polito.it
Politecnico di Torino (logo)

From Zero Energy and Emission Building toward Zero Energy and Emission District : enlarging the scale to achieve a low carbon future

Martina Bertoncini

From Zero Energy and Emission Building toward Zero Energy and Emission District : enlarging the scale to achieve a low carbon future.

Rel. Stefano Paolo Corgnati, Cristina Bottero, Cristina Becchio, Per Heiselberg. Politecnico di Torino, Corso di laurea magistrale in Architettura Costruzione Città, 2017

Abstract:

ABSTRACT

The increase in energy exploitation and air pollution have forced the European Union to deal with energy saving and C02 emission reduction in all economic sectors. With specific reference to buildings, the recast of the European Directive EPBD (Energy Performance of Buildings Directive) has introduced the concept of nearly Zero Energy Building (nZEB) as building with very high energy performances and able to cover the residual energy demand with renewable energy sources installed on-site or nearby the building. According to EPBD recast, all new buildings will be nearly-zero by the end of 2020. Nevertheless, new 2050 targets, defined by COP 21 achievements, are related to emissions reduction. In fact, the recent strategy of the European Union called "Roadmap for moving to a competitive low-carbon economy in 2050" recommends a cut in the greenhouse emissions by 80 % by 2050 (compared with 1990 levels) and, in particular, a 90% reduction in emissions generated by building sector.

With this new perspective, the nZEB concept could be not sufficient for reaching the new goals and it is important to design and refurbish buildings as Post-Carbon Buildings (PCB). PCB is represented by a building where the minimum energy performance is in line with national standard requirements but a great reduction of carbon emissions is expected.

However, it has been noted that focusing the attention only on buildings, considering each separately and analyzing the problem at single house level, is not sufficient to reduce the C02 emissions in the percentages established by COP 21 standards. For this reason, the EU has recommended to enlarge the content of the analysis promoting the concept of Post-Carbon City (PCC). PPC is defined as a city characterized by low-energy and low-emissions buildings provided with intelligent heating and cooling systems, electric and hybrid cars and better public trans-port. Moreover, when dealing with district scale and urban polices, it is also important including in the analysis aspects not strictly related to environmental impacts, but concerned social and economic sectors, such as the number of jobs created by the energy investments, the economic savings in energy bills, the people opinion upon different retrofit solutions, and so on.

Following these considerations, the thesis aims at exploring the carbon reduction potential of an existing district and the use of Multicriteria Decision Analysis (MCDA) supporting the selection of energy retrofit strategies.

In particular, the analysis is applied to an urban district located in the city of Turin (Northern Italy), which is composed of different residential apartment blocks built in different times. Starting from the existing buildings, different energy efficiency minimum requirement as imposed by Italian regulation and carbon reduction are combined for creating alternative strategies for the energy retrofit of the district. To do this, a dynamic simulation software (DesignBuilder) is used in order to obtain more precise results. Then, those strategies are evaluated using the PROMETHEE method (Preference Ranking Organization Method for Enrichment Evaluations) and a MCDA is applied. In particular, a family of environmental, social, technical and economic criteria has been defined with the aim of assessing the alternatives options and to select the best performing solution for the district under investigation.

Moreover, the thesis comprehends a comparison be-tween Mediterranean and Nordic climate studying the influence of the local climate upon similar technical solutions, investigating their efficiency in two existing district case studies, settled in Northern Italy and in Denmark.

