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Abstract

Over the last few years, more and more climate and environmental data-
sets have been produced and collected into structured databases, allowing Earth-
System Models (ESMs) to exploit new local and global observations to increase
their predictive power. A key aspect of terrestrial biosphere models is the de-
scription of water and carbon cycles, where vegetation is one of the main agents
in carbon exchange and water transport between the surface and the atmosphere.
Therefore, an accurate description of vegetation dynamics is required in every
model aiming to properly represent the land-surface fluxes of these quantities.
Photosynthesis plays a crucial role in this scope, since it is responsible for car-
bon assimilation in the plant (from atmospheric 𝐶𝑂2 absorption) and the release
of water vapour through stomatal pores in the ambient air, the so-called plant
transpiration, a by-product of the photosynthetic reaction. These phenomena
occur at a microscopical scale inside or at the surface of the leaves, but they
have important impacts also at larger scales and therefore they are usually col-
lectively observed at stand or canopy level by using eddy covariance methods
for the measurement of water vapour and 𝐶𝑂2 fluxes emerging from the canopy.
The estimates of the water flux computed with this technique account for the
total evapotranspiration process, including both evaporation and transpiration.
The separation of this flux into evaporation and transpiration is affected by sig-
nificant uncertainties. As a consequence, the research is focused on finding new
methods or proxies which could provide measurements of plant transpiration
fully unravelled from evaporative processes.

Two candidate databases for this role (SAPFLUXNET sap flow local meas-
urements and TROPOMI Sun-Induced chlorophyll Fluorescence satellite obser-
vations) have been investigated in the present research to assess the potential
impact of their data assimilationwithin the Organising Carbon andHydrology In
Dynamic Ecosystems (ORCHIDEE) land-surface model. 6 sites have been chosen
as study cases, because they are the only ones covered for more than 3 years by
both SAPFLUXNET and FLUXNET2015, the latter being the database providing
the meteorological forcing data needed by ORCHIDEE for its local simulations.

SAPFLUXNET is a dataset containing tree sap flow observations collected
over hundreds of measurement sites around the world. Sap flow in the plant stem
is a very good proxy of the plant transpiration rate, in fact the great majority of
the water absorbed by the plant from the soil is released through transpiration.
An integration method has been devised to derive transpiration observations at
canopy level starting from sets of single-plant sap flow measurements.

The TROPOspheric Monitoring Instrument (TROPOMI) is the unique sensor
onboard the Copernicus Sentinel-5 Precursor satellite. It collects hyperspectral
radiances on a global scale at a daily frequency, fromwhichwe can derive products



such as SIF. Its observations can be used to indirectly estimate plant photosyn-
thetic activity, since the SIF radiation emitted by plants can be related to the
photosynthetic reaction.

The main goal of the present research consists of the optimization of ORCH-
IDEE by using the ORCHIDEEData Assimilation System (ORCHIDAS). Themost
important parameters in the computation of Gross Primary Production (GPP)1,
Latent Heat Flux (LE)2, transpiration and SIF for each Plant Functional Type
(PFT)3 have been identified by Sensitivity Analysis (SA) and then optimized with
respect to FLUXNET2015 GPP data, SAPFLUXNET transpiration measurements
and TROPOMI SIF estimates. The assimilation of transpiration data in ORCH-
IDEE has improved the description of both transpiration and SIF with respect to
the non-optimizedmodel, while worsening its estimates for GPPmainly in boreal
evergreen needleleaf forests. SIF assimilation has not produced a consistent in-
crease in the model predictive power of transpiration and GPP, possibly due to
remaining errors in the modeling of the SIF radiative transfer within the canopy.
The GPP-optimized model has produced results very close to the original model
ones. This is due to the fact that GPP is one of the quantities which are being
used as a reference during the model development. Therefore its accuracy has
been maximized in this process and it is already very high in its non-optimized
version.

