polito.it
Politecnico di Torino (logo)

Model-data fusion of chlorophyll fluorescence for reducing uncertainties in large-scale simulations of plant photosynthesis and transpiration

Lorenzo Francesco Davoli

Model-data fusion of chlorophyll fluorescence for reducing uncertainties in large-scale simulations of plant photosynthesis and transpiration.

Rel. Alessandro Pelizzola. Politecnico di Torino, Corso di laurea magistrale in Physics Of Complex Systems (Fisica Dei Sistemi Complessi), 2023

[img]
Preview
PDF (Tesi_di_laurea) - Tesi
Licenza: Creative Commons Attribution Non-commercial No Derivatives.

Download (8MB) | Preview
Abstract:

Model-data fusion of chlorophyll fluorescence for reducing uncertainties in large-scale simulations of plant photosynthesis and transpiration

Relators: Alessandro Pelizzola
Academic year: 2022/23
Publication type: Electronic
Number of Pages: 94
Subjects:
Corso di laurea: Corso di laurea magistrale in Physics Of Complex Systems (Fisica Dei Sistemi Complessi)
Classe di laurea: New organization > Master science > LM-44 - MATHEMATICAL MODELLING FOR ENGINEERING
Aziende collaboratrici: CEA Saclay
URI: http://webthesis.biblio.polito.it/id/eprint/26650
Modify record (reserved for operators) Modify record (reserved for operators)