error is indicated the lateral distance between the center of the
front axle and the Trajectory to be followed [35][86], which is - in our case - the
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centerline of the Lane we want to stay in (this won’t be true for the Overtake
maneuver as will be stated later in the corresponding Sections).
The definition of the Cross-Track Error as the difference between the actual position
and the reference position

ect = yact − yref (2.43)

meaning that, the Cross-Track Error ect is positive in consequence of an EgoVehicle
which is moved to the left of the Lane compared to its centerline and of course
a negative ect is linked to an EgoVehicle moved to the right. It is to be noted,

Figure 2.33: An example of the ect from the Bird’sEye view: in blue the parts of
the road where ect is negative, in red where it is positive. Greyer colours refer to
the Overtake Lane

however, that the way we obtain the Cross-Track Error as well as the Heading
Error from the Camera data analysis of Section 2.7.4, the Errors we obtain are
exactly the opposite of the definition ones.
Let’s take as example a case where the EgoVehicle is moved 30 cm towards the
left of a Lane 3 m wide, the Cross-Track Error is supposed to be +30 cm, but our
Algorithm would receive the following information:

• Left LaneMarking Lateral Offset: +1.20 m

• Right LaneMarking Lateral Offset: -1.80 m

which would lead to a result of -0.30 m.
This excursus was needed in order to show why the block diagram differs from the
theoretical formulation.

The Heading Error

In a similar way, the Heading Error is obtained as the difference of the actual yaw
position and the target yaw position

eh = ψact − ψref (2.44)
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Because of the definition, a positive eh is correlated to a Scenario in which the
EgoVehicle is going too much towards the left, with a negative eh correlated to
an EgoVehicle going towards the right; as for the ect, the errors output from
the Camera block are actually their coordinates in the Reference Frame centered
on the EgoVehicle origin, leading to the Errors we get being of opposite sign.

It is to be noted that this Stanley is applied on an already defined Path, which
is implicitly defined if our goal is just to follow the centerline of our Lane and
explicitly defined (Sections 2.9 and 2.10) in case we need to change the Lane we
are in.
The equation at the base of our System is the "traditional" Stanley Controller,
which can be seen for example in [35] and we reported in Equation 2.45. We want to
highlight that the values of ect and eh used in such Equation are the ones obtained
in the Simulink model from the Camera block, i.e. opposite to the real values of
ect and eh which will be used for reports in Section 3

δ = eh + atan
3
Kect
V + Vϵ

4
(2.45)

where K is a tuning factor which we imposed as 1.5 while Vϵ is a small velocity in
order to avoid computational errors in case of very low EgoVehicle speed.

2.9 The Overtake Path Planning
In this Section, we are going to discuss the argument giving the title to this whole
thesis work: the Path Planning for the Autonomous Overtaking.
As we have already said in Section 1.3.3, the Path Planning algorithm of our choice
is going to be the Sigmoid, as was presented by [43][44][45]. The reasons for this
choice were, as already stated, the freedom of movement and the low computational
cost involved with them, other than the customisability allowed by the factor K.

2.9.1 First step: simplified Sigmoid Planning for DSTP
model

To begin the discussion, we are going to report here the equation 1.12 with a
slightly different formulation:

y = Yw
(1 + eK(x−Sm)) (2.46)

This is the equation that we used in the Sensitivity Analysis of Section 2.1, where
our EgoVehicle was a simple DSTP model (Section 2.2).
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During the first studies on the Sensitivity Analysis we used a simple approach and
assumed the coordinates to be global: this means that we extracted the position of
both the EgoVehicle and the leading vehicle from their own DSTP models and then
computed their relative distance and speed starting from these; in order to "mimick"
a real world application, we built the Simulink block for the Sigmoid computation
with ∆x, ∆V and so on as inputs, nevertheless, it was a very primitive attempt.

Even though this attempt was very simple and was working only in Global

Figure 2.34: A scheme of the different lanes

coordinates and on a straight, it already had in nuce some elements that were later
kept in the final version:

• First of all, the concept that the Sigmoid Curve is not floating in the middle
of nowhere, but is an interpolant curve between the center of the Own Lane
and the center of the Oncoming Lane.

• The Vgoal setting is similar to what we have chosen to do in the State Machine
State 3 (OVERTAKE) discussed in Section 2.11.3: in order to minimize the
time spent in the Oncoming Lane, we should accelerate up to the Speed Limit
while we approach the leading vehicle that we decided to overtake.

• The flag starting at 1 and later dropped to 0 is enabling the block containing
this very same function: this means that until the EgoVehicle is close enough
to the car in front we keep recomputing new Sigmoid Curves and once we
are close enough that we should be already some cm moved to the left
(if LaneWidth

1+exp(K·−ξ) > LaneWidth/100) we "freeze" the Sigmoid Curve and employ
that one. This concept - albeit modified - was carried over to the final model.
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Algorithm 7 Simplified Sigmoid
function Sigmoid(V, x, LaneBoundaries,Kvec, Vvec,∆X) ▷ where Kvec, Vvec
are the interpolants from Section 2.1

K = interp(Vvec, Kvec, V )
dsafe = (V − ∆V ) · 1 ▷ where ∆V is positive if we are faster
Let x be an array of 333 values from x− ∆V · 5 to x+ ∆V · 25
OwnCenter = LaneBoundaries{1} ▷ where LaneBoundaries is a

struct containing two 333x2 matrices for the centers of the OwnLane and the
OvtLane

OvtCenter = LaneBoundaries{2}
LaneWidth = mean(OvtCenter(: ,2) −OwnCenter(: ,2))
ξ = −∆X + dsafe
if LaneWidth

1+exp(K·−ξ) > LaneWidth/100 then
x = OwnCenter(: ,1)
path = LaneWidth

1+exp(K·−ξ)
Y = OwnCenter(: ,2) · (1 − path) +OvtCenter(: ,2) · path
θ = atan2(diff(Y ), diff(x)
Poses = [x, Y, θ]
flag = 0
Vgoal = V

else
Poses = [x, Y, zeros(333,1)]
flag = 1
Let Vgoal be the limit speed

end if
end function
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As said, however, this approach was completely unfeasible in a model like the one
we intended to use for the Full Vehicle testing, where the errors are not directly
computed from comparison between the position and the centerline, but obtained
through the Vision Detection Generator Simulink block, i.e. through a Camera
detecting the Lane Boundaries. Because of this, we had to move from this global
approach to a local approach based on the correction of the Controls discussed in
Section 2.8.3. Nevertheless, we decided to comment the first solution because of its
close relation with what we applied in the end.
As will be later pointed out in Section 2.11.3, as soon as the EgoVehicle exits from
State 1 (STAY) to move either in State 2 (WAIT) or in State 3 (OVERTAKE), the
car is forced to move towards the left of a quantity equal to OwnWidth/4: this will
be relevant later on, when discussing our implementation of the Sigmoid Curve.

2.9.2 Definitive model: the Sigmoid for the Full Vehicle
model

The main change to enact from the first simplified attempt was to move from
global to a local system of coordinates, given that in a real application it would
not make sense otherwise, as there would be no univocal origin and direction and -
at the same time - the position of the leading vehicle would be given directly in
a local Reference Frame. To do so, we defined a new Reference Frame, in a way
similar to the one employed by [44] in its Figure 3 (Figure 2.35 of this thesis work):
our Reference Frame is centered in the center of the rear bumper of the lead vehicle
with the x axis orthogonal to said bumper and the y axis directed towards the
Oncoming Lane, therefore the ∆X relative distance is going to be the x of this
Reference Frame, which is displayed in Figure 2.36.
Following the approach of [44], shown in Figure 2.37, one of the constraints that

we set for the computation of the Sigmoid Curve was that when the EgoVehicle
is at a distance ∆X = safedistance from the lead vehicle, the lateral position
is on the boundary between the Own Lane and the Oncoming Lane, which would
correspond to a ect = OwnWidth/2.
Therefore, we turned the Equation 2.46 into a function y = f(∆x) as in Equation
2.47:

y =
OwnW

4 + OvtW

2
(1 + e−K(dsafe+ξ)) (2.47)

Remembering that the EgoVehicle should already be moved towards the left of
the EgoLane and the safety requirement of [44], we can rewrite Equation 2.47 to
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Figure 2.35: "(a) Sigmoid function with variable x ∈ (−∞,+∞). (b) Overtaking
path (black) composed of y1 (red) and y2 (blue). w = 0.4, dsafe = 4andµ = 1".
From Figure 3 of [44]

Figure 2.36: Reference Frame as we defined it

obtain ξ:

ξ = −dsafe +
ln
A

2OvtW
OwnW

B
−K

(2.48)

where K is obtained by interpolation as in the Algorithm for Simplified Sigmoid
and dsafe is obtained by multiplying the speed of the vehicle V by 1 second: this is
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Figure 2.37: Figure 1 of [44], depicting the shape of the Sigmoid in relation to
the safe distance

a large difference with respect to the solution of [44], which instead proposed

dsafe = ∆V · ts (2.49)

Such large difference is motivated, once again by our desire for safety, as the
EgoVehicle should be working in an unmanned mode. Apart from this, the only
difference lies in the fact that our Lane Change maneuver should span a narrower
range, approximately 25% narrower, because of the fact we suppose to already be
near the Boundary Line, while the safety constraint of being on said Boundary
Line is kept immutated.
While we remain in the State 3 (OVERTAKE), the factors K and ξ are recomputed
until the flag is dropped in a way similar to what done in Section 2.9.1, once the flag
is dropped K and ξ are "frozen" and kept constant for the remainder of the Lane
Change maneuver in the Overtake phase; in order to check if the flag is dropped, a
test similar to the one displayed in the PseudoAlgorithm of Section 2.9.1 as in the
following Equation 

y(∆x) =
OwnW

4 + OvtW

2
1 + e−K(∆x+ξ)

y(∆x) > OwnW

100

(2.50)

The flag, as in Section 2.9.1, enables the Matlab function of the algorithm before,
when it is not enabled, K and ξ are held constant and fed into a second block
function, which corrects the ect and eh which we receive from the Camera, to be
sent to the Stanley Controller, as of Figure 2.38 One final remark about this local
approach in opposition to the global approach of Section 2.9.1 is that, without
the definition of a Global Path, we are able to perform it in real life, where it is
difficult to have a completely straight road as was needed in that first step or an
explicit formula describing the trajectory of the road, which would indeed be a
very strict demand.
In order to prove such claim, we defined a dedicated Scenario, the Corner Overtake
Scenario.
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Algorithm 8 Final Sigmoid
function Sigmoid(V, x,OwnW,OvtW,Kvec, Vvec,∆X) ▷ where Kvec, Vvec are
the interpolants from Section 2.1

K = interp(Vvec, Kvec, V )
dsafe = V · 1s
Compute ξ from Equation 2.48
if Equation 2.50 is true then

flag = 0
else

flag = 1
end if
output K, ξ

end function
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Figure 2.38: Simulink block from the Overtake section of our model

2.10 The Go Back Path Planning
Compared to the Overtake maneuver, the Go Back maneuver is simple: other than
the fact that we can not rear end the leading vehicle - though we could still be rear
ended ourselves in case the Leading/now Trailing Vehicle suddenly accelerates -
we have also less troubles with the Lane Detection, since the presence of the lead
vehicle can occlude the Camera vision of the Lane Markers, it is also easier because,
without a leading vehicle, we can simply plan the Path to be followed as a function
of x and not anymore as a function of ∆X.
This means that we can get rid of the range check of Equation 2.50 and define the
Sigmoid Curve once and for all, to be followed immediately as soon as we enter into
State 6 (GO BACK), since we have no leading vehicle as reference; this means that,
instead of computing a new Sigmoid every time, with its K and ξ, we compute it
just once, as we can see from the comparison between their Block Diagrams.
(Figures 2.38 and 2.39)
Furthermore, another difference is the variation of the K factor interpolants (see
Section 2.1 for more details) and the fact that, given the fact that we employ the
x position of the EgoVehicle instead of the ∆X from the leading vehicle (since
there is no leading vehicle anymore), we need to integrate twice the longitudinal
acceleration of the EgoVehicle (in a real application this could be performed with
an IMU or an INS as in [30]) to obtain the approximated x value since we obtain
the total length of the Path followed by the EgoVehicle, instead of its projection
along the global X axis.
Apart from these differences, the procedure is the same, with the Sigmoid Curve
simply reverted from Equation 2.47

y(x) =
OwnW +OvtW

2
1 + eK(x−dsafe) (2.51)

As we can see, the x at exponent is not preceded by the − sign, meaning that the
y value decreases going forward; it is also important to notice that the width of
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Figure 2.39: Simulink block from the Go Back section of our model

the Sigmoid is OwnW +OvtW

2 instead of OwnW4 + OvtW

2 , this means that the
Sigmoid Curve traces a path leading the egoVehicle to go back to the centerline of
the OwnLane, instead of going back to the "waiting" position close to the boundary
between Own Lane and Overtake Lane.