Keywords: Earth-System, Land-SurfaceModel, Data-Assimilation, Sun-Induced
Fluorescence, Gross Primary Production, Plant Transpiration, Sap Flow

Title: Model-data fusion of chlorophyll fluorescence
for reducing uncertainties in local-scale simulations
of plant photosynthesis and transpiration

Author: Lorenzo Francesco Davoli
Advisors: prof. Alessandro Pelizzola, Dr. Fabienne Maignan,

Dr. Camille Abadie
Study programme: Physics of Complex Systems

Institution: DISAT - Department of Applied Science and Technology
Politecnico di Torino

Year: 2023

1GPP is the total amount of carbon compounds produced by photosynthesis of plants in an
ecosystem in a given period of time.[1]

2Latent heat is the energy absorbed by or released from a substance during a phase change
from a gas to a liquid or a solid or vice versa, in this case it is associated to water evaporation in
the stand.

3Plant Functional Types (PFTs) have been adopted by modellers to represent broad groupings
of plant species that share similar characteristics (e.g. growth form) and roles (e.g. photosynthetic
pathway) in ecosystem function.[2]
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Preface v

Preface

Before you lies the master thesis ”Model-data fusion of chlorophyll fluorescence
for reducing uncertainties in local-scale simulations of plant photosynthesis and
transpiration”. It has been written to present the research carried out by the
graduand as part of the final project work within the master degree in Physics
of Complex Systems by Politecnico of Turin.

The aforementioned research is the result of a 5-month long internship hos-
ted by the Laboratoire des Sciences du Climat et de l’Environnement (LSCE), loc-
ated by the CEA of Paris-Saclay (Orme Des Merisiers), and founded by the CNES
TOSCA FORGE project. The graduand has taken part in the research activities
of the MOSAIC team, under the supervision of Dr. Fabienne Maignan and co-
tutored by Dr. Camille Abadie.

The choice of this specific research project has been driven by the personal
interest of the graduand in the scopes of environmental sciences and modelling
techniques. Moreover, this experience has provided a precious opportunity of de-
veloping a complete research activity, with a wide set of experiences and insights
in the scope of Earth-System Models (ESMs), from the collection of the data to
the evaluation of model performance, passing through the development of sim-
ulations, experiments, analysis methods and optimisation algorithms. In fact,
the research has been structured as a preliminary study of two recent databases,
namely SAPFLUXNET and TROPOMI, in order to verify the potential role they
could play within the model ORCHIDEE. The research direction and its object-
ives have evolved and developed along the way, driven by the new information
learnt in the discovery process itself. This flexibility has allowed the graduand
to explore several aspects of the research in Environmental Sciences depending
on his interests and knowledge.

The thesis and the associated dissertation have been designed for a public
with a solid scientific background in STEM higher education and modelling, but
with no specific knowledge regarding environmental physics and biology. The
fundamental concepts which are involved in the research have been described at
the level needed to understand their role in the dissertation, while appropriate
references are given for those who want to dive into the more technical details.

Reggio Emilia,
January 2023

Lorenzo Francesco Davoli
lorenzofrancesco.davoli@studenti.polito.it
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Chapter 1

Introduction

1.1 Earth-system modeling: an overview

”The five IPCC assessment cycles since 1990 have comprehensively and consist-
ently laid out the rapidly accumulating evidence of a changing climate system,
with the Fourth Assessment Report in 2007 being the first to conclude that warm-
ing of the climate system is unequivocal.”[3] More than 70 years after the first
studies on Climate Change[4], the last report from Intergovernmental Panel on
Climate Change (IPCC) leaves no doubts on the existence and extent of an in-
creasing environmental crisis, mostly due to anthropogenic greenhouse gases
emissions. Nowadays climate change has finally become a key topic in public
debate and policy-making. Therefore, the requests for reliable projections and a
deeper understanding of the Earth-system at local and global scales are becoming
more and more frequent and imperative.