Relators: Stefano Paolo Corgnati, Cristina Bottero, Cristina Becchio, Per Heiselberg
Publication type: Printed
Subjects: S Scienze e Scienze Applicate > SH Fisica tecnica
U Urbanistica > UK Pianificazione urbana
Corso di laurea: Corso di laurea magistrale in Architettura Costruzione Città
Classe di laurea: New organization > Master science > LM-04 - ARCHITECTURE AND ARCHITECTURAL ENGINEERING
Aziende collaboratrici: UNSPECIFIED
URI: http://webthesis.biblio.polito.it/id/eprint/6142
Chapters:

0 INTRODUCTION

0.1 Objective and methodology

0.2 Structure of the thesis

1 Analysis background - International standard framework

1.1 European standards background

1.2 Nearly Zero Energy Buiding

1.3 Zero Carbon Building

1.4 Italian Standards

1.5 Danish Standards

2 Cost optimal methodology

2.1 Calculation methodology

2.2Global cost graph

2.3 Cost optimal methodology applied to Case Studies

3 Zero Energy and Emissions Building

3.1 Energy boundaries

3.2 Emissions boundaries

3.3 Remaining carbon emissions reduction

4 Zero Energy and Emissions District

4.1 From Zero Carbon Building to Zero Carbon District

4.2 Italian case studies

4.3 The Danish approach

4.4 Other European case studies

4.5 Zero Energy and Emissions District

5 Multicriteria Decision Analysis

5.1 Criteria selection

5.2 Simon's method

5.3 Visual PROMETHEE

5.4 MCDA applied to the case study

6 The Italian case study - The Reference Building

6.1 The Reference Building: State of art

6.2 The Reference Building: DesignBuilding modelling

6.3 The Reference Building: Energy performances

7 Energy Efficiency Measures

7.1 Acting on the envelope

7.2 Acting on the system

7.3 Acting on electric appliances and lighting ...

7.4 Producing energy on-site: Renewable Energy Sources

7.5 Packages of retrofit measures

7.6 Packages evaluation under ZEEB definition ..

8 Global cost Analysis

8.1 Investment cost

8.2 Maintenance cost

8.3 Energy cost

8.4 Environmental cost

8.5 Replacement cost

8.6 Residual value

8.7 Global cost

8.8 Cost Optimal

8.9 Sensitivity analysis

9 Zero Energy and Emissions District in Turin

9.1 The Reference District: State of art

9.2 The Reference District: EnergyPLAN modelling

9.3 The Reference District: Simulation's results

9.4 District's energy refurbishment

10 Cots' definition of district retrofit alternatives

10.1 Investment cost

10.2 Maintenance cost

10.3 Energy cost

10.4 Environmental cost

10.5 Replacement cost and residual value

10.6 Global cost

11 Multicriteria analysis for ZEED evaluation

11.1 Criteria definitions

11.2 Weights assessment

11.3 Alternatives' evaluation

11.4 Multicriteria analysis results

11.5 Sensitivity analysis

12 The Danish case study - The Reference Building

12.1 The Reference Building: State of art

12.2 The Reference Building: DesignBuilding modelling

12.3 The Reference Building: Energy performances

13 Danish energy retrofit

13.1 The new retrofit project

13.2 Acting on the envelope

13.3 Acting on the system

13.4 Acting on lighting

13.5 Producing energy on-site: Renewable Energy Sources

13.6 Packages of retrofit measures

13.7 Packages evaluation under ZEEB definition

14 Zero Energy and Emissions District in Aalborg

14.1 The Reference District: State of art

14.2 The Reference District: EnergyPLAN modelling

14.3 The Reference District: Simulation's results

14.4 District's energy refurbishment

15 Conclusions

15.1 Italian case study results

15.2 Danish case study results

15.3 Comparison of results under different climates

15.4 Future developments

ACRONYMIS

BIBLIOGRAPHY

ANNEX

Annex 1. Calculation of lighting

normalized power density for Italy

Annex 2. Packages in details (Italy)

Annex 3. Retrofit alternatives in details (Italy)....

Annex 4. Calculation of new green areas' investment cost

Annex 5. Calculation of lighting normalized power density for Denamark

Annex 6. Packages in details (Denmark)

Annex 7. Retrofit alternatives in details (Denmark)

Bibliography:

BIBLIOGRAPHY

European Commission. Europe 2020 strategy. Brussels : s.n., 2010.

European Commission (2012). Energy Performance of Building Directive - EPBD recast.