2.11 The State Machine
This Section is going to deal with the Decision Making performed by our System
during its execution. The Decision Making is performed by mean of the control
of the States of a Finite State Machine; the idea of using a State Machine, as an
evolution of the first draft which was based on raising Flags called "overtaking",
"going back" and so on, was inspired by [87], where the Deep Q-Learning Neural
Network is moving in a so-called "action space" (Figure 2.40).
The main difference between our State Machine and the Action Space of [87] is

Figure 2.40: "Definition of DQN action space" from Table II of [87]

that, while those Actions describe particular maneuvers, we chose to create our
States with regard to particular conditions experienced by the EgoVehicle during
the travel and the State itself will deal with the decision to accelerate or slow down.
Below are our 7 States.

• State 1: STAY. Is the "standard state", where generally the FSM will
converge.

• State 2: WAIT. Is a transition state, after we had to abort an overtake or
before we can perform one.
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• State 3: OVERTAKE. Is the state which draws the Overtake Path and
controls its following.

• State 4: EMERGENCY OVT. Is the state where we move if the Ovt-
Counter is triggered and it is not possible to abort any more.

• State 5: ABORT. Is the state where we move if the OvtCounter is triggered
while we begin the Overtake.

• State 6: GO BACK. Is the state drawing the Go Back path and ensuring
that we follow it.

• State 7: BRAKE. Is the emergency state, calling for a sharp brake. It is
also the default State (for safety reasons).

Figure 2.41: The scheme of our State Machine, with the Multiport Switch
selecting the correct commands

Figure 2.41 shows the Simulink implementation of the State Machine: each State
has its corresponding enabled block, which outputs a vector of commands [acc, δ]:
the Multiport Switch selects the correct vector according to the selected State. We
use the FSM to juggle between the different states which, in turn, use different
controls among the ones presented before: below, we are going to present the States
one by one, each with its controls and the possible Next State.

2.11.1 State 1: Stay
As said in the list of all the States, this is the State to which the EgoVehicle will
generally converge. Is the State in which our vehicle stays in the OwnLane, as said
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Figure 2.42: A simplified version of the Finite State Machine relations

by the name itself, be there a leading vehicle or not; in case there is no leading
vehicle, the longitudinal control is the traditional Cruise Control, which has, as
target, the lowest value between the V elDes (target speed set by the user) and 95%
of the Limit Speed, as said in Section 2.8.1; if, on the contrary there is a leading
vehicle which is keeping a reasonable speed, so that our Vehicle does not lose too
much time in following it, the longitudinal control is instead the ACC, in order to
avoid rearending accidents with the lead vehicle. The selection between these two
options is based on a Switch, which is enabled by the following proposition:

Leading ∧ Followable

where Followableis

Vlead ≤ min
1
V elDes+ 2, 0.95V lim

2
(2.52)

which is translated into block diagram by Figure 2.43. Below are listed the
parameters of the 1 Hz PID employed on the simple Cruise Control branch:

• Proportional: -10

• Integral: -2

• Derivative: 0

• Filter coefficient: 100

While the longitudinal control is more complicated, with different options in case of
leading vehicle, too fast leading vehicle or being alone, the lateral control is much
more simple, carried out by a base Stanley Controller as described in Section 2.8.3.
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Figure 2.43: The Simulink block diagram representing the longitudinal Controls
in State 1 (STAY)

Next State

The Next State is regulated by the Next State function, which - by mean of a
switch function - selects the Next State according to the Current State and to the
environment surrounding the EgoVehicle.
Since this is the same for all the 7 States, we wanted to give out this brief explanation,
which will not be repeated for the latter States. In Figure 2.44 we can see the block
diagram referred to the Next State selection, while the Matlab code itself will be
discussed State by State. In case we are above the speed limit V lim or we are too
close to the leading vehicle, we will want to move to State 7 (BRAKE); in our
system, we also had to add a &&OvtCounter to the Time To Collision branch,
because otherwise - in Scenarios where the EgoVehicle needs to overtake as soon as
the Scenario starts - it would create problems due to fringe situations.
If we do not need to brake immediately, we need to check on the speed of the lead
vehicle (computed in the block by mean of EgoVehicle speed and radar signal ∆V :
if the lead vehicle is too slow for us, we will move into one out of 2 possible states,
according to whether an Overtake maneuver is possible; if so, we will move to
State 3 (OVERTAKE), otherwise we will move to State 2 (WAIT).
However, it is not only polite, but also compulsory to occupy the rightmost Lane
[88] comma 5, so we would like to avoid being unnecessarily in the Overtake Lane.
Because of this, a last check we perform is related to the Lane Number: if it is
higher than 1 (Figure 2.29), we want to enter into State 6 (GO BACK). If none of
the above checks are true, the EgoVehicle remains in State 1 (STAY).

2.11.2 State 2: Wait
This State is the one where the EgoVehicle generlly is when we WANT to overtake
the lead vehicle, but we actually CAN’T overtake because of the environment
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Algorithm 9 Next State for State 1 (STAY)
function NextState(State, OvtCounter, OvtCompleted, Lane, Vlim, ∆V,∆x,
VelDes, ect, eh, OwnW)

Retrieve VEgo
TTC = −∆X

∆V
V lead = V Ego+ ∆V
if V Ego > V lim||(TTC < 1.5&& OvtCounter) then

NextState = 7
else if V lead < min

1
V elDes, V lim

2
− 2 then

if O thenvtCounter
NextState = 2

else
NextState = 3

end if
else if Lane > 1 then

NextState = 6
else

NextState = 1
end if
Output NextState

end function
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Figure 2.44: Block diagram of the Next State selector

around us (e.g. Solid Lane Marker or oncoming vehicles). Since this State is
intrinsically linked to the presence of a lead vehicle, the Longitudinal Control is of
course the Adaptive Cruise Control with the same gains as the one employed in
State 1 (STAY), which are the ones described in Section 2.8.2: while in the State
1 (STAY) we had to first of all check that the lead vehicle is followable (Figure
2.43, the fact that we are in State 2 implies that the lead vehicle is slow
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indeed, as we want to overtake it. In case the lead vehicle suddenly accelerates
and goes above our desired speed V eldes or the speed limit V lim, the Next State
will make the State move immediately to State 1 (STAY).
On the other hand, the Lateral Control sees a change from the "base State", which
is State 1 (STAY): the Cross-Track Error ect is in fact corrected by a percentage of
the LaneWidth as in Equation 2.53

ect,corr = ect + 0.25OwnWidth (2.53)

It is important also to note that the ect used in this Equation follows the coordi-
nate system of our Block Diagram, i.e. opposite to the "correct" one,
due to how the errors are computed from the coordinates of the Lanes in Camera
data analysis (Section 2.7.4): this means that a positive ect in the Simulink block
corresponds to a real negative ect and as such will be presented in the Results
Section, Section 3; in this way, the EgoVehicle will be stable with a Cross-Track
Error equal to −0.25OwnWidth, i.e. +0.25OwnWidth in the Real Coordinate
System (Figure 2.33). With a LaneWidth of 3 m, the ect will be -0.75 m, which
means that the Left Boundary will be placed at +0.75m, while the Right Boundary
will be located at −2.25m.

ect = LeftOffset+RightOffset

2 = 0.75 − 2.25
2 = -0.75 (2.54)

The reason for this choice lies in the need to have an open unoccluded view of the
Oncoming Lane in order to spot oncoming vehicles and at the same time to be
already close to the Overtake Lane, so that the Overtake maneuver is faster.

Figure 2.45: Block diagram of the Lateral Controller with the correction to force
the EgoVehicle to stay close to the LaneMarker

Next State

The previously mentioned Next State function is used to compute the NextState
also in case we are in the State 2 (WAIT), as is for every single State. Once again,
as was the case for State 1 (STAY), the first check we perform is Safety-related; in
fact, we first of all check the Time To Collision from the LeadVehicle as well as the
speed limit V lim: if we are not in safe conditions, we move immediately to State
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7 (BRAKE).
Otherwise, we then check if the desired Overtake is now possible as well as neces-
sary, in which case we move to State 3 (OVERTAKE); the last check is on the
followability of the lead vehicle, as we said at the beginning of Section 2.11.2: if
the lead vehicle suddenly accelerates or disappears (because for example the lead
vehicle turned off the road), we move back to the State 1 (WAIT); this is also
needed as we will fall into State 2 (WAIT) when exiting of the State 6 (GO BACK)
and there will probably not be a lead vehicle after the Overtake.
We also want to highlight that we removed, from this State’s NextState determi-
nation, the possibility to move into the rightmost Lane in case we are not in it:
while it is compulsory by law to occupy the rightmost Lane, in this case we would
be faster than the lead vehicle, since - once we move to the rightmost Lane - the
Lead vehicle would not be in range anymore and we would accelerate to our target
speed V elDes: this would lead to us overtaking on the right the slower
lead vehicle, which is extremely dangerous and much more prohibited
than occupying the Overtake Lane in the highway when the rightmost
Lane is available.

Algorithm 10 Next State for State 2 (WAIT)
function NextState(State, OvtCounter, OvtCompleted, Lane, Vlim, ∆V,∆x,
VelDes, ect, eh, OwnW)

Retrieve VEgo
TTC = −∆X

∆V
V lead = V Ego+ ∆V
if V Ego > V lim || (TTC < 1.5 && OvtCounter) then

NextState = 7
else if OvtCounter == 0 & &

1
V elDes, V lim

2
− 2 then

NextState = 3
else if V lead > V elDes− 2 || isnan(V lead) then

NextState = 1
else

NextState = 2
end if
Output NextState

end function
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2.11.3 State 3: Overtake

This State is by far the most important of the 7 States we are discussing as well
as the most complex in terms of Controls, as the State 3 (OVERTAKE) is the
"core" of the whole System, controlling the EgoVehicle in creating the Sigmoid and
performing the Overtake.
We begin by commenting the Longitudinal Controls, which is a simple Cruise
Control, as we do not need to accelerate to the Speed Limit V lim in order to
perform the Overtake, as the lead vehicle is traveling considerably below the desired
speed. Therefore, the Longitudinal Control is basically the same as the one depicted
in Figure 2.43, with the elimination of the Followable check and the ACC removed,
as of Figure 2.46.

Figure 2.46: Block diagram of the Longitudinal Controller for the Overtake State

The Overtake: Sigmoid Creation

The most complicated part of the Controller for what concerns the State 3 (OVER-
TAKE), however is the Lateral Control, given that the EgoVehicle has to perform
a Lane Change and that is indeed challenging; in order to build a system as simple
as possible, we wanted to enforce such Lane Change by mean of the usual Stanley
Controller and we managed to do this by "correcting" the errors given by the
Camera (Section 2.7.4) through the Sigmoid Curve (Section 2.9.2, in a further
development of what was already commented in the Section relative to the State 2
(WAIT) Controls (Section 2.11.2). The Simulink block diagram in charge of this
maneuver has alredy been displayed in Figure 2.38, but we want to report it here
for the sake of clarity. As already said in Section 2.9.2, the first block, which is
enabled by a Flag, is in charge of computing the factor K and the ξ translation
value, which is then fed to the second block, which is always executed as well as
out of the State 3 (OVERTAKE) block. Once the EgoVehicle is close enough to
the lead vehicle to have a Sigmoid Curve value high enough as of Equation 2.50,
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Figure 2.47: Simulink block from the Overtake section of our model

here recalled 
y(∆x) =

OwnW

4 + OvtW

2
1 + e−K(∆x+ξ)

y(∆x) > OwnW

100

(2.50)

the flag drops and K and ξ are freezed.
The core of this Lateral Control is in the second Matlab function, which is tasked
with the correction of ect and eh, which starts as soon as we enter into State
3 (OVERTAKE): in fact, just like we do in State 2 (WAIT), we want to move
our EgoVehicle on the left border of the Lane, in order to have a fast Overtake
maneuver. The full correction Algorithm is as follows.