The IPCC was established in 1988 to provide policymakers with regular sci-
entific assessments on the current state of knowledge about climate change. Since
1988, the IPCC has had six assessment cycles and delivered six Assessment Re-
ports, the most comprehensive scientific reports about climate change produced
worldwide. Its results are obtained through the comparison of several Earth-
System Models (ESMs), providing an extensive description of the most import-
ant physical and biogeochemical phenomena characterizing our environment on
diverse spatial and temporal scales.

The Coupled Model Intercomparison Project Phase 6 (CMIP6) [5] has a fun-
damental role in the section ”IPCC Sixth Assessment Report: Physical Science
Basis[6]” as a reference for climate projections. CMIP6 coordinates somewhat in-
dependent model inter-comparison activities and their experiments which have
adopted a common infrastructure for collecting, organizing, and distributing out-
puts from models performing common sets of experiments.
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Some of these models, referred to as ”coupled models”, do not need any ex-
ternal data (apart from initial conditions) to be run, since all the quantities of
interest are dynamically computed during the simulations. The single compon-
ents of the coupled models only simulate single parts of the Earth-system, such
as the land surfaces or the atmosphere. In this case processes that are not simu-
lated can play a role in the dynamics the models aim to reproduce (for instance
wind speed in land-surface phenomena), therefore they need external datasets,
called ”forcing data”, to provide the missing information. For land-surface mod-
els, forcing data mostly consist of meteorological variables such as temperature,
precipitation and wind speed. They provide the necessary information about at-
mosphere phenomena (which are not simulated within the land surface model)
needed by mechanistic models to fully develop continental water and carbon
cycle dynamics.

In addition to forcing data, most of the predictive power of mechanistic mod-
els lies in the parametrization of many physical quantities involved in the model
algorithm. Depending on the specificity of the phenomenon, some standard val-
ues can be found in the literature, while others have to be retrieved through ap-
proximations and guesses. This is especially true when dealing with phenomena
which are still not fully understood, too complex to describe in a purely mech-
anistic way or very specific and dependent on the analysed context. All these
features are often present in biological systems and ecosystems.

A possible way out of this issue consists of data-driven approaches for para-
meters optimisation, which allow obtaining educated guesses for small sets of
parameters. If a real measure of some key aspect of the simulated system is
available, classical or machine learning techniques allow to optimize the model
through maximum likelihood estimation procedures denominated Data Assimil-
ation (DA). The application of such a technique requires a careful design of each
step involved in the process and a deep knowledge of the model specificities and
features, as it is going to be shown in section 4.2.

1.2 Research goals
The main goal of this research is to improve the description of vegetation dynam-
ics in the above-mentioned land-surface model ORCHIDEE, especially regarding
plant transpiration. Transpiration[7] is a phenomenon which occurs at micro-
scopic level, as a consequence of the photosynthetic activity of plant cells. It
consists in the release of water vapour from the leaf surface in the atmosphere
through stomatal pores, small openings which allow the exchange of water va-
pour and carbon dioxide with the ambient environment. In higher plants stands,
transpiration accounts by itself for about three-quarters of the water that is va-
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porized at the global land surface and one-eighth of that vaporized over the entire
globe[7], and therefore it is one of the main component of latent heat. Transpira-
tion is also a key factor in vegetation dynamics, representing one of the more ac-
curate descriptors of plant activity as a whole[8]. In fact, transpiration is strictly
related to photosynthesis. During photosynthesis, plants use sunlight to convert
𝐶𝑂2 and water into carbohydrates and𝑂2. They take up the carbon dioxide from
the ambient air through stomata on the surface of their leaves and water from the
soil through roots. Approximately 1% of the water extracted by plants from the
soil is actually used for plant growth; the rest is released as water vapour to the
atmosphere through plant transpiration, an unavoidable by-product of carbon
exchange via stomata openings[8][9].