European Commission. (2011) Roadmap for moving to a low-carbon economy in 2050. Brussels

Derjanecz, A. (2016) COP 21 - Decarbonising the build environment by 2050. REHVA 72

Architecture 2030 (2014) Roadmap to zero emissions, submission to the ad hoc working group on the urban platform for enhanced action. Santa Fe

The Postdam Institute (2012) Turn down heat, Why a 4 °C warmer world must be avoided. The World Bank. Washington DC

United Nations, Department of Economic and Social Affairs. World Urbanization Prospects, the 2014 revision. https://esa.un.org/unpd/wup/.

IEA International Energy Agency (2008) World Energy Outlook.

Global Building Stock Database, http://www.navigantresearch.com/research/global-building-stock-database.

Dobbs, R. (2012) Urban world: Cities and the rise of the consuming class. McKinsey Global Institute

Torcellini, P. Pless, S. Deru, M. (2006) Zero energy buildings: a critical look at the definition. National Renewable Energy Laboratory

Laustsen, J. (2008) Energy efficiency requirements in building codes, Energy efficiency policies for new buildings. International Energy Agency

Marszal, A. J. Heiselberg, P. Bourelle, J.S. Musall, E. Voss, K. Sartori, I. Napolitano, A. (2010) Zero Energy Building - A review of definitions and calculation methodologies. Energy and Buildings 43, 971-979

Kurnitski, K. (2013) REHVA nZEB technical definition and system boundaries for nearly zero energy buildings. Report 4

Sartori, I. Napolitano, A. Voss, K. (2012) Net zero energy buildings: a consistent definition framework. Energy and Buildings 48, 220-232

IEA International Energy Agency (2010) Towards Net Zero Energy Solar Buildings Annex 52/Task 40

Riedy, C. Lederwasch, A. Ison, N. (2011) Defining Zero Emission Buildings. Review and recommendations: final report. Australian Sustainable Built Environment Council

UNEP SBCI Sustainable Building & Climate Initiative (2010) Common Carbon metric for Measuring Energy Use & Reporting Greenhouse Gas Emissions from Building Operations.

Torcellini, P. Pless, S. Deru, M. (2006) Zero energy buildings: a critical look at the definition. National Renewable Energy Laboratory

Whitehill Bordon (2011) One Planet Living in Whitehill Bordon. Bioregional

Department for Communities and Local Government (2008) Definition of Zero Carbon Home and Not-do- mestic Building. Communities and Local Government Publications

Department for Communities and Local Government (2008) Code for Sustainable Homes. Technical guide. Communities and Local Government Publications

ZERO CARBON HUB (2013) Zero Carbon Strategies. For tomorrow's new homes. NHB Foundations

Austria. (2014) National Plan Draft. OIB Guideline, Giudeline 6. Energy saving and heat insulation

SEAI (2010) Dwelling Energy Assessment Procedure (DEAP)

Luxembourg. (2015) Nationaler Plan Luxemburgs zur Erhöhung der Zahl der Niedrigstenergiegebäude

Romania. (2013) Law 159/2013

GreenStar. Green Building Council Australia, http://new.gbca.org.au/green-star/

Kilkis, S. (2007) A new metric for net- zero carbon buildings. Energy Sustainability Conference ES2007- 36263, 219-224.

Marszal, A. Heiselberg, P. (2009) A literature review of Zero Energy Building definitions. Aalborg Universitet Department of Civil Engineering, DCE Technical Reports; No. 78

Kilkis, S. (2014) Energy system analysis of a pilot net-zero exergy district. Energy Conversion and Management 87, 1077-1902

ENEA, Ente per le Nuove tecnologie I'Energia e I'Ambiente. www.enea.it.

ENEA, Agenzia Nazionale per le nuove tecnologie, l'energia e lo sviluppo economico sostenibile. (2010) Rapporto 2010. Inventario annuale sulle emissioni di gas serra su scala regionale. Le emissione di anidride carboni ca del sistema energetico.

Italy. (2011) Decreto Legge 28/2011. Attuazione della direttiva 2009/28/CE sulla promozione dell'uso dell'energia da fonti rinnovabili.