Next State

The most important difference with the "Next State" from the previous 2 States
we commented, STAY and WAIT, is that in no condition we move into State 7
(BRAKE), since during the Overtake maneuver the speed limit is not the most
concerning factor anymore, since we want to Overtake as fast as possible and the
Speed difference is not so much dangerous since we will change Lane or we have
done so already.
A check similar to the one leading to State 7 (BRAKE) is still in place, but leading
to State 5 (ABORT), from which we will eventually move into State 7 (BRAKE):
this happens if the lead vehicle is faster than us and at the same time is close to
our desired speed V elDes, since in this case we do not need anymore to overtake
it.
If the lead vehicle has not increased its speed, the next check we perform, for
Safety reasons once again, is on the value of OvtCounter: if the OvtCounter gets
raised while we have not completed the Overtake yet, we then perform a basic
check on what is safer, whether to abort the Overtake Maneuver and go back to
the OwnLane - State 5 (ABORT) - or to push hard on the gas to complete the
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Algorithm 11 Error Correction for Lane Change
function Correction(Delta_x, OwnWidth, OvtWidth, ey, epsi, Lane, Flag,
K, xi, latDist) ▷ where K, xi are given from the first block

if Flag == 1 then
TrueLatE = ey + 0.25OwnWidth
TrueHeadE = epsi

else
Compute y(Delta_x) from Equation 2.50
Compute y_next = y(Delta_x− 1) from Equation 2.50
θ = atan

3
y_next− y

−1

4
if Lane == 1 then

TrueLatE = ey + 0.25OwnWidth+ y
TrueHeadE = epsi− θ

else
TrueLatE = ey + −0.5OwnWidth− 0.5OvtWidth+ y
TrueHeadE = epsi− θ

end if
end if
if isnan(Delta_x) then

TrueLatE = ey
TrueHeadE = epsi

end if
end function
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Overtake as fast as possible - State 4 (EMERGENCY OVT) - and reenter in
the OwnLane without the lead vehicle in front of us, because if we went back
to the OwnLane while still behind the lead vehicle we would risk rear
ending it.
If everything is fine and there are no Safety concerns, we then check the Overtaken
Flag, in order to know if we can consider concluded the Overtake maneuver or not;
it is also important to highlight the test condition on the branch moving to State
6 (GO BACK): in fact we need to be in Lane 2 to start the Go Back maneuver
from State 3, otherwise we would risk getting a Go Back maneuver triggered by
every Vehicle parked on the side of the road.

Algorithm 12 Next State for State 3 (OVERTAKE)
function NextState(State, OvtCounter, OvtCompleted, Lane, Vlim, ∆V,∆x,
VelDes, ect, eh, OwnW)

Retrieve VEgo
TTC = −∆X

∆V
V lead = V Ego+ ∆V
if V Ego < V lead & & V lead > V elDes− 2 then

NextState = 5
else if OvtCounter > 0 & &

1
OvtCompleted ==

0||isnan(OvtCompleted)
2

then
if Lane == 1&&TTC > 2 then

NextState = 5
else

NextState = 4
end if

else if OvtCompleted > 0 & & Lane == 2 & & isnan(V lead) then
NextState = 6

else
NextState = 3

end if
Output NextState

end function

2.11.4 State 4: Emergency Overtake
This State is a particular modified version of the State 3 (OVERTAKE) in which
we enter in case we need to complete an Overtake maneuver as fast as possible,
because we can not back down. It is to be noted, from Figure 2.48 that in this
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State we do not have two Matlab function blocks as in the regular Overtake block
diagram (Figure 2.38): this is because, if we are in such condition, we are in the
Overtake Lane or anyway we have at least passed the distance at which K and ξ
are freezed: because of this, the two values are coming from outside of the State 4
(EMERGENCY OVT) block, notably from the block 3, which is now not enabled
and therefore is holding the values for K and ξ, so we only need the second part of
the Error Correction block series.
We must note - however - that for the Lateral Control this block is exactly the

Figure 2.48: Simulink block from the Emergency Overtake section of our model

same as what we would have got with the base State 3 (OVERTAKE) Control block;
what is different is the fact that the Longitudinal Control is not anymore performed
by mean of a Cruise Control, but simply stating that the acceleration command
must be as high as possible, as we need to get out of the Oncoming Lane as fast
as possible, since the OvtCounter is raised and therefore we are in a dangerous
situation, either because of an oncoming vehicle or because of a Continuous Lane
Marker, which is drawn on the road in situations of danger.

Next State

Among all the Next State cases, this is by far the simplest, as we can exit from this
State only if we have completed the Overtake maneuver: in such case, we would be
moving to State 6 (GO BACK), while otherwise we will keep staying in State
4 (EMERGENCY OVT)

2.11.5 State 5: Abort
This State is the one that probably put us in the hardest condition: this is because,
while in STAY, WAIT etc we are more or less in the same conditions every time, we
can enter in the State 5 (ABORT) while being in many several different conditions,
for example:
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Algorithm 13 Next State for State 4 (EMERGENCY OVT)
function NextState(Overtaken)

if Overtaken then
NextState = 6

else
NextState = 4

end if
Output NextState

end function
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• We can enter in this State while we are still very far from the lead vehicle, the
Sigmoid Curve is still outputting very low y value - i.e. we do not need to
start the Lane Change yet - and so in this case we only need to move to State
2 (WAIT) and it does not require much more.

• We can enter in this State while we are steering towards the left but still well
in the Own Lane, just requiring to correct the Steering and go back to the
position on the Lane Boundary.

• We can enter in this State while we are almost crossing the Lane Boundary,
therefore requiring a heavy steering correction with just a small TTC, just
high enough not to trigger the State 4 (EMERGENCY OVT)

Because of this great mix of possible conditions, tuning the controls and in general
the aim of this particular State was not easy for us and in the end we settled
for a condition which should, in our concept, lead to the EgoVehicle being in the
"waiting position", i.e. on the Left Boundary of the Own Lane, especially given the
"NextState Algorithm" for State 3 - the only State leading to State 5, as of Figure
2.42 - which leads to State 5 only in case we are still in the Own Lane: if we are
already in the Oncoming Lane, in fact, we are sent into State 4 (EMERGENCY
OVT) as there is no Vlead computed, given no signals from the Radar (as said in
Section 2.7.5, the reason of which will be further clarified in Section 3.9). Because
of this, the Lateral Control of the EgoVehicle in this State is taken from the State
2 (WAIT) with the same corrections and the same gains on Stanley Controller.
On the other side, since this is one of the 3 States in which we are likely to be
braking quite heavily or to be in need to slow down anyway (5 - 6 - 7), we set the
Longitudinal Controller to be keeping the front tires slip at around -0.2, which
is the value giving the higher longitudinal force Fx, as well as the fact that we
are applying braking torque on the rear axle as well, as stated in Section 2.8 and
visible in Figure 2.13. Here are the parameters of the 10 Hz PID in charge of the
Longitudinal Control:

• Proportional: -125

• Integral: -45

• Derivative: 0

• Filter coefficient: 100

It is to be highlighted that the higher coefficients compared to the previous PID
(Section 2.11.1) is due to the fact that here the errors fed to the PID are errors on
the slip and not on the speed, so orders of magnitude lower.
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Next State

Since we have previously been in State 3 (OVERTAKE), the first check we perform,
even before the usual Safety check on the Time To Collision is the one on the
possibility of Overtaking: if it is possible and at the same time we want to
overtake, the State moves back into State 3 (OVERTAKE); otherwise, if we
are in the OwnLane and we are close to the "waiting position", we move into State
2 (WAIT). If we on the other hand are having troubles with the safety distance
from the lead vehicle, we move into the State 7 (BRAKE), while in every other
case we remain in State 5 (ABORT).

Algorithm 14 Next State for State 5 (ABORT)
function NextState(State, OvtCounter, OvtCompleted, Lane, Vlim, ∆V,∆x,
VelDes, ect, eh, OwnWidth)

Retrieve VEgo
TTC = −∆X

∆V
V lead = V Ego+ ∆V
if OvtCounter == 0 & & V lead < V elDes− 2 then

NextState = 3
else if Lane == 1 & & abs

1
ey+0.25OwnWidth) < 0.01OwnWidth

2
then

NextState = 2
else if TTC < 1.5 then

NextState = 7
else

NextState = 5
end if
Output NextState

end function

2.11.6 State 6: Go Back
This State is tasked with the Lateral and Longitudinal Controls needed in order
to move the EgoVehicle back to the normal position we would expect, i.e. to the
centerline of the OwnLane, once the Overtake has been completed.
For what concerns the Lateral Control, the principle is the same we applied for the
Overtake (Section 2.11.3) and the Emergency Overtake (Section 2.11.4, given that
all of these States require the EgoVehicle to perform a Lane Change; therefore,
as shown in Figure 2.49, the block diagram is composed of the Sigmoid Creation,
used to correct the Errors coming from the Camera, and the Stanley Controller,
fed by the aforementioned Errors in order to follow the created Sigmoid.
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The fact that there is only a single Sigmoid Block, instead of the two present in

Figure 2.49: Simulink block from the Go Back section of our model

State 3 (OVERTAKE), is not due to the fact that K and ξ are freezed, as is in
the State 4 (EMERGENCY OVT) block, but to the fact that we actually do not
need to freeze them: since the Sigmoid is not a function of the relative distance
anymore, but just of the longitudinal distance we ran, we can keep computing the
y value during the run. In general, this State is enacting what was already pointed
out in Section 2.10 for what concerns the Lateral Control.
Since we might have entered into Go Back State from both State 3 (OVERTAKE)
and from the more aggressive State 4 (EMERGENCY OVT), we might be well
in excess of the speed limit and our desired speed: for this reason, State 6 just
like State 5 and 7 "simulates" the braking by applying the same negative torque to
the rear wheels too (Figure 2.13). The PID is different from the ones employed
in Section 2.11.1, which has the same working principle and is working at 10 Hz,
below are the coefficients:

• Proportional: -20

• Integral: -4.5

• Derivative: 0

• Filter coefficient: 100

Next State

In order to understand why we do not account for the presence of a lead vehicle in
this computation of the Next State, we must remember what was stated in Section
2.7.6: in fact, in order to raise the Overtaken Flag, the Central Radar must not
be detecting any leading vehicle (as is seen in the Multiple Overtake Scenario in
Section 3.9), therefore it is extremely unlikely that in the Go Back maneuver we
detect such LEading Vehicle. The only way out of the State 6 (GO BACK) is to
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State 2 (WAIT) in case the EgoVehicle is steadily back on the centerline of the
Own Lane.

Algorithm 15 Next State for State 6 (GO BACK)
function NextState(Lane, ey, epsi)

if Lane == 2 then
NextState = 6

else if abs(ey) < 0.01 & & abs(epsi) < 0.1 then
NextState = 2

else
NextState = 2

end if
Output NextState

end function

2.11.7 State 7: Brake
This State is the last of the 7 States that we defined for our Decision Making State
Machine, as well as the Default State selected by the Multiport Switch (Figure
2.41) in case of failure; this was chosen by us because we wanted to be as safe as
possible and, in case of failure, we prefer to be locked into a permanent braking
maneuver rather than into an overtake maneuver or even worse into an emergency
overtake, which has the acc command locked to 100 (Section 2.11.4).
Regarding the Longitudinal Controls, the Control we selected follows the same
working principle as the State 5 (ABORT), i.e. a PID trying to keep the slip of the
front axle as close as possible to -0.2, with the same torque applied to Front and
Rear wheels (Figure 2.13), with the following coefficients:

• Proportional: -20

• Integral: -4.5

• Derivative: 0

• Filter coefficient: 100
For what concerns the Lateral Controls, the selected System is the simple Stanley
Controller, without any Sigmoid-based correction, as presented in Section 2.8.3.