Being so deeply connected with all the aspects of the plant life-cycle, transpir-
ation is strongly influenced by several environmental factors, also called ”drivers”
of the phenomenon, such as plant available water, shortwave incoming radiation,
soil moisture, 𝐶𝑂2 concentration in the atmosphere and air temperature[10].
This aspect induces a huge variability and complexity in transpiration dynam-
ics, which are highly specific for every ecosystem considered and therefore quite
complex to study and model. Measuring directly at the leaf level a microscopical
process and then up-scaling the results can produce large uncertainties, even at a
single-plant level. Not to mention the difficulty of an up-scaling to canopy level,
which is the scale of interest for most of the applications. The lack of such meas-
ures makes it quite difficult to train or tune models describing correctly and in a
general way this phenomenon in its full complexity and variability.

Diverse strategies are currently being adopted to obtain transpiration estim-
ates from other sources, called ”proxies”. The most established procedure uses
Evapo-Transpiration (ET)[8] (the total water vapour flux from the land surface
to the atmosphere) as a proxy for transpiration, assuming a fixed ratio between
bare-soil water evaporation and plant transpiration contribution. This ratio is
far from being precisely estimated though, and it is still affected by large uncer-
tainties (depending on the studies, the transpiration contribution lays between
70% and 90% of ET). Therefore, other proxies are being tested to obtain estimates
which are independent of bare-soil evaporation phenomena, and only related to
plant activity. Amongst those, two in particular will be considered in the present
research: single-plant sap flow and Sun-Induced chlorophyll Fluorescence (SIF).

A gradient in the water potential allows bringing the water collected by roots
from the soil to the leaves, where photosynthesis and transpiration occur. As
mentioned above, almost all thewater transported in this way is released through
transpiration, and only a small percentage is actually stored in plant tissues in
the growth process. Therefore, sap flow can be considered a valuable proxy of
the water vapour flux due to transpiration.

Sun-Induced chlorophyll Fluorescence (SIF) instead is directly related to pho-
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tosynthesis. In fact, photosynthesis is controlled by two types of photosystems
located in the leaves: Photosystem I (PSI) and Photosystem II (PSII). These pho-
tosystems are pigment-containing protein complexes where light is absorbed
and electrons are transported. Most of the incoming solar radiation is absorbed
and converted into energy for photosynthesis (Photochemical Quenching, PQ).
Some of the energy is dissipated as heat for photoprotection (Non-Photochemical
Quenching, NPQ), and a small fraction is re-emitted back as Chlorophyll Fluor-
escence (ChlF) at wavelengths between 650 and 850 nm[11]. Subsequently, the
fluorescence signal which it is possible to measure from these photosystems is
directly relatable to photosynthetic activity, and from there to transpiration[12].

The sap flow dataset integration method is a key-point investigated in the
scope of this research, needed for the data to be statistically relevant, homogen-
eous and compatible with models estimates. For the sake of completeness, dif-
ferent integration methods are tested and compared amongst each others to find
the most effective procedure. The core of the research project is precisely the
DA of two recently published databases (namely SAPFLUXNET[13] single plant
sap flow measurements and TROPOMI[14] SIF satellite observations) within the
above-mentioned land-surface model ORCHIDEE, in order to assess their influ-
ence on the model predictive power. SAPFLUXNET data being local measure-
ments, the whole research is focused on a set of 6 sites, namely those which
are in common with both FLUXNET2015 (i.e. ORCHIDEE forcing files for local
simulations, providing also important information on water- and carbon-related
fluxes) and SAPFLUXNET.



Chapter 2

Meteorological data and fluxes

2.1 Reference databases

2.1.1 FLUXNET2015: meteorological data and fluxes
FLUXNET is an international “network of networks”, tying together regional net-
works of Earth-system scientists and collecting their data into structured data
products. FLUXNET research teams use the eddy covariance technique [15]
to measure carbon, water, and energy fluxes between the biosphere and atmo-
sphere.

The most recent global FLUXNET data product, FLUXNET2015[16], is hosted
by the Lawrence Berkeley National Laboratory (USA) and is publicly available for
download. Currently there are over 1000 active and historic flux measurement
sites, dispersed across most climate spaces and representative biomes (Figure 2.1).
The higher concentration of observation sites is found in western countries and
Japan, while developing countries are less represented and present shorter time-
series, since their sites have been activated more recently.

