Lorenzo Riggi
Fluorescence Spectroscopy empowered by Data-Driven algorithms: A fast and cost-effective approach to Environmental Monitoring and Analysis.
Rel. Guido Perrone, Chiara Bellezza Prinsi. Politecnico di Torino, Corso di laurea magistrale in Ingegneria Elettronica (Electronic Engineering), 2024
|
PDF (Tesi_di_laurea)
- Tesi
Licenza: Creative Commons Attribution Non-commercial No Derivatives. Download (49MB) | Preview |
| Abstract: |
Fluorescence Spectroscopy empowered by Data-Driven algorithms: A fast and cost-effective approach to Environmental Monitoring and Analysis |
|---|---|
| Relatori: | Guido Perrone, Chiara Bellezza Prinsi |
| Anno accademico: | 2023/24 |
| Tipo di pubblicazione: | Elettronica |
| Numero di pagine: | 147 |
| Soggetti: | |
| Corso di laurea: | Corso di laurea magistrale in Ingegneria Elettronica (Electronic Engineering) |
| Classe di laurea: | Nuovo ordinamento > Laurea magistrale > LM-29 - INGEGNERIA ELETTRONICA |
| Aziende collaboratrici: | Politecnico di Torino |
| URI: | http://webthesis.biblio.polito.it/id/eprint/30931 |
![]() |
Modifica (riservato agli operatori) |



Licenza Creative Commons - Attribuzione 3.0 Italia