Italy. (2013) Decreto Legislativo 63/2013. Disposizioni urgenti per il recepimento della Direttiva 2010/31/

UE del Parlamento europeo e del Consiglio del 19 maggio 2010,. sulla prestazione energetica nell'edilizia per la definizione delle procedure d'infrazione avviate dalla Commissione europea, nonché altre disposizioni in materia di coesione locale.

Italy. (2013) Legge 90/2013. Conversione, con modificazioni, del decreto-legge 4 giugno 2013, n. 63.

Italy, (2015) Decreto Interministeriale 26/06/2015. Applicazione delle metodologie di calcolo delle prestazioni energetiche e definizione delle prescrizioni e dei requisiti minimi degli edifici.

CTI, Comitato tecnico italiano. (2012) UNI/TS 11300-1. Energy performance of building. Part 1: Evaluation of energy need for heating and cooling.

CTI, Comitato Tecnico Italiano. (2012) UNI/TS 11300-2. Energy performance of building. Part 2. Evaluation of primary energy need and of system efficiencies for space heating and domestic hot water.

CTI. Comitato Tecnico Italiano. (2012) UNI/TS 11300-3.. Energy performance of building. Part 3. Evaluation of primary energy and system efficiencies for space cooling.

CTI. Comitato Tecnico Italiano. (2012) UNI/TS 11300-4. . Energy performance of building. Part 4. Renewable energy and other generation system for space heating and domestic hot water.

City of Turin (2011) Allegato Energetico Ambientale al Regolamento Edilizio della Città di Torino, n° 2010- 08963/38.

IEA - Ineternational Energy Agency. (2012) Danish Energy Agreement for 2012-2020.

Concreted Action - Energy Performance of Buildings (2016) implementing the Energy Performance of Building Directive. Featuring Country Report.

Danish Government. (2017) BR15 - Danish Building Regulation 2017.

European Commission (2012). Energy Performance of Building Directive - EPBD recast.

ENEA - Agenzia nazionale per le nuove tecnologie, l'energia e lo sviluppo economico sostenibile (2013). Svi- luppo della metodologia comparative/ cost optimal secondo Direttiva 2010/31/UE.

Torcellini P., Pless S., Deru M., Crawley D. Zero Energy Buildings: A Critical Look at the Definition . 2006.

Carvalho, M., Bonifacio, M., Dechamps, P., (2011) Building a low carbon society. Energy 36, 1842-1847.

IEA - Ineternational Energy Agency (2014) Annex 64 - LowEx Communities.

S0rnes, K., Sartori, I., Fredriksen, E., Martinsson, F., Romero, A., Rodriguez, F., Schneuwly, P., (2014) ZenN - Nearly Zero Energy Neighborhoods - Final report on common definition fon nZEB renovation.

Lund, H., Werner, S., Wiltshire, R., Svendsen, S., Thorsen, J. E., Hvelplund, F., Mathisen, B. V., (2014) 4th Gen¬eration District Heating (4GDH). Integrating smart thermal grids into future sustainable energy systems. Energy 68, 1-11.

Li, H., Svendsen, S., (2012) Energy and energy analysis of low temperature district heating network. Energy45, 237-246.

DEA - Danish Energy Agency. District heating - Danish experiences.

Various authors (2012) POLYCITY Energy Networks in Sustainable Cities.

Dell'Anna, F., (2015) Evaluating co-benefits of nZED projects: methodological approach and experimentation in the city of Turin.

Lund, H., Andersen, A.N., Ostegaard, P.A., Mathiesen, B.V., Connolly, D., (2010) From electricity smart grids to smart energy systems - A market operation based approach and understanding. Energy 42, 96-102.

Managan, K., (2012) Net Zero Communities: One building at a time. ACEEE Summer Study on Energy Efficiency in Buildings, 180-192.

Viera, F. M., Moura, P. S., de Almeida, A. T., (2017) Energy storage system for self-consumption of photovoltaic energy in residential zero energy buildings. Renewable Energy 103,308-320.