FLUXNET2015 data contain hourly or half-hourly time-series of several met-
eorological and fluxes observations, in the form of instantaneous, mean (over
the time step interval) or cumulative values. In particular, the observations that
have been used are GPP, Latent Heat Flux, air temperature 𝑇𝑎𝑖𝑟, near surface spe-
cific humidity of air 𝑄𝑎𝑖𝑟 and downward short wave radiation 𝑆𝑊𝑑𝑜𝑤𝑛. Most of
the time-series used in the scope of this research cover the timespan between
1998 and 2014. All data undergo quality tests to check their consistency and
completeness. In case some entries are missing or fail the quality checks, a gap-
filling procedure guarantees the completeness of the dataset. Also for this reason
FLUXNET2015 has been chosen as the reference database regarding forcing data
for ORCHIDEE local offline simulations and fluxes used in the model optimiza-
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Figure 2.1: FLUXNET2015 observation towers map. Sites are represented by dots whose
dimension and color indicate the duration of the period of activity of that measurement
site. Source: https://fluxnet.org/about , last visit: 08/11/2022

tion.

The database provides also some correction for quantities which are known
to fulfill specific conditions. For instance a correction to energy fluxes estimates
is computed by imposing the energy balance closure[17], which is otherwise not
fulfilled by the great majority of the data[18].

2.1.2 ERA5: atmospheric re-analysis

ERA5[19] is the fifth generation of European Centre for Medium-RangeWeather
Forecasts (ECMWF) atmospheric re-analysis of the global climate, produced by
the Copernicus Climate Change Service (C3S) at ECMWF, covering the period
from January 1950 to present.

ERA5 provides hourly estimates of a large number of atmospheric, land and
oceanic climate variables. The data cover the Earth on a 30km grid and resolve
the atmosphere using 137 levels from the surface up to a height of 80km. ERA5
combines vast amounts of historical observations into global estimates using ad-
vanced modelling and data assimilation systems. ORCHIDEE simulations from
2015 to present (not covered by FLUXNET2015) use these data as forcing files.

https://fluxnet.org/about
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2.1.3 SAPFLUXNET: a proxy for transpiration estim-
ates

SAPFLUXNET[13] is the first global tree sap flow database. It collects quality-
controlled sub-daily transpiration data, derived from sap flow measurements,
from more than 200 sites all over the world. Sap flow sensors track the diffu-
sion of heat applied to the plant’s conducting tissue using temperature sensors
deployed in the plant’s main stem, and derive the sap flux from it.

The transpiration is available in 3 formats, namely transpiration per sapwood
area, transpiration per leaf area and single-plant transpiration. Only the latter is
present for all the sites and it is usually computed through an integration over
the plant sapwood area, where the sap flows. This measurement is the one ex-
ploited in the research, being the easier to up-scale to canopy level once the stand
composition is known (see subsection 4.1.2). Datasets also include sub-daily time
series of hydrometeorological drivers and metadata on the stand characteristics.
SAPFLUXNET has a broad bioclimatic coverage, with woodland/shrubland and
temperate forest biomes especially well represented (80% of the datasets), and
covers the period between 1995 and 2018. The database covers only the growing
season for most of the sites. Accompanying radiation and vapour pressure defi-
cit data are available for most of the datasets, while on-site soil water content is
available for about half of them.

For each site, the plants whose sap flow measurements have been collected
are chosen in order to reproduce at best the actual stand composition, as verified
through the preliminary analysis presented in subsection 4.1.2, together with the
integration procedure needed to up-scale from single-plant to canopy level. This
procedure also takes care of the most critical characteristic of this database, a
widespread lack of entries, even for long periods. If not correctly handled this
aspect could heavily compromise the reliability of the data.