Next State

Because of the severe Safety issues correlated to this State, there is only a way
out of this State, i.e. in case the need for Braking is exhausted: to fulfill this
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requirement, we need to be at the same time well below the speed limit V lim
as well as with a significant gap from the lead vehicle, meaning that the risk of
rear-ending has passed. In this case, we will move to State 2 (WAIT).

Algorithm 16 Next State for State 7 (WAIT)
function NextState(State, OvtCounter, OvtCompleted, Lane, Vlim, ∆V,∆x,
VelDes, ect, eh, OwnWidth)

Retrieve VEgo
TTC = −∆X

∆V
V lead = V Ego+ ∆V
if V Ego < 0.85V lim & &

1
TTC > 5 || isnan(TTC)

2
then

NextState = 2
else

NextState = 7
end if
Output NextState

end function
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Experimental Results

In this section, we will present and discuss the graphs with the results, Scenario
by Scenario, in order to show that the Controls have been tuned to work and the
State Machine we have defined in Section 2.11 is working.

3.1 ACC_Scenario

Figure 3.1: State Machine during the ACC_Scenario run

By looking at Figure 3.1, we can see that the State is constantly 1 (STAY),
until around the 28 second mark, when the EgoVehicle arrives in the range of the
leading vehicle, as is also confirmed by Figure 3.2 where the Leading flag is raised
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Figure 3.2: Leading Flag during the ACC_Scenario run

around the same time. Once the flag is raised, the State passes into 2 (WAIT),
coherently with what we stated in Section 2.11.1.
Because of what we decided for the WAIT State, as soon as we enter into such
State, the EgoVehicle begins a quick turn to the left, in order to move close to the
Centerline, so that it is ready to perform an Overtake and - at the same time - its
Left Side Radar is not occluded by the Lead Vehicle, so we can more easily spot
an eventual oncoming vehicle.

The drop in speed at the beginning of the simulation is due to the fact that
the initial value for the acceleration command is 0, as stated in Section 2.4.1;
meanwhile, in a rather counterintuitive way, the entrance of the EgoVehicle into
the WAIT State marks a sharp increase of the speed (Figure 3.3): the reason for
this lies in the fact that the ACC is not a simple Adaptive Cruise Control aiming to
keep a constant distance between us and the leading vehicle, but rather a Constant
Time Gap, which aims to keep a gap of 3 seconds between the two vehicles, i.e. a
variable distance between the two vehicles, equal to 3 times our speed, as defined
in Section 2.8.2. This space is much larger than the usual 1 second [84][85] which
is dictated by the human time of reaction: this is because, since our EgoVehicle is
unmanned, we cannot allow to have such a small safety distance, because errors or
failures in the radar might be unresponded by a Driver just acting as a passenger.
Moreover, the "strange" acceleration is also due to the fact that we start in a fringe
situation, because, if the simulation started with the car already in range of the
Lead Vehicle, the speed profile would simply replicate the one of the Lead Vehicle.
It is to be noted, however, that the distance never goes below the 3 seconds which
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Figure 3.3: Speed profile of the EgoVehicle during the ACC_Scenario run

are our goal, as of Figure 3.4 and Figure 3.5. We can see from Figure 3.5 that

Figure 3.4: Time gap during the ACC_Scenario run

the signals coming from the radar are a bit noisy, but this can be attributed to
the noise of the GNN tracker and the noise of the Radar block and moreover the
amount of variation is negligible with respect to the value. The x-axis of Figure
3.5 does not begin at 0, of course, but around the 28 s mark: this is because the
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Figure 3.5: Radar signals during the ACC_Scenario run

leading vehicle is not in range of the central radar until this moment, as is also
confirmed by Figure 3.2; coherent with this and with what was stated in Section
2.6, the first value of the ∆X signal is ≈ 150 m, which is the maximum range of the
central radar. In the first 20 s of the STAY state, the ∆X value falls very quickly,
because of the fact that the ∆V value is experiencing a negative peak, which is
caused by the sharp peak in the EgoVehicle speed around the 30 s of Figure 3.3:
in fact, we are much faster than the leading vehicle (compare with the data given
out in Section 2.4.1), but we need to put ourselves at a distance of 3 s as fast as
possible; in fact, after about half a minute, the relative velocity between us and
the leading vehicle is circa zero, while the relative distance is increasing slowly but
steadily, due to the fact that the leading vehicle is accelerating up to 72 km/h (20
m/s) and in fact the distance is increasing up to 60 m.
We also can assume that the data analysis functions for the radars’ signals are

working as expected, given that the Oncoming flag (Figure 3.6 has the trend that
we would expect.

3.1.1 Second run with LKA active
We later performed a second simulation for the very same Scenario, this time with
also the steering activated, i.e. the whole LKA system was included, as well as
all the Path Planning blocks which were commented out during the first run; as
we can see from Figure 3.1, when the Leading Car is in range of the radar, the
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Figure 3.6: Oncoming flag during the ACC_Scenario run

State passes from STAY to WAIT: because of this, as now the whole system was
activated, the Path Planning for the WAIT state entered into action, in order to
move the car closer to the center. This is seen in Figure 3.7 The other main metric

Figure 3.7: Trajectory followed during the second ACC_Scenario run

that we need to check is the Heading Error that the car experiences during the
whole simulation (Figure 3.8) The Heading Error eh has a sudden spike, which
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Figure 3.8: Heading Error eh during the second ACC_Scenario run

is nevertheless very moderate (just 3ř) in correspondence of the initial steering
command (Figure 3.9) input as soon as the EgoVehicle moves into the WAIT state,
in order to move to the centerline; after this spike, it rapidly converges back to 0,
except for a small oscillation of less than 0.1ř at the end of the maneuver.

Figure 3.9: Steering Command δ during the second ACC_Scenario run
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3.2 Skidpad
The first results we are going to show for what concerns this Scenario are the most
obvious ones, which will require little discussion: since the Scenario is totally

Figure 3.10: Leading flag during the Skidpad run

Figure 3.11: Oncoming flag during the Skidpad run

empty (Section 2.4.2), we expect that the Leading and Oncoming flags are never
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raised; as we can see from Figure 3.10 and Figure 3.11, this is the case, confirming
that the GNN tracker, which we discussed in Section 2.7, is working well to filter
out noise detections.
Because of this, the radar signals are constantly NaN, as can be observed from
Figure 3.12 which is completely empty leading to a NaN time gap as well (Figure

Figure 3.12: Radar signals during the Skidpad run

3.13). We presented these graphs which are completely empty and can seem
meaningless just for this first Scenario where we have no other actors to testify
that the data analysis on the Perception is working as expected and is not raising
random Leading or Oncoming Flags or outputting random ∆X or ∆V signals.
Once the most trivial results from this simulation have been discussed, we can
move to the most concrete ones: we can for example see from Figure 3.14 that the
simple Cruise Controller works well in a curve environment just like it did working
in a straight (compare with the first 27 seconds of Figure 3.3) as after the first drop
in speed (due to the fact that the initial acceleration command is 0), the speed
rapidly converges to the value of Vdes = 85km/h.
Moreover, as the Scenario was designed to test the steering performance, we
conclude the Section by discussing the handling results, i.e. the Cross-Track Error
ect and the Heading Error eh as well as their effect, the steering angle δ as obtained
from the Stanley controller discussed in Section 2.8.3; the first comment we
can have is about the Cross-Track Error ect, which is negative: according to what
we stated in Section 2.8.3, a negative ect means that the car is on the right of the
centerline of the Lane, which we can attribute partly to the centrifugal acceleration
caused by the high turning speed. We must in fact remember that the Vehicle
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Figure 3.13: Time gap from the leading vehicle during the Skidpad run

Figure 3.14: Speed of the EgoVehicle during the Skidpad run

Model used for these experiments is the Full Vehicle Model, therefore we must also
account for the lateral acceleration and the local maximum (= minimum of the
absolute value) for the ect happens right before the 10 s mark (Figure 3.15), around
the same time where the vehicle has the minimum speed (Figure 3.14). Anyway,
what we want to highlight is that such steady state ect is less than 20 cm, therefore
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Figure 3.15: Cross-Track Error of the EgoVehicle during the Skidpad run

Figure 3.16: Heading Error of the EgoVehicle during the Skidpad run

being well in the range of acceptability, as we can see from Figure 3.18.
From the same Figure 3.18 we can see that the Heading Error eψ is almost negligible,

as the Lanes (highlighted in red) are basically parallel to the car, coherently with
the steady state error of 0.5◦ we see in Figure 3.16, which is a very low value, but
something we can expect during a constant radius turn, let alone a turn with such
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Figure 3.17: Steering Command during the Skidpad run

a large Turning Radius (300 m).
Finally, we can comment on the value of the steering angle δ: at first, it could look
like the value of 0.6◦ is a mistake, as the maximum steering angle on the ground,
for a common road vehicle can be 30◦ − 35◦; however, if we compute the kinematic
steering angle δkin starting from the formula found in [58]

1
Rδ

= 1
l

(3.1)

reverted to
δkin = l

R
(3.2)

knowing that the skidpad has a radius of 300 m, corrected to 300.19 m by the ect
and the car’s wheelbase l is 2.4 m yields out a kinematic steering angle of 0.458◦,
which is even smaller than the one we are inputting; this is due to the fact that we
are not in a kinematic condition, due to the high speed of our vehicle which leads to
the arising of Aerodynamic Forces, which leads to an Understeering characteristic.
Moreover, if we compute the correction factor for the correct Curvature Gain, as of
page 267 of [58]

1
Rδ

= 1
l

1

1 + m

l2

3
b

Cf
− a

Cr

4
V 2

gl

(3.3)

when substituting the vehicle specifics - accounting also for the fact that the car is
Front Wheel Drive and the front axle experiences the highest load transfer - gives
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Figure 3.18: Screenshot from the Bird’s-Eye Scope demonstrating that a steady
state Cross-Track Error of ≈ 20cm is absolutely acceptable in a Skidpad

out a factor of around 0.76, in agreement with the ratio between the kinematic
steering angle and the dynamic steering angle. Such computations, for sake of
simplicity, have been omitted.

3.3 Empty Turn Scenario
As for the Section 3.2, we begin with a quick comment of the results of the Radar
block and the data analysis downstream in the pipeline:
the oncoming vehicle is correctly detected at the beginning of the Simulation:

the flag, however, compared to the one of the ACC_Scenario (Figure 3.2) is up
for a shorter period of time; the reason for this lies in the higher speed of the
oncoming vehicle, 50% higher than the one in ACC_Scenario. Since there is no
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Figure 3.19: Oncoming flag during the Empty Turn Scenario run

Figure 3.20: Leading flag during the Empty Turn Scenario run

leading vehicle throughout all the simulation, it is expected to not only see the
Leading Flag constantly equal to 0, but also to have a completely empty graph
regarding the Radar quantities, in parallel with what we commented already in
Section 3.2 (Figure 3.10 and Figure 3.12), therefore confirming us that the GNN
tracker is filtering well the noise and fake detections from the Radar.
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Moving on the main goal of this Scenario, we introduce the results of the LKA:
the main element which is noted is a strong spike in the value of the Cross-Track
Error ect around the 15 s mark, with over a meter of error, leading to the car
almost going off-road; the good thing is that this large spike is exclusive to ect,
while eh is still small (less than 5◦, as of Figure 3.22) and it is in counteraction to
the Cross-Track. (Peaks are around the 15 s mark as of Figure 3.23) We can see

Figure 3.21: Cross-Track Error of the EgoVehicle during the Empty Turn Scenario
run

that the high eh is a consequence of the high ect by looking at Figure 3.23, where
it is evident that the spike in the Cross-Track Error comes before the spike in the
Heading Error; moreover, if we compare Figures 3.23 and 3.24, we can confirm the
causal relation between the two spikes, as - in the time occurring between such
spikes - is present the spike in steering angle, which is coherent also with the eh, as
the positive steering angle is correlated with a counter-clockwise rotation. At this
point, this ect trend could look worrying, but it is not actually due to the instability
of the Stanley controller, but rather to the difficulty of the Scenario, where the
turn is not a constant radius turn, but has a very sharp exit with a sudden decrease
in the radius (Figure 3.25) which caused this spike in ect, leading to the sudden
steering angle leading to the spike in eh. One final comment we can do is regarding
the speed throughout the simulation, which is displayed in Figure 3.26: the initial
drop in speed is due to the initial value of the acceleration command of 0, while
the larger drop is due to the lateral slip of the vehicle during the sharp turn.
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Figure 3.22: Heading Error of the EgoVehicle during the Empty Turn Scenario
run