European Commition. https://ec.europa.eu/energy/en/topics/markets-and-consumers/smart-grids-and- meters.

Manque, A.F., Penders, M., Reiter, S., (10-12 September 2013) From Zero Energy Building to Zero Energy Neighbourhood. 29th Conference, Sustainable Architecture for a Renewable Future, Munich, Germany.

Chance, T., (2009) Towards sustainable residential communities, the Beddington Zero Energy Development (BeZED) and beyond. Environment & Urbanisation.

Concerto AL Piano, http://concerto-al-piano.eu/project.htm.

Sinfonia Project, http://www.sinfonia-smartcities.eu/en/demo-city/boizano.

R2CITIES - Residential Renovation towards nearly zero energy CITIES. http://r2cities.eu/Demos/Genoa/Case_Study_ln_Short.kl.

DEA - Danish Energy Agency. (2014) The Danish Energy Model. Innovative, Efficient and Sustainable.

Ostegaard, A., (2013) Wind power integration in Aalborg Municipality using compression heat pumps and geothermal absorption heat pumps. Energy 49, 502-508.

Ostegaard, P. A., Vad Mathiesen, B., Moller, B., Lund, H., (2010) A renewable energy scenario for Aalborg Municipality based on low temperature geothermal heat, wind power and biomass. Energy 35, 4892-4901.

García-Fuentes, M. Á., Vasallo, A., García-Pajares, R., Pujols, W. C., Meiss, A., (2014) Residential areas retrofitting towards nearly Zero Energy Districts (nZED). A case study: Valladolid-Cuatro de Marzo. Word SB14 Conference, 28-30 October 2014, Barcellona, Spain.

Kilkis, S., (2015) Exergy transition planning for net-zero districts. Energy 92, 515-531.

Tetranerproject, http://cordis.europa.eu/project/rcn/85712_it.html.

Kennedy, S., Sgouridis, S., (2011) Rigouros classification and carbon accounting principle fro low and Zero Carbon Cities. Energy Policy 39, 5259-5268.

European Commission. (2011) Roadmap for moving to a low-carbon economy in 2050. Brussels.

European Commission. (2011) Monitoring report of the EU sustainable development strategy.

Roscelli, R. Manuale di Estimo: valutazioni economiche ed esercizio della professione. UTET,Novara.Novara, 2014.

Haralambopoulos, D.A. Polatidis, H. (2003) Renewable energy projects: structuring a multi-criteria group decision-making framework. Renewable Energy 28, 961-973.

Doukas, H. Patlitzianas, K.D. Psarras, J. (2006) Supporting sustainable electricity technologies in Greece using MCDM. Resources Policy 31, 129-136.

Marinakis, V. Doukas, H. Xidonas, P. Zopounidis, C. (2016) Multicriteria decision support in local energy planning: An evaluation of ate motive scenarios for the Sustainable Energy Action Plan. Omega 69,1-16.

Konidari, P., Mavrakis, D., (2007) A multi-criteria evaluation method for climate change mitigation policy instruments. Energy Policy 35, 6235-6257.

Ramanathan. R., (1999) Selection of appropriate greenhouse gas mitigation options. Global Environmental Change 9, 203-210.

Wang J., Jing Y., Zhang C., Zhao J., (2009) Review on multi-criteria decision analysis aid in sustainable energy decision-making. Renewable and Sustainable Energy Reviews 13, 2263-2278.

Becchio C., Bottero M., Corgnati S., Dell'Anna F., (2016) A MCDA based approach for evaluating alternative requalification strategies for a Net Zero District. Multiple Criteria Decision Making, 189-211.

Kontu K., Rinne S., Olkkonen V., Lahdelma R., Salminen P., (2015) Muilticriteria evaluation of heating choices for new sustainable residential area. Energy and Buildings 93,169-179.