Sap flow can be considered a suitable (and practical) proxy for transpiration,
as shown by Koppa et al.[10]. In fact, a direct measure of single-plant transpira-
tion is very complicated and expensive, since the process occurs at the leaf level
and it can be highly inhomogeneous even across the canopy. On the other side,
the transport of water (in the form of sap) from the roots through the trunk is
almost entirely directed to leaves, where the water is exchanged with the envir-
onment as a consequence of photosynthetic reaction, which is coupled to tran-
spiration due to stomatal opening.
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2.1.4 TROPOMI: SIF satellite observations

The TROPOsphericMonitoring Instrument (TROPOMI)[14] is the satellite instru-
ment on board the Copernicus Sentinel-5 Precursor satellite, launched on 13 Oc-
tober 2017 for a mission of at least seven years (the data are available from May
2018). Although the Sentinel-5P mission was mostly designed to monitor atmo-
spheric phenomena, the TROPOMI apparatus enables to also estimate terrestrial
Sun-Induced chlorophyll Fluorescence (SIF) at spatial and temporal resolutions
(up to 7km × 3.5km pixels with a daily revisit) more suitable for land surface
models than the characteristics of its predecessors, such as GOSAT (with a spa-
tial resolution of 10.5km × 10.5km and 3-day revisit1) and GOME-2 (with a spatial
resolution of 80km × 40km and daily revisit2).

SIF is an electromagnetic signal emitted by chlorophyll and related to pho-
tosynthetic activity when illuminated. This emission is characterized by a two-
peak spectrum roughly covering the 650÷850 nm spectral range. The SIF estim-
ates which have been used in the following come from the filling-in of solar
Fraunhofer lines for the 743 nm fluorescence emission peak. Environmental
disturbances due to light and water stress influence instantaneously SIF, which
makes it a better proxy than classical reflectance-based vegetation indices for
photosynthetic activity in certain situations[20].

SIF estimation from space-borne spectrometers requires both high spectral
resolution and advanced retrieval schemes, since it constitutes only 0.5%÷2% of
the radiance at the top of the canopy, which is mostly composed of reflected
sunlight. The broad range of viewing-illumination geometries covered by TRO-
POMI’s 2,600-km-wide swath introduces large directional effects that need to
be considered[14]. SIF is already being proven to be able to improve model es-
timates of Gross Primary Production (GPP), the quantity of atmospheric carbon
dioxide assimilated through photosynthesis [21]. According to Damm et al.[22]:
”The novel Earth observation signal sun-induced chlorophyll fluorescence (SIF)
is the most direct measure of plant photosynthesis and offers new pathways to
advance estimates of transpiration”. As explained in the paper, SIF by itself is not
able to fully and correctly constrain transpiration in current land surface models
yet, and therefore it needs to be coupled with other Earth observation data.

1source: https://www.eoportal.org/satellite- missions/gosat , last visit
24/02/2023

2source: https://www.esa.int/Applications/Observing_the_Earth/
Meteorological_missions/MetOp/About_GOME- 2 , last visit 24/02/2023

https://www.eoportal.org/satellite-missions/gosat
https://www.esa.int/Applications/Observing_the_Earth/Meteorological_missions/MetOp/About_GOME-2
https://www.esa.int/Applications/Observing_the_Earth/Meteorological_missions/MetOp/About_GOME-2
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US-UMB 
US-UMd

FR-Fon
FR-Pue

FI-Hyy

RU-Fyo

Figure 2.2: Study sites chosen amongst FLUXNET2015 and SAPFLUXNET common
sites, with a minimum of 3-year long timeseries and providing the stand information
needed by the integration procedure. The tags refer to the FLUXNET2015 notation.

2.2 Study sites
The need for comparing ORCHIDEE transpiration estimates with sap flow de-
rived ones has led to the choice of 6 study sites (4 independent and 2 being part
of a coordinated experiment), which are in common with SAPFLUXNET and
FLUXNET2015 databases and provide at least a 3-year long overlapping period
(see Figure 2.3 for coverage periods). The locations of these sites are presented
in Figure 2.2, while some further details are reported in Table 2.1.