Figure 3.23: Zoom of the errors on the 15 s during the Empty Turn Scenario

3.4 Mountain Road

As for the Skidpad (Section 3.2) and the EmptyTurn (Section 3.3) Scenarios, we
start off by commenting the "simplest" results, i.e. the Leading/Oncoming flags
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Figure 3.24: Zoom of the δ steering angle around the 15 s mark during the Empty
Turn Scenario

- which are correctly always zero - and the radar signals, which are non existant
given the absence of any other vehicle in the environment.
Figure 3.29 shows that the simple Cruise Control - as the EgoVehicle is alone -

is able to keep the speed constant even throughout a challenging track, with only
a dip below 50 km/h (due to the first sharp corner) and a subsequent overshoot
which is still acceptable with a speed limit of 50 km/h [89].
The most important part about the results of this simulation comes from the
comment on the lateral dynamics, i.e. the trend of the errors and of the steering
command; Once again, similarly to what we have already noted in Section 3.3,
there is a main spike in the ect as well as in the eh trend, which happen in corre-
spondence with the peak of the δ command; in this case the maximum value is
large, 1.5 m would basically mean that the car went off track: the only good fact
about this is that the value is -1.5 m (car going outside) instead of +1.5 m, which
would mean that we invaded the Oncoming Lane.
Moreover, this value is only temporary, therefore our EgoVehicle manages to quickly
recover the trajectory and get back in the Lane; we would also want to stress out
once again the fact that this instability happens in correspondence of a particu-
larly difficult corner, not with constant radius, where the Camera Lane Tracker
experiences troubles in defining a clothoid to represent the Lane Boundaries [90].
This last remark is not intended to be a criticism towards the Simulink block, but
rather an admission of the non perfect compliance of our Scenario to a real road;
this is however, something we expected, since there are no standards, as of the
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Figure 3.25: Zoom of the final part of the turn, in yellow the road limits, in red
the track which would be correct

time of writing, regarding a Testing Scenario for an LKA system and this very
same Scenario we presented was obtained after many trial-and error iterations of
Scenarios which were either completely inadequate or too simple.
A final remark about this Scenario is a hint of what will be discussed in Section 4:
the fact that the CC is able to keep a constant speed of 50 km/h is a good thing
regarding the operation of the CC itself, but at the same time speaks volumes
about the still simplistic approach we had for the speed profile: in case we do not
have a leading vehicle, in fact, we assumed a Desired Speed Vdes and a Limit Speed
Vlim and simply took the lower of the two as our goal; as a future development,
we would like to extend this logic to include a third limit value, i.e. the maximum
speed that the curvature we are going to find allows us.
This would be possible since, as stated in [90], the Camera gives out the curvature
of the Lane (hence the curvature of the road) in form of Clothoid and therefore it
would be feasible to extract a profile of curvature and from it a profile of speed,
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Figure 3.26: Speed of the EgoVehicle during the Empty Turn Scenario

Figure 3.27: Leading Flag during the Mountain Road Scenario

following the ideas presented by another Squadra Corse DRIVERLESS member in
[91].
Finally, the main focus of this thesis work lies in the Path Planning for the Over-
taking, therefore such complex turning roads are not our main focus (so we did not
discuss the possibility of a Speed(curvature) function) and we wanted to introduce
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Figure 3.28: Oncoming Flag during the Mountain Road Scenario

Figure 3.29: Speed during the Mountain Road Scenario

such Scenario just as a Final Test for our LKA.
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Figure 3.30: Cross-Track Error during the Mountain Road Scenario

Figure 3.31: Heading Error during the Mountain Road Scenario

3.4.1 Low Speed

As a proof of the validity of our LKA, we here present the results obtained running
the very same scenario with a target goal of 20 km/h instead of 50 km/h.
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Figure 3.32: Steering Command during the Mountain Road Scenario

Figure 3.33: Cross-Track Error with a Target Speed Vdes = 20km/h

3.5 [Mountain Road Circuit
Since this Scenario was a simple extension of the previous Mountain Road Sce-
nario, we are giving below the graphs with the results of the Mountain Road Circuit
Scenario without further comment.

125



Experimental Results

Figure 3.34: Heading Error with a Target Speed Vdes = 20km/h

Figure 3.35: Steering Command with a Target Speed Vdes = 20km/h
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Figure 3.36: Cross-Track Error during the Mountain Road Circuit Scenario

Figure 3.37: Heading Error during the Mountain Road Circuit Scenario
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Figure 3.38: Steering Command during the Mountain Road Circuit Scenario

Figure 3.39: Speed of the EgoVehicle during the Mountain Road Circuit Scenario
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Figure 3.40: Leading Flag during the Mountain Road Circuit Scenario

Figure 3.41: Oncoming Flag during the Mountain Road Circuit Scenario
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Figure 3.42: State during the Mountain Road Circuit Scenario

With these results, we consider the LKA system to be validated and, therefore,
we move onto the validation of the Overtaking.
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3.6 Overtake Scenario
Even if this Scenario is quite simple, in our opinion is probably the most important
Scenario, as it is the one we used to test the Autonomous Overtaking Path Planning
as well as the Decision Making State Machine: in fact, this was the first Scenario
which we used for the autonomous Overtaking and all the following ones were built
onto this to check that further complicating the Scenario would not damage the
good working of our System.
The first thing which we want to comment is the trend of the State during the

Figure 3.43: State during the Overtake Scenario

simulation: differently from what we saw in previous Scenarios - where the State
was constantly in 1 (STAY) or eventually 2 (WAIT) - here we see that the State
jumps into 3 (OVERTAKE), as we would expect and after some seconds moves to
6 (GO BACK) once the leading vehicle is overtaken. Eventually, the State settles
into 1 (STAY) after the overtake is completed and the EgoVehicle is back in the
OwnLane.
We can also see from Figure 3.43 that the State jumps to 3 from basically the
first second of the simulation: this is because the leading vehicle is immediately
in range of our sensors and this is confirmed by the trend of the Leading Flag in
Figure 3.44 which is raised immediately.
Since the Scenario was supposed to be a simple scenario just to test the Autonomous

Overtaking Path Planning and the Decision Making, we decided not to put any
oncoming vehicle, so that we were not bothered by the OvtCounter (Section 2.7.1)
and by sudden Abort maneuvers or Emergency Overtakes: this can be confirmed
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Figure 3.44: Leading Flag during the Overtake Scenario

by looking at Figure 3.45, which depicts an Oncoming Flag constantly equal to 0.
Another important thing we could comment are the signals of the Radar, meaning

Figure 3.45: Oncoming Flag during the Overtake Scenario

the relative distance ∆X and ∆V relative speed, which are represented in Figure
3.46: we can see that the relative distance is steadily dropping while the relative
speed is not changing a lot: this is not due to the leading vehicle inreasing its speed,
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but simply to the fact that, since we are in State 3 (OVERTAKE) and not in State
4 (EMERGENCY OVT), the EgoVehicle is not forced to accelerate as much as
possible, but tries to keep the set speed Vdes, as we can also see from Figure 3.48

Figure 3.46: Radar signals during the Overtake Scenario

Figure 3.47: Time gap during the Overtake Scenario

where the initial drop is as always due to the starting acc command of 0: because
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Figure 3.48: Speed of the EgoVehicle during the Overtake Scenario

of this, the ∆V is dropping through all of the time represented in Figure 3.46: this
is because the Radar is tracking a leading vehicle only for the first 4-5 seconds,
which is the portion of time in which the EgoVehicle speed drops; this limited time
of the leading vehicle tracking explains why the Leading Flag duration is much
shorter than the State 3 OVERTAKING, as we can see by comparing with the
eh which is an indication of our yaw angle ψ: the peak up to 7° of eh is due to
the car heavily steering towards the left, therefore leading the camera to see the
Lane Boundaries going towards the right. The most important consequence of the
vehicle steering, however is that the leading vehicle exits from the Field of View of
the Central Radar and, therefore, the Leading Flag falls.
The heading error peak is, however, something which we cannot avoid, since the
vehicle is not equipped with four wheel steering (which would allow to change lane
without yawing) and we want to indeed change the lane to perform the Overtake.
The good part is that the eh rapidly falls to 0, meaning that the EgoVehicle quickly
gets stabilized in the Oncoming Lane. Around the 10 s mark we see a negative
spike in the eh: this means that the Overtaking has been completed and we are
now steering right to go back in the OwnLane. This is confirmed by the fact that
at around the same 10 s mark, the State passes from 3 to 6 (GO BACK).
The Cross-Track Error displays the same trend as the Heading Error, even though

by looking at the graphs of Figures 3.49 and 3.50 we could be misled into thinking
the opposite. However, the sharp fall from 1.5 m to -1.3 is due to the fact that the
EgoVehicle is now in the Oncoming Lane, even though just on the right boundary
of said Lane; because of this, we move from being on the very left boundary of the
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Figure 3.49: Heading Error during the Overtake Scenario

Figure 3.50: Cross-Track Error during the Overtake Scenario

Own Lane (causing ect = +1.5m) to being on theb right boundary of the Oncoming
Lane (which should be causing ect = −1.5m, but is causing a local minimum around
-1.3, due to the fact that the car is not parallel to the boundary lanes, leading to
some error on the ect perception.
As a confirmation of this explanation, we see that the error on the Go Back

135



Experimental Results

movement (around the 13 s mark), which is reversed, so first a negative error and
then a positive one, is much closer to 1.5 m in both the peaks, since the Heading
Angle is less than half in the second Lane Change. To conclude this Section, we

Figure 3.51: Steering Command during the Overtake Scenario

are going to present the trajectory followed by the EgoVehicle during this Scenario
run: the Vehicle performs a sharp turn to the left in just 100 m, then stays in the
Oncoming Lane and begins the Go Back maneuver just after 200 m in total; from
Figure 3.53 we can see that the EgoVehicle is back in the Own Lane after just 260
m, traveling a total of just 170 m in the Oncoming Lane. Even though this is of
course caused by the large difference in speed between us and the leading vehicle,
but we can state that the first Autonomous Overtaking went well and so we moved
to more complicated Scenarios.
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Figure 3.52: Trajectory followed during the Overtake Scenario

Figure 3.53: Zoom of the trajectory followed during the Overtake Scenario

3.7 Corner Overtake Scenario

In this Section we are going to discuss the results we obtained by the simulation
of the Corner Overtake Scenario; as already stated in Section 2.4.7, we ran this
Scenario twice, with the Lead Vehicle placed close to the EgoVehicle, therefore
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entering immediately into the State 3 (OVERTAKE) and performing the overtake
at the beginning of the turn and one where the Lead Vehicle is placed much further.

