Andres Felipe Cardenas Meza
Robustness of Machine Learning algorithms applied to gas turbines.
Rel. Danilo Giordano. Politecnico di Torino, Corso di laurea magistrale in Data Science And Engineering, 2024
|
PDF (Tesi_di_laurea)
- Tesi
Licenza: Creative Commons Attribution Non-commercial No Derivatives. Download (4MB) | Preview |
Abstract: |
This thesis demonstrates the successful development of a software sensor for Siemens Energy’s SGT-700 gas turbines using machine learning algorithms. Our goal was to enhance the robustness of measurements and redundancies, enabling early detection of sensor or turbine malfunctions and contributing to predictive maintenance methodologies. The research is based on a real-world case study, implementing the Cross Industry Standard Process for Data Mining (CRISP DM) methodology in an industrial setting. The thesis details the process from dataset preparation and data exploration to algorithm development and evaluation, providing a comprehensive view of the development process. This work is a step towards integrating machine learning into gas turbine systems. The data preparation process highlights the challenges that arise in the industrial application of data-driven methodologies due to inevitable data quality issues. It provides insight into potential future improvements, such as the constraint programming approach used for dataset construction in this thesis, which remains a valuable tool for future research. The range of algorithms proposed for the software sensor’s development spans from basic to more complex methods, including shallow networks, ensemble methods and recurrent neural networks. Our findings explore the limitations and potential of the proposed algorithms, providing valuable insights into the practical application of machine learning in gas turbines. This includes assessing the reliability of these solutions, their role in monitoring machine health over time, and the importance of clean, usable data in driving accurate and satisfactory estimates of different variables in gas turbines. The research underscores that, while replacing a physical sensor with a software sensor is not yet feasible, integrating these solutions into gas turbine systems for health monitoring is indeed possible. This work lays the groundwork for future advancements and discoveries in the field. |
---|---|
Relators: | Danilo Giordano |
Academic year: | 2024/25 |
Publication type: | Electronic |
Number of Pages: | 128 |
Subjects: | |
Corso di laurea: | Corso di laurea magistrale in Data Science And Engineering |
Classe di laurea: | New organization > Master science > LM-32 - COMPUTER SYSTEMS ENGINEERING |
Ente in cotutela: | KTH - Kungl. Tekniska Hogskolan (Royal Institute of Technology) (SVEZIA) |
Aziende collaboratrici: | Siemens Energy AB |
URI: | http://webthesis.biblio.polito.it/id/eprint/33205 |
Modify record (reserved for operators) |