Grujic M., Ivezic D., Zivkovic M., (2014) Application of multi-criteria decision-making model for choice of the optimal solution for meeting heat demand in the centralized supply system in Belgrade. Energy 67, 341-350.

Tsoutsos T., Drandaki M., Frantzeskaki N., losifidis E., Kiosses I. (2009) Sustainable energy planning by using multi-criteria analysis application in the island ofCreta. Energy Policy, 1587-1600.

Riberio F., Ferreira P., Araujo M., (2013) Evaluating future scenarios for the power generation sector using a MCDA tool: the Portuguese case. Energy 52, 126-136.

Becchio ,C., Bottero, M., Corgnati, S., DellAnna, F., (2016) Cost benefits analysis and Smart Grid Project.

Nigim, K., Munier, N., Green, J., (2004) Pre-feasibility MCDM tools to aid communities in prioritizing local viable renewable energy sources. Renewable Energy 29, 1775-1791.

Beccalli, M., Cellura, M., Mistretta, M., (2003) Decision-making in energy planning Application of the Electre method at regional level for the diffusion of renewable energy technology. Renewable Energy 28, 2063-2087.

Cavallaro, F., (2010) Fuzzy TOPSIS approach for assessing thermal-energy storage in concentrated solar power (CSP) systems. Applied Energy 87, 496-503.

Chatzimouratidis, A.I., Pilavachi, P.A., (2008) Multicriteria evaluation of power plants impact on the living standard using the analytic hierarchy process. Energy Policy 36, 1074-1089.

Ghafghazi, S., Sowlati, T., Sokhansanj, S., Melin, S., (2010) A multicriteria approach to evaluate district heat¬ing system options. Applied energy 87,1134-1140.

Chatzimouratidis, A.I. Pilavachi, P.A., (2009) Technological, economic and sustainability evaluation of power plants using the Analytic Hierarchy Process. Applied energy, 1134-1140 .

Theodorou, A., Florides, G., Tassou, S., The use of multiple criteria decision making methodologies for the promotion of RES through funding schemes in Cyprus, a review. 2010. Energy Policy 38, 7783-7792.

Stein, E.W., (2013) A comprehensive multi-criteria model to rank electric energy production technologies. Renewable and Sustainable Reviews 22, 640-654.

DellAnna, F., (2015) Evaluating co-benefits of nZED projects: methodological approach and experimentation in the city of Turin.

Janssen R., Staniaszek D., (2012) How many jobs? A survey of the employment effects of investment in energy efficiency of buildings. Research published in May 2012 by The Energy Efficiency and Industrial Forum.

Simos, J., L'évaluation environnementale: Un processus cognitif négocié. PHD thesis, Losanne, 1990.

Simos, J., Evaluer l'impact sur l'environnement: Une approche originale par l'analyse multicritere et la négo¬ciation. Les Presses de l'Université de Montréal, Losanne, 1990.

Figuera, J., Roy, B., (2002) Determining the weights of criteria in the ELECTRE type methods with a revised Simos' procedure. European Journal of Operation Research 139, 317-326.

Figuera, J., Roy, B., (2002) Determining the weights of criteria in the ELECTRE type methods with a revised Simos' procedure. European Journal of Operation Research 139, 317-326.

Brans J.P., Mareshal B., Vincke P., (1986) How to select and how to rank projects: the PROMETHEE method. European Journal of Operation Research 24, 228-238.

Corrado V., Ballarmi I., Corgnati S., (2014) TABULA PROJECT- Building Typology Brochure - Italy. Politecnico di Torino.

Italy, (2015) Decreto Interministeriale 26/06/2015. Applicazione delle metodologie di calcolo delle prestazioni energetiche e definizione delle prescrizioni e dei requisiti minimi degli edifici.

Italy, (2015) Decreto Interministeriale 26/06/2015. Applicazione delle metodologie di calcolo delle prestazioni energetiche e definizione delle prescrizioni e dei requisiti minimi degli edifici.

City of Turin (2011) Allegato Energetico Ambientale al Regolamento Edilizio della Città di Torino, n° 2010- 08963/38.