3.7.1 Early Overtake
The first thing we want to comment is the trend of the Leading Flag, which is
raised immediately, as of Figure 3.54; this immediate raising of the Leading Flag

Figure 3.54: Trend of the Leading Flag during the Early variant of the Corner
Overtake Scenario

is coherent with what can be seen in Figure 3.55, where the State immediately
moves to 3 (OVERTAKE), since there is no oncoming vehicle (Figure 3.56 and the
Centerline is dashed and not continuous. The fact that there is a second more
or less before the State jumps to 3 (OVERTAKE) is due to the fact that it takes
around a second for the GNN tracker to track the Radar detections and therefore
for the Leading Flag to raise.
Following the discussion about the Leading Flag, we can present the signals of the
Radar during the simulation, in Figure 3.57 the signals in Figure 3.57 are present
only for about 2 seconds and this was already explained in Section 3.6: since the
EgoVehicle is steering to the left in order to perform the Lane Change maneuver,
the Lead Vehicle is not anymore in the Field of View of the Center Radar and
therefore the radar is reporting only NaN values. Because of this, also the Time
gap plot of Figure 3.59 is only present for 2 seconds.
The fact that the ∆V is dropping (i.e. its absolute value is decreasing, so the

graph is pointing upwards) is, as always, due to the initial value of 0 for the acc
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Figure 3.55: Trend of the State during the Early variant of the Corner Overtake
Scenario

Figure 3.56: Trend of the Oncoming Flag during the Early variant of the Corner
Overtake Scenario

command. Differently from what we stated for the first Scenarios, the errors are
not directly linked anymore to the steering command, as the Sigmoid Curve is
"correcting" the errors fed into the Stanley Controller, as in Figure 2.38: the errors
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Figure 3.57: Radar signals during the Early variant of the Corner Overtake
Scenario

Figure 3.58: Speed of the EgoVehicle during the Early variant of the Corner
Overtake Scenario

trend (Figures 3.60 and 3.61) are similar to those of Section 3.6.
As already said, the Cross-Track Error rises to 1.5 m before immediately dropping

to -1.5 m in correspondence of the crossing of the Centerline; comparing the graphs
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Figure 3.59: Time gap during the Early variant of the Corner Overtake Scenario

Figure 3.60: Cross-Track Error during the Early variant of the Corner Overtake
Scenario

of Figure 3.50 and Figure 3.60 we can see that in the Corner Overtake Scenario
the car does not even stabilize in the center of the Oncoming Lane, as can be seen
by the knee around the 5 s mark of Figure 3.60, while in Figure 3.50 we see a
stabilization of the vehicle, with nil ect and eh: this, together with the reduced
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Figure 3.61: Heading Error during the Early variant of the Corner Overtake
Scenario

duration of the State 3 (OVERTAKE) in the Corner Overtake Scenario compared
to the Overtake Scenario is not due to a different working of the FSM, but just
to the lower speed of the leading vehicle in the former (36 km/h compared to 54
km/h).
The steering command experienced in this Scenario is consistent with what we
expect and what we already saw in previous Scenarios, namely Skidpad_Scenario
and Overtake Scenario: a high peak around +5◦ with a smaller ripple to stabilize
the EgoVehicle in the Oncoming Lane, the not constant angle in the time window
between 3 s and 13 s is due to the fact that the road is not straight, as said, and
bends a bit to the right before the main turn to the left; the Go Back maneuver
is less sharp and it is reflected by the much narrower δ steering command swing
[−2◦2◦] and consequently by the smaller eh.
To sum up the Scenario, we present the plot of the trajectory followed by the EgoV-

ehicle and its superposition with the FSM in order to verify that the Lane Change
maneuvers are happening in correspondence with the States 3 (OVERTAKE) and
6 (GOBACK).

3.7.2 Late Overtake
We are going to put here the results of the second run of this Scenario, with the
leading vehicle starting with a larger advantage, so that the EgoVehicle performs
the Overtake in the long sweeping left corner instead of the beginning of it. We
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Figure 3.62: Steering Command during the Early variant of the Corner Overtake
Scenario

Figure 3.63: Trajectory followed by the EgoVehicle during the Early variant of
the Corner Overtake Scenario

can see (Figure 3.65) that the Leading Flag is not raised immediately, of course,
as the leading vehicle starts outside of the range of our sensing equipment. Once
again, from Figure 3.66 we can see that there are no oncoming vehicles: we wanted
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Figure 3.64: State and Trajectory during the Early variant of the Corner Overtake
Scenario

Figure 3.65: Trend of the Leading Flag during the Late variant of the Corner
Overtake Scenario

to present this graph too, in order to prove that the data analysis can recognise
a Vehicle as leading vehicle even if it is not perfectly aligned with us, provided it
stays in the FoV of the Central Radar.
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Figure 3.66: Trend of the Oncoming Flag during the Late variant of the Corner
Overtake Scenario

The fact that there is no oncoming vehicle - and that the leading vehicle is much
slower than us - leads to the State moving immediately from 1 to 3 as soon as the
Leading Flag gets raised, as we can see comparing Figures 3.65 and 3.67. The fact

Figure 3.67: Trend of the State during the Late variant of the Corner Overtake
Scenario
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that we start with the LEading Vehicle outside of our sensing equipment means
that such Lead Vehicle is viewed for a longer time, leading to a longer time range
for the Radar signals, as is seen by comparing Figures 3.57 and 3.68. Anyway,

Figure 3.68: Radar signals during the Late variant of the Corner Overtake
Scenario

Figure 3.69: Time gap during the Late variant of the Corner Overtake Scenario

when the EgoVehicle is still around 25-30 m, it starts turning and this leads to
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the signals of the Radar disappearing: this can be seen by a jump in the steering
command around the 28 s mark in Figure 3.70, where the EgoVehicle starts the
Lane Chenge maneuver. The other two jumps are in correspondance of the very
beginning of the OVERTAKE state, when the leading vehicle appears in the sensing
FoV and this forces the EgoVehicle to move towards the center of the road (20 s)
and to the end of the OVERTAKE State, when the EgoVehicle moves into State 6
(GO BACK) around the 37 s mark. Anyway, we can see that the steering command

Figure 3.70: Steering Command during the Late variant of the Corner Overtake
Scenario

is in general acceptably low, confirming that we avoided a too sharp maneuver.
This is further confirmed by Figures 3.71 and 3.72, which do not display a significant
noise in the errors. The large plateau in the Cross-Track Error of Figure 3.71
is due to the fact that, since differently from the previous Scenarios here we do
not start already in Overtaking Range, we move towards the center of the road
and stay there until we reach the Overtake Range and it takes longer here, so we
can detect it here, compared to Figure 3.50. In order to ensure the comfort of the
passengers, we aim to not only keep the car stable laterally, but also to reduce as
much as possible its longitudinal jerk. This requirement is verified from the results
found in Figure 3.73, where we see that - apart from the initial drop due, as always
to the starting acc command of 0 - the speed is pretty much constant around the
desired value of 85km/h, as of Figure 3.73. To sum up this run, we are going to
display the trajectory followed by the EgoVehicle (Figure 3.74) as well as a plot
displaying an overlay of the State with the trajrctory (Figure 3.75).
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Figure 3.71: Cross-Track Error during the Late variant of the Corner Overtake
Scenario

Figure 3.72: Heading Error during the Late variant of the Corner Overtake
Scenario
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Figure 3.73: Speed of the EgoVehicle during the Late variant of the Corner
Overtake Scenario

Figure 3.74: Trajectory followed by the EgoVehicle during the Late variant of
the Corner Overtake Scenario

3.8 Double Overtake Scenario
Here are the results of the Double Overtake Scenario simulation; the first thing
we notice, which we of course were expecting, is that the Radar signals (Figure
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Figure 3.75: State and Trajectory during the Late variant of the Corner Overtake
Scenario

3.76) and the Time gap (Figure 3.77 graphs have two separated moments with
data each): this is perfectly natural and expected, since the EgoVehicle finds itself
twice following a Lead Vehicle.
This is coherent with what we see in the State plot, where in fact we see repeated

Figure 3.76: Radar signals during the Double Overtake Scenario

150



Experimental Results

Figure 3.77: Time gap during the Double Overtake Scenario

twice the profile corresponding to the Overtake maneuver (compare Figure 3.78
and Figure 3.43). The double Overtake maneuver is also confirmed by what we

Figure 3.78: Trend of the State during the simulation of the Double Overtake
Scenario

can see in the Leading Flag graph (Figure 3.79) where the Flag is raised twice,
in correspondence of the . The fact that the EgoVehicle has to perform two
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Figure 3.79: Trend of the Leading Flag during the Double Overtake Scenario

Figure 3.80: Trend of the Oncoming Flag during the Double Overtake Scenario

separate Overtake maneuvers does not hinder the stability of the EgoVehicle or its
trajectory, as can be seen by checking Figures 3.81 and 3.82 which display Error
trends similar to the ones seen in the Single Overtakes (Figures 3.50 and 3.49.
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Figure 3.81: Trend of the Cross-Track Error during the Double Overtake Scenario

Figure 3.82: Trend of the Heading Error during the Double Overtake Scenario

To sum up the results of this Scenario, we want to present the trend of the speed
of the EgoVehicle, which drops during the steering maneuver, and the trajectory
followed by the EgoVehicle to check that the Overtakes are performed according to
what we expect, as well as the Steering Angle trend.
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Figure 3.83: Speed of the EgoVehicle during the Double Overtake Scenario

Figure 3.84: Trajectory of the EgoVehicle during the Double Overtake Scenario
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Figure 3.85: Steering Command during the Double Overtake Scenario

Finally, we highlight the trajectory as a function of the state in which the FSM
is, to confirm the validity of our results.

Figure 3.86: State and Trajectory of the EgoVehicle during the Double Overtake
Scenario
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3.9 Multiple Overtake Scenario

As we have already stated at the beginning of Section 3.8, we have a block of two
periods in which we have signals from the radar. This might look as an error, as we
have 3 cars to overtake, but there is a precise reason for this: first of all, we can see
that the Central Radar is outputting results only in case we are in the Own Lane
(OwnLane == 1, as per the coordinates of Figure 2.29), therefore the third leading
vehicle is not reported by the Central Radar as we are still in the Overtake Lane.
The reason which led us to this technique is the function y = f(∆X): if we allowed
the Center Radar to report the coordinates of the Lead Vehicle, as soon as the
second Lead Vehicle to be overtaken comes into the Center Radar range, the
Sigmoid computation would force the EgoVehicle to heavily steer towards the right,
thus crashing into the first vehicle we are overtaking.

Figure 3.87: Radar signals during the Multiple Overtake Scenario
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Figure 3.88: Time gap during the Multiple Overtake Scenario

To solve this problem, we fed the output of the central Radar GNN not only to
the Central Radar data analysis itslef, but also to the "Overtaken" Matlab function
block, together with the Right BlindSpot Radar: in this way, as we can see from
the Algorithm of Section 2.7.6, the check on the Overtaken flag is performed on
the presence of any Vehicle in the range of the Central Radar as well as the Right
BlindSpot Radar; only if no Vehicle in the range of these two Radars has a relative
X higher than −3m, the Overtaken Flag is raised and the egoVehicle can move
into State 6 (GO BACK).
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Figure 3.89: State and Trajectory of the EgoVehicle during the Multiple Overtake
Scenario

A further confirmation of this is provided by Figure 3.89, where we see an
overlay of the Vehicle trajectory onto the State trend: the time duration of State 3
(OVERTAKE) in the second Overtake maneuver, where we overtake the Second
and the Third leading vehicles, is considerably longer than the one of the first
Overtake maneuver, where there is a single Vehicle to Overtake and the same can
be said of the length in meters, considering that the Speed of the EgoVehicle can
be considered reasonably constant throughout the two maneuvers, as displayed by
Figure 3.90.
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Figure 3.90: Speed of the EgoVehicle during the Multiple Overtake Scenario

The fact that the Radar Signals are not output by the Central Radar PostProcess
in case we are in the Overtake Lane is also confirmed by the Oncoming Flag trend,
displayed in Figure 3.91, where we can see that the Leading Flag stays up only
while the EgoVehicle is in the OwnLane, close to the Lane marker, as confirmed by
a comparison with Figure 3.89.

Figure 3.91: Trend of the Leading Flag during the Multiple Overtake Scenario
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By the way, while the duration of the State 3 (OVERTAKE) is higher in
the second maneuver, the case is reverted for the Leading Flag: this is caused by
the fact that the second Lead Vehicle is notably slower than the first one on the
approach phase, as can be seen by the value of ∆V in Figure 3.87, which also leads
to a time gap signal dropping faster (Figure 3.88, hence the EgoVehicle catching
up faster to the Lead Vehicle.
Meanwhile, in this Scenario too, the Oncoming Flag was fine, with only the real
oncoming vehicle being recognized as such: this is the product of adjustments to
the Central Radar data analysis (Section 2.7.5) in order to avoid misrecognitions.

Figure 3.92: Trend of the Oncoming Flag during the Multiple Overtake Scenario

To further demonstrate that the Overtaken Flag works as intended, we are going
to comment Figure 3.93: first of all, we see that after overtaking the Parked Truck
on the right at the very beginning of the Scenario, the Overtaken Flag is raised (as
should be, since we have indeed overtaken it!), but this does not lead to a random
jump into State 6 (GO BACK), confirming that the Next State function for State
1 was properly designed, avoiding to drive off the road if we overtake a random
vehicle parked on the side of the road.
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Figure 3.93: Comparison between the Overtaken Flag and the State during the
Multiple Overtake Scenario

The first maneuver ends with the EgoVehicle jumping into State 6 (GO BACK),
as expected, while the situation is different in the second Overtake maneuver: in
this we can distinguish two different phases according to the Overtaken Flag:

• A first phase (120.2 s - 123.4 s), where the Overtaken Flag is still 0 and
therefore the State remains at 3 (OVERTAKE).

• A second phase (126.1 s - 129.1 s), where the Overtaken Flag is now 1 and
the State jumps immediately to 6 (GO BACK)

The first phase has the Overtaken Flag set to 0, since as said, the leading vehicle
prevents this Flag to raise, while in the second phase we have overtaken the second
of these two Vehicles (the Third leading vehicle from the tables of Section 2.4.9)
and therefore we have no Lead Vehicle anymore and the Overtaken Flag can be
raised; it is to be noted that the gap between these two as well as the gap between
the two maneuver is an effect of the data analysis Algorithm, which is intended to
return NaN as an Overtaken Flag in case we have no tracked Vehicle in any of the
Radars.
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Figure 3.94: Trend of the Cross-Track Error during the Multiple Overtake
Scenario

Figure 3.95: Trend of the Heading Error during the Multiple Overtake Scenario

To sum up the Scenario results, we are going to show the Errors as well as the
Steering Command, which are in line with the previous Overtake Scenarios.
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Figure 3.96: Steering Command during the Double Overtake Scenario

3.10 Abort Scenario
We can see that the EgoVehicle indeed enters into the State 5 (ABORT) as can
be seen from Figure 3.97, where the curve has a short stint on the 5 value: this
short time is coherent with what we expect, given that the Abort maneuver is
far simpler in what it does compared to for example the Go Back maneuver does:
while the latter requires to move the EgoVehicle laterally for about 3 m and this
takes several seconds, up to almost 10 s, the Abort maneuver requires, in general
to only correct the Heading of the Vehicle and move it laterally of some cm, since
it leads the EgoVehicle back to the "waiting position" i.e. midway between the
centerline of the Own Lane and the Own/Overtake Boundary and the EgoVehicle
was in the Own Lane still, since otherwise the State Machine would have moved
the State to Emergency Overtake.

The heavy steering pikes that can be seen twice in the graph of Figure 3.98
are not due to a mistake in the tuning of the Stanley Controller, but rather to a
weakness of the Camera block, which locally is not able to detect any LaneBoundary
due to the sharp change of direction of the EgoVehicle: of course such failure is a
computational failure due to bottlenecks with Computational Power rather than the
inadequacy of our Sensing Equipment, which in real life will have been extensively
tested by the producer.
We can see that the Camera failed to provide non-NaN values to our data analysis

functions through Figure 3.99, where in two occasions the value of NumLanes drops
to -1, which is the default value used to signal that no Lane was detected, as of the
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Figure 3.97: Trend of the State during the Abort Scenario

Figure 3.98: Trend of the Steering Angle during the Abort Scenario

Algorithm of Section 2.7.4.
Moreover, in an attempt to show that our System is indeed robust, we want to

plot the errors and the trajectory of the Egovehicle as well (Figures 3.100-3.102):
we can see that, despite the spikes in the Error values which are locally kicked
at 0 in the time instant of the failure of the Camera block, the trajectory of the

164



Experimental Results

Figure 3.99: Number of the Detected Lanes during the Abort Scenario

EgoVehicle is still acceptable, thus ensuring the comfort of the passengers.
Talking about the comfort of passengers, we also want to have a steady ride,

Figure 3.100: Trend of the Cross-Track Error during the Abort Scenario

without a significant longitudinal noise, i.e. without frequent accelerations and
decelerations: this was already tested with the ACC_Scenario in Section 3.1 (Figure
3.3 but we want to also ensure it in this more challenging environment:
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Figure 3.101: Trend of the Heading Error during the Abort Scenario

Figure 3.102: Trajectory of the EgoVehicle during the Abort Scenario

from Figure 3.103, we can see that there are some oscillations at the beginning,
but their "period" is so long that they are not a nuisance for the passenger; they are
anyway due to a limitation on the command, since the first drop is caused by the
initial acc command being 0 and the second drop has a similar cause, since when
we change State (in this case we move from 1 to 3) the PID resets its I component.
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Figure 3.103: Speed of the EgoVehicle during the Abort Scenario

Anyway, as we have said, we do not consider such oscillations to be a harm for the
passengers’ comfort as they are of small entity and with a long enough period. At
the same time, the main deceleration is caused by the aborting of our Overtake: we
were running at our desired Speed V elDes (85 km/h) and suddenly we are forced
to stay in line behind a slow (between 55 and 60 km/h more or less, according to
the info in Section 2.4.10) vehicle as well as to back off from said LEad Vehicle, as
we were much closer than our reference distance, as can be seen from Figures 3.104
and 3.105.
Finally, we can see that the Leading Flag is not dropped during the simulation,

since the EgoVehicle did not steer enough to lose the Lead Vehicle from its field of
view.
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Figure 3.104: Trend of the Radar signals during the Abort Scenario

Figure 3.105: Trend of the Time gap during the Abort Scenario

3.11 Emergency Overtake

As we said introducing this Scenario, in this simulation we encounter an Emer-
gency Overtaking, as we can see from Figure 3.107, we indeed move into State 4
(EMERGENCY OVT) during the Overtake Maneuver.
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Figure 3.106: Trend of the Leading Flag during the Abort Scenario

Since the purpose and main difference of State 4 compared to basic State 3 is to

Figure 3.107: Trend of the State during the Emergency Overtake Scenario

get out of the Overtake maneuver as fast as possible, we see a considerable increase
in the speed of the EgoVehicle (Figure 3.108).
We can see that the Emergency Ovt was triggered instead of simply Aborting the

Overtake because, as we can see from Figure 3.109, when the OvtCounter is raised,
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Figure 3.108: Trend of the Speed of the EgoVehicle during the Emergency
Overtake Scenario

i.e. at the time instant where the State jumps to State 4 (EMERGENCY OVT),
the Vehicle was already in Lane 2, which is consistent with the fact that Radar

Figure 3.109: State and Trajectory during the Emergency Overtake Scenario

signals and Time Gap disappear around the same time (Figures 3.110 and 3.112).
In fact, we see that the Radar signals end at about the 30 s mark, but the State
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Figure 3.110: Radar signals during the Emergency Overtake Scenario

Figure 3.111: Zoom of the State on the first part of the Emergency Overtake
Scenario

still is in 3 (OVERTAKE), as can be seen from Figure 3.111, where we see a zoom
of the State trend in the first part of the Simulation: this means that when the
OvtCounter is raised - because we have met the Continuous Lane Marker - the
Lead Vehicle was not output anymore by the Central Radar data analysis (Section
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Figure 3.112: Time gap during the Emergency Overtake Scenario

2.7.5 i.e. we were in the Overtake Lane. To sum up the Scenario, we present the
Errors and the steering Command, which are not influenced by the Camera failures,
as found in Section 3.10, which further prove that the Control and Sensing Systems
are overall speaking robust.

Figure 3.113: Trend of the Cross-Track Error during the Emergency Overtake
Scenario
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Figure 3.114: Trend of the Heading Error during the Emergency Overtake
Scenario

Figure 3.115: Steering Command during the Emergency Overtake Scenario

173



Experimental Results

3.12 Abort Oncoming Vehicle
The first result of this Scenario that we want to comment is of course the Oncoming
Flag (Figure 3.116), which - as we would expect - presents two periods with a "1"
signal, i.e. we find ourselves in front of an oncoming vehicle twice, coherently with
what we described in the presentation of this Scenario.
Through a comparison between Figure 3.116 and Figure 3.117, we can see that

Figure 3.116: Trend of the Oncoming signals during the Abort Oncoming Vehicle
Scenario

the State passes to 5 (ABORT) at the same time as the Oncoming Flag gets raised,
confirming that we can abort the overtake maneuver if we meet an oncoming
vehicle.
However, the EgoVehicle was still well inside the Own Lane, not having begun the
proper Overtaking maneuver, but just being in State 3 (OVERTAKE) and this
can be noted by looking at Figure 3.118, where there is no significant ripple in
correspondence of the ABORT spike (compare with the overlay of Trajectory and
State in Figure 3.119), meaning that the EgoVehicle does not need to correct the
trajectory, since it did not bend to the left from the "waiting position".
This consideration about the "mild" Abort of the Overtaking maneuver is further

reinforced by Figure 3.120, where there are no spikes of the Steering Command δ
around the 40 s mark.
The main spikes of the Steering Command in Figure 3.120 are corresponding:

• To the passage from State 1 (STAY) to State 3 (OVERTAKE) immediately
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Figure 3.117: Trend of the State during the Abort Oncoming Vehicle Scenario

Figure 3.118: Trajectory of the EgoVehicle during the Abort Oncoming Vehicle
Scenario

pushing the EgoVehicle into the "waiting position" (around the 20 s mark).

• To the left turn in order to move into the Oncoming Lane so as to overtake
the Lead Vehicle (just before the 50 s mark).
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Figure 3.119: State and Trajectory during the Abort Oncoming Vehicle Scenario

Figure 3.120: Steering Command during the Abort Oncoming Vehicle Scenario

• To the right turn in order to go back to the Own Lane once the Overtake has
been completed (after the 50 s mark).

The fact that the EgoVehicle did not steer left aggressively before being forced to
Abort is further confirmed by the fact that the Leading Flag never drops (Figure
3.121), since we never steer left enough to lose the Lead Vehicle from the FOV of
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our Central Radar; the continuity of the Leading Flag is also coherent with what

Figure 3.121: Leading Flag during the Abort Oncoming Vehicle Scenario

we see from the Radar signals (Figure 3.122) and Time Gap (Figure 3.123), where
we do not see holes due to the loss of tracking of the Lead Vehicle, and the fact
that such signals end up around the 50 s mark is confirming the fact that the high
Steering Angle peak of Figure 3.120 is the one leading to the Lane Change.
The fact that the Time Gap drops to 2 seconds at the moment of the abortion of

the Overtake maneuver explains why the State does not move to State 7 (BRAKE)
after the Abort, since we are above the 1.5 seconds threshold set into State 5 for
the change into BRAKE State: this means that the recovery of the Safety Distance
and the slowing down of the EgoVehicle is performed just by mean of the ACC, i.e.
through pure braking on the Front Axle.

3.13 Abort Brake
In this Section we will comment on the results obtained during the Abort Brake
Scenario, which was the last Scenario we created, in order to put into as much
pressure as possible our Decision Making - Path Planning - Control pipeline.
The first result that we want to comment is the trend of the State, which has a
passage into State 7 quickly after going back into State 2 (Figure 3.125): The
passage to State 7 (BRAKE) after we enter State 2 (WAIT) is caused indeed by
the low TTC afer the EgoVehicle goes back to the OwnLane, as is seen from Figure
3.126, where we can see the dip in the TTC at around the same 40 seconds mark
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Figure 3.122: Trend of the Radar Signals during the Abort Oncoming Vehicle
Scenario

Figure 3.123: Time Gap during the Abort Oncoming Vehicle Scenario

as the fast 3-5-2-1 sequence of States in Figure 3.125 which is where the TTC
naturally drops to the lowest value, since we are about to change the Lane and,
therefore, we are at the minimum distance from the Lead Vehicle, around 20 m.

What is also very interesting to comment is the gap in the two curves of the
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Figure 3.124: Speed of the EgoVehicle during the Abort Oncoming Vehicle
Scenario

Figure 3.125: Trend of the State during the Abort Brake Scenario

Radar Signals from Figure 3.127: this time, the gap is not caused by a failure of
the Camera, but is due to the particular trajectory followed, as of Figure 3.128.
Since the EgoVehicle was already turning left, as highlighted by the high value of

the Heading Error eh in Figure 3.129, which corresponds to the high yaw angle ψ of
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Figure 3.126: Time Gap during the Abort Brake Scenario

Figure 3.127: Radar Signals during the Abort Brake Scenario

the EgoVehicle at the beginning of the Lane Change maneuver, which is interrupted
by the raising of the OvtCounter: the high yaw which needs to be counteracted
leads to a strong steering towards the right, i.e. a high negative Steering Angle, as
of Figure 3.130.