Italy. (2011) Decreto Legge 28/2011. Attuazione della direttiva 2009/28/CE sulla promozione dell'uso dell'en¬ergia da fonti rinnovabili.

Regione Piemonte. (2015) Preziario Regionale.

Ireland. (2011) Building Regulation 2011. Technical Guidance Document L. Conservation of fuel and energy - dwellings. Dublin.

European Commission (2012). Energy Performance of Building Directive - EPBD recast.

Regione Piemonte. (2015) Preziario Regionale.

European Union. (2009) EN 15459/2009. Energy performance of buildings - Economic evaluation procedure for energy systems in building.

Autorità per l'energia elettrica, del gas e sistema idrico, http://www.autorita.energia.it/it/index.htm.

Gruppo IREN Energia, http://www.autorita.energia.it/it/index.htm.

ENEA - Agenzia nazionale per le nuove tecnologie, l'energia e lo sviluppo economico sostenibile (2013). Svi¬luppo della metodologia comparativa cost-optimal secondo Direttiva 2010/31/UE.

Department for Communities and Local Government. (2008) Definition of Zero Carbon Home and Not-do- mestic Building. London.

Corrado V., Ballarmi I., Corgnati S., (2014) TABULA PROJECT- Building Typology Brochure - Italy. Politecnico di Torino.

Geoportale Piemonte. http://www.geoportale.piemonte.it/geocatalogorp/?sezione=catalogo.

CTI, Comitato tecnico italiano. (2012) UNI/TS 11300-1. Energy performance of building. Part 1: Evaluation of energy need for heating and cooling.

Autorità per l'energia elettrica, del gas e sistema idrico, http://www.autorita.energia.it/it/index.htm.

Department of Planning, Aalborg University - Denmark, http://www.en.plan.aau.dk/.

Lund, H., (2014) Renewable Energy Systems: A Smart Energy Systems Approach to the Choice and Modeling of 100% Renewable Solutions. Chemical Engineering transactions 39.

Franco, A., Salza, P., (2011) Strategies for optimal penetration of intermittent renewables in complex energy systems based on techno-operational objectives. Renewable Energy 36, 743-753..

Ostegaard, P. A., Vad Mathiesen, B., Moller, B., Lund, H., (2010) A renewable energy scenario for Aalborg Municipality based on low temperature geothermal heat, wind power and biomass. Energy 35, 4892-4901.

Ostegaard, A., (2013) Wind power integration in Aalborg Municipality using compression heat pumps and geothermal absorption heat pumps. Energy 49, 502-508.

Lund, H., (2015) EnergyPLAN - Advanced Energy Systems Analysis Computer Model, Documentation Version 12.

Italy, (2015) Decreto Interministeriale 26/06/2015. Applicazione delle metodologie di calcolo delle prestazioni energetiche e definizione delle prescrizioni e dei requisiti minimi degli edifici.

Italy. (2011) Decreto Legge 28/2011. Attuazione della direttiva 2009/28/CE sulla promozione dell'uso dell'energia da fonti rinnovabili.

City of Turin (2011) Allegato Energetico Ambientale al Regolamento Edilizio della Città di Torino, n° 2010- 08963/38.

Comune di Torino, http://www.comune.torino.it/verdepubblico/patrimonioverde/alberi/conoscere.shtml.

U.S. Department of Energy Information Amministration. (1998) Method for Calculating Carbon Sequestration by Trees in Urban and Suburban Settings.

Collegio degli Ingegneri e Architetti di Milano. (2014) Preziario DEI - Tipologie edilizie.

Regione Piemonte. (2015) Preziario Regionale.

AEEG Politecnico di Milano - Dipartimento di energia. (2013) Costi di produzione energia da fonti rinnovabili.

European Union. (2009) EN 15459/2009. Energy performance of buildings - Economic evaluation procedure for energy systems in building.

Autorità per l'energia elettrica, del gas e sistema idrico, http://www.autorita.energia.it/it/index.htm.