The fact that we were almost moving to the Oncoming Lane means that the

180



Experimental Results

Figure 3.128: Trajectory of the EgoVehicle during the Abort Brake Scenario

Figure 3.129: Trend of the Heading Error during the Abort Brake Scenario

leading vehicle exits from the FOV of the Central Radar and therefore the Leading
Flag drops (Figure 3.131): because of this, when we end the Abort maneuver,
we move to State 1 (STAY) in the very next timestep after we entered the State
2 (WAIT) because the GNN Tracker had not yet Tracked the Lead Vehicle; this
means that the equilibrium position is not anymore the "waiting position" near
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Figure 3.130: Steering Command during the Abort Brake Scenario

Figure 3.131: Leading Flag during the Abort Brake Scenario

the Lane Marker, but rather the real centerline of the Own Lane. Because of
this, the passage in State 1 (STAY) drives the EgoVehicle to having a nil "real"
Cross-Track Error; in this short time instant in which the EgoVehicle does
not have a leading vehicle, the goal speed is 85 km/h and this is evident from
Figure 3.132: even though before the 50 s mark the EgoVehicle experiences a severe
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Figure 3.132: Speed of the egoVehicle during the Abort Brake Scenario

braking, if we look more closely at the Speed profile (Figure 3.133), we see that
there is an acceleration in correspondence of the gap in the Leading Flag. As soon

Figure 3.133: Zoom of the Speed of the egoVehicle during the Abort Brake
Scenario

as the Leading Flag gets raised again, the EgoVehicle enters into State 7 (BRAKE)
and reduces the speed in order to bring itself back to the distance required by the
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Constant Time Gap ACC; the following Speed increase is then required in order
to return to the correct Vehicle Speed equal to the Lead Vehicle Speed, required
by the CTG, which is increasing with the time, as the Lead Vehicle does not have
a constant speed: this is highlighted by Figure 3.127, where the relative distance
∆X increases instead of staying constant, while the Time Gap stays constant.
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Chapter 4

Analysis and Comments:
final remarks and future
developments

To sum up this thesis work, we want to have a quick overall comment about the
results presented in Section 3; even though results in science need to be validated
from 3 different sources, we dare to say ourselves that the results we obtained are
satisfactory and, for what concerns us, they validated our Perception, Path Planning
and Control Systems, even if - of course - we could improve them significantly,
and of course we MUST improve them before we attempt any such test on a Real
World vehicle.

4.1 Improvements and Future Works on Percep-
tion System

For what concerns the Perception Systems, during the explanation of our Method-
ology, we have already pointed out that we have in Beta-State the installation of
another BlindSpot Radar, this time on the Left Corner, in order to detect if we are
being overtaken. We decided, however, not to include it in the main corpus of the
thesis work since - because of Computational Power limits - we could not perform
enough simulations with dedicated Scenarios with that Radar turned on.
Anyway, below are the parameters of said Radar:

• Update Rate: 10 Hz.

• Sensor mounting relative to Vehicle Origin: [0 m, 0.9 m, 0.2 m].
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• Sensor rotation relative to Vehicle Frame: [135°, 0°, 0°].

• Azimuth resolution: 1°.

• Range resolution: 2.5 m.

• Range rate resolution: 0.5 m/s.

• Angular field of view [Azimuth, Elevation]: [90°, 5°].

• Range Limits: [0 m, 150 m].

• Range rate limits: [-100 m/s 100 m/s].

• Detection probability: 0.9.

• False alarm rate: 1e-06.

Further on, in a near future we want to integrate much more the various Sensors, so
that we do not have "grey zones": an example is if the Lead Vehicle has disappeared
from the Central Radar because we have begun the Overtaking maneuver, but it
still is in the FoV of the "Overtaken" radar, i.e. the Right BlindSpot Radar. A
good example of such ntegration is the one we performed in the block raising the
Overtaken Flag, Section 2.7.6
The weakest point of this whole thesis work, in light of the large problems it gave
us during the simulations, is the Leading/Oncoming Flag definition: this was
particularly fragile when we were overtaking, as we were not parallel to the motion
of the Lead Vehicle, leading to noise and imprecisions on the computation of Lead
Vehicle speed, with the risk of triggering an unwanted Oncoming Flag. A possible
solution to this could be represented by the insertion of a Convolutional Neural
Network tasked with the extraction of Features from the Camera images, e.g. the
fact that if I see red lights they are likely tail lights, so a leading vehicle, while
white lights are the headlights, so they signal an oncoming vehicle; the reason for
such omission from this thesis work was once again the limited time, as we would
have needed an extensive labelling phase on a huge catalogue of images and a
lengthy training for said CNN.
In the same way, we would like to implement a stronger Lane Recognition, possibly
GNSS-based, so that for example we know a priori the number of Lanes from a
database like Google Maps and then perform a Lane Placement through AI knowing
already how many Lanes we have; in this way, we would also be able to know if
the Overtake Lane is really an Overtake Lane (because we are on a motorway with
two lanes per direction) or an Oncoming Lane, and adapt our Decision Making
based on this.
Talking about Decision Making improvement, during this thesis work we also
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performed some experiments about the decoupling of the Lane Marker and the
oncoming vehicles through the creation of two OvtCounters instead of one, but we
did not obtain satisfactory results to be inserting them into the final results.

4.2 Improvements and Future Works on Path
Planning

As we have alreadt pointed out when discussing the Mountain Road Scenario,
the constant V elDes is not a suitable option, as real roads are composed of a
mix of straights and curves: because of this, we should be adapting the Cruise
Controller so that, instead of a constant preset value, it aims at a value which
is an effective obtainable speed, starting from the Curvature of the road as from
[91]; such curvature could be obtained not only from the Camera, but also from an
integration with GNSS, more similar to what was done in [91].
Moreover, the same considerations can be repeated for the Speed Limit: other
than from the maps, it could also be obtained by mean of working on the Camera
signals [92], as is already employed in several mass production vehicles, like Audi,
BMW, Ford, Mercedes-Benz, Opel and Volkswagen did [93].
Going on with the discussion on the Path Planning future improvements, we want
to highlight a factor that was not taken into account in the Sensitivity Analysis of
Section 2.1: we assumed, during that Sensitivity Analysis, that the sharpness of the
Sigmoid depends only on the speed, but our application should take into account
a major difference between the Sigmoid Sensitivity Analysis and its application;
in fact, the major factor influencing the sharpness of the Lane Change maneuver
in the Scenario simulations was not the speed of the EgoVehicle, but rather the
speed of the Lead Vehicle, through the ∆V Radar signal: if we imagine to be
trying to overtake a Lead Vehicle which is going only 0.5 km/h slower than us, the
∆X coordinate which is the base of the Sigmoid computation would be decreasing
much slower, therefore allowing us for a much higher K.
The reason why we did not reperform a second Sensitivity Analysis on the ∆V
parameter instead of the V parameter is - once again - time constraint. Consid-
ering that it took up to 5 minutes to perform a single simulation, if we wanted to
perform a sweep on the K value for a single ∆V with the same pitch of K as we
did for V , we would need to perform 1000 simulations for a single ∆V , going up to
already more than 80 hours, i.e. 3 and a half days if we managed to automatize
the code; moreover, the Speed of the Ego Vehicle would also need to be accounted,
since DeltaV would be defining the sharpness of the Sigmoid, while the speed V
would determine the Vehicle Dynamics and the Lateral forces, therefore turning
the interp1 Matlab function into a proper LUT making the required time explode;
a way to cut down the time could be by employing CNN for training, but still it
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would have required too much time, also to prepare the training batch.
Finally, in the Path Planning pipeline, we could correct the Sigmoid Curve based
on the lateral distance from the Lead Vehicle while we are overtaking it, drwaing it
from the Overtaken Radar; in fact, we were already working on some implementa-
tions of it, as can be seen by the Block Diagrams, but since it was not even in a
Beta-state, it was not included in this thesis work.
Overall, the Path Planning is suboptimal, since - compared to real human-driven
vehicles - we turn left too early, therefore exposing ourselves to too great dangers,
since we spend longer time in the Oncoming Lane: however, this problem is to be
blamed on the Camera, since we tried to turn later, exploiting the whole "slipstream
effect" and spending less time in Overtake/Oncoming Lane, but the Control of
the Vehicle would start acting bizarrely, since the Lane Detection would undergo
problems due to the occlusion by the Lead Vehicle.

4.3 Improvements and Future Works on Controls
Finally, we want to comment on the controls we employed: while the Stanley Con-
troller and the Constant Time Gap ACC are quite refined, the main simplification
of our System lies in the total absence of brakes and their representation through
the application of the same (negative) torque as the one on the Front Axle on the
Rear Axle, just in case we are in States 5 6 or 7, as is seen in Figure 2.13. Of course,
in case of a Real Vehicle application, even if just for simple tests, we will need to
modify the Longitudinal Controls for all cases, in order to take into account the
possibility to enact the brakes on all the four wheels.

4.4 Final Remarks
Overall, we are moderately satisfied with the results of this thesis work: the fact
that, by using the experience accumulated during the experience of the 2021/2022
Season Squadra Corse Polito DRIVERLESS for an application to an everyday
scenario is obviously making us proud, as well as the fact that we attempted a work
on something which would be a great step forward from the current technology
framework, since the Highway Chauffeur can not be used on a two-way road and it
is still itself in an early stage.
On the other hand, the fact that it was only applied through Simulations and that
the high Computational Cost of the whole System (albeit the most comes from the
Scenario Reader and the Perception blocks) can not leave us fully satisfied, since
the goal is, as always, to find practical applications.
Considering both sides of the coin, the total experience of this thesis work is anyway
positive and we hope to have laid out the foundations for future works.
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Appendix A

Vehicle Specifics

A.1 Vehicle geometrical characteristics
• Front axle - CG distance a: 1.10m

• Rear axle - CG distance b: 1.30m

• Wheelbase L: 2.40m

• Front track Tf : 1.67m

• Rear track Tr: 1.67m

• Center of Gravity height hCG: 0.46m

• Vehicle mass m: 1350kg

• Yaw inertia Jz: 1900kgm2

A.2 Aerodynamic characteristics
• Frontal Area Af : 1.70m2

• Drag coefficient Cx: 0.32

• Negative lift coefficient Cz: NEGLECTED

• Air density ρ: 1.225kg/m3

• Center of Aerodynamic pressure ha: 0.57m

189



Vehicle Specifics

A.3 Suspension characteristics

• Front roll height Hroll,f : 0.41m

• Rear roll height Hroll,r: 0.49m

• Center roll height Hroll: 0.45m

• Roll inertia Jx: 490kgm2

• Front axle springs stiffness Ks,f : 59780N/m

• Front Antiroll-bar torsional stiffness Karb,f : 10000Nm/rad

• Front axle torsional damping Gf : 2400Nm/rad/s

• Rear axle springs stiffness Ks,r: 38220N/m

• Rear Antiroll-bar torsional stiffness Karb,f : 18000Nm/rad

• Rear axle torsional damping Gr: 2400Nm/rad/s

A.4 Wheel and Tyre characteristics

• Wheel Inertia Ir: 0.57kgm2

• Rolling Resistance linear factor f0: 0.0041m

• Rolling Resistance quadratic factor f2: 2.05e− 7m/(rad/s)2

• Wheel radial stiffness Kv: 225000N/m

• Front tyre radius Rf : 0.35m

• Rear tyre radius Rr: 0.35m

• Pacejka 1989 coefficients
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i ai bi

0 1.2 2.37272
1 -34.0 -9.46
2 1600 1000
3 1315.6 1.3
4 1.96 276
5 0.00501 0.4
6 -0.02103 0.00402
7 0.77394 -0.0615
8 0.002289 1.2
9 0.013442 0.0299
10 0.03709 -0.176
11 19.1656 —
12 1.21356 —
13 6.26206 —

• Transversal Relaxation Length Lril,T : 0.5m

• Longitudinal Relaxation Length Lril,T : 0.2m

A.5 Powertrain characteristics
• I gear reduction ratio τI: 4

• II gear reduction ratio τII: 2.2

• III gear reduction ratio τIII: 1.2

• Final drive reduction ratio τf : 3.2
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