Gruppo IREN Energia, http://www.autorita.energia.it/it/index.htm.

Al EL. (2016) Guida ai produttori professionali Biomasse.

European Commission (2012). Energy Performance of Building Directive - EPBD recast.

Marinakis, V. Doukas, H. Xidonas, P. Zopounidis, C. (2016) Multicriteria decision support in local energy planning: An evaluation of ate motive scenarios for the Sustainable Energy Action Plan. Omega 69, 1-16.

Konidari, P., Mavrakis, D., (2007) A multi-criteria evaluation method for climate change mitigation policy instruments. Energy Policy 35, 6235-6257.

Ramanathan. R., (1999) Selection of appropriate greenhouse gas mitigation options. Global Environmental Change 9, 203-210.

Wang J., Jing Y., Zhang C., Zhao J., (2009) Review on multi-criteria decision analysis aid in sustainable energy decision-making. Renewable and Sustainable Energy Reviews 13, 2263-2278.

Becchio C., Bottero M., Corgnati S., Dell'Anna F., (2016) A MCDA based approach for evaluating alternative

requalification strategies for a Net Zero District. Multiple Criteria Decision Making, 189-211.

Riberio F., Ferreira P., Araujo M., (2013) Evaluating future scenarios for the power generation sector using a MCDA tool: the Portuguese case. Energy 52, 126-136.

Grujic M., Ivezic D., Zivkovic M., (2014) Application of multi-criteria decision-making model for choice of the optimal solution for meeting heat demand in the centralized supply system in Belgrade. Energy 67, 341-350.

Theodorou, A., Florides, G., Tassou, S., (2010) The use of multiple criteria decision making methodologies for the promotion of RES through funding schemes in Cyprus, a review. Energy Policy 38, 7783-7792.

Tsoutsos T., Drandaki M., Frantzeskaki N., losifidis E., Kiosses I. (2009) Sustainable energy planning by using multi-criteria analysis application in the island ofCreta. Energy Policy, 1587-1600.

Ghafghazi, S., Sowlati, T., Sokhansanj, S., Melin, S., (2010) A multicriteria approach to evaluate district heat¬ing system options. Applied energy 87, 1134-1140.

Stein, E.W., (2013) A comprehensive multi-criteria model to rank electric energy production technologies. Renewable and Sustainable Reviews 22, 640-654.

Janssen R., Staniaszek D., (2012) How many jobs? A survey of the employment effects of investment in ener¬gy efficiency of buildings. Research published in May 2012 by The Energy Efficiency and Industrial Forum.

Becchio ,C., Bottero, M., Corgnati, S., DellAnna, F., (2016) Cost benefits analysis and Smart Grid Project.

Kontu K., Rinne S., Olkkonen V., Lahdelma R., Salminen P., (2015) Muilticriteria evaluation of heating choices for new sustainable residential area. Energy and Buildings 93, 169-179.

Jensen, Rasmus Lund. Person- og forbrugsprofiler: bygningsintegreret energiforsyning.

Corrado V., Ballarmi I., Corgnati S., (2014) TABULA PROJECT- Building Typology Brochure - Italy. Politecnico di Torino.

3.Italy, (2015) Decreto Interministeriale 26/06/2015. Applicazione delle metodologie di calcolo delle prestazioni energetiche e definizione delle prescrizioni e dei requisiti minimi degli edifici.

Danish Government. (2017) BR17 - Danish Building Regulation 2017.

Danish Government. (2017) BR15 - Danish Building Regulation 2017.

IEA- Ineternational Energy Agency. (2012) Danish Energy Agreement for 2012-2020.

Aalborg Forsyning. https://aalborgforsyning.dk/.

Nord Energi. http://nordenergi.dk/.

Eurostat, http://ec.europa.eu/eurostat.

Swedish University of Agricultural Sciences. (2011) Wood fuel price statistic in Europe. 2011.

European Commission (2012). Energy Performance of Building Directive - EPBD recast.

Modify record (reserved for operators) Modify record (reserved for operators)