All these sites, except for the US sites which are part of a coupled experi-
ment3, present individual characteristics which make them unique with respect
to the others. For instance, FI-Hyy presents the same biome and Plant Functional
Type (see section 3.2 and Table 3.1 for more details) as RU-Fyo, but a different soil
texture (see section 3.2 and Figure 3.2 for more details). Also FR-Fon and FR-Pue,
located respectively at Fontainebleau and Puéchabon in France, differ quite a
lot in their behaviours, because FR-Pue is an evergreen broad-leaved forest with

3Site US-UMB is artificially defoliated to study the response of the stand to external disturb-
ances. US-UMB is the control sample, while US-UMd is the perturbed one[24].
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Site tag Country Coordinates Biome PFT Soil texture

FI-Hyy Finland 61°84’74”N 24°29’47”E Boreal forest 7 sandy loam
FR-Fon France 48°47’63”N 2°78’01”E Woodland/Shrubland 6 loam
FR-Pue France 43°74’13”N 3°59’58”E Woodland/Shrubland 5 clay loam
RU-Fyo Russia 56°46’15”N 32°92’20”E Boreal forest 7 loam
US-UMB USA 45°55’97”N -84°71’33”E Temperate forest 6 sand
US-UMd USA 45°56’25”N -84°69’75”E Temperate forest 6 sand

Table 2.1: Study sites characterization. The first column of ID tags reports the notation
used in FLUXNET2015, while the second one refers to the SAPFLUXNET denomination.
The PFT notation follows theORCHIDEE system (Table 3.1)[23]. Soil texture is expressed
according to the USDA soil texture classification (see Figure 3.2).

(a) FR-Pue (b) FR-Fon

(c) US-UMB (d) US-UMd

(e) RU-Fyo (f) FI-Hyy

Figure 2.3: Coverage of meteorological observations over the whole available periods
for all the sites.
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(a) FR-Fon (b) FR-Pue

Figure 2.4: Comparison amongst several flux time-series of sites FR-Fon (a) and FR-Pue
(b). In 2011 a severe drought hit Europe, and its effects are visible from the data, where
2011 presents a local minimum for all the variables sampled in that period.

clay loam soil texture, while FR-Fon is a summergreen broad-leaved forest with
loam soil texture. As it is shown in chapter 5, these difference cause a completely
different behaviour between the two sites, but their geographical proximity al-
lows to qualitatively observe for both of them the influence on GPP of a drought
taking place in France in 20114, as shown in Figure 2.4.

Besides these natural and unavoidable specificities, the databases coverage
changes from site to site, both in terms of time series duration and period, and the
same holds for their reliability. For instance SAPFLUXNET data from US-UMB
collect measurements for more than 50 different trees, while in some periods
FI-Hyy presents information regarding only one tree at a time.

The small number of available sites, their diversity and the lack of long time
series pose a challenging issue for the statistical analysis carried out during this
research and they might cause a loss of comparability between different sites
observations. Biological systems being so diverse in nature and climate studies
being so expensive to carry out on large scales, these issues are not unusual in
environmental sciences. Nonetheless the study of these phenomena, even in non-
optimal conditions, has been useful to identify points of strength andweakness in
the datasets, in the methodology and in the model itself, highlighting criticalities
and new perspectives to better direct the future development of the research in
this scope.

4about the drought of 2011 in Europe: https://www.eea.europa.eu/data- and- maps/
figures/onset- of- the- 2011- european , last visit: 01/12/2022

https://www.eea.europa.eu/data-and-maps/figures/onset-of-the-2011-european
https://www.eea.europa.eu/data-and-maps/figures/onset-of-the-2011-european


Chapter 3

Land-surface modelling

3.1 A short review on Earth-System Models
and CMIP6

The development of ESMs is not only focused on the production of climate pro-
jections as those used in IPCC Assessments. It is also plenty of opportunities
for indirectly investigating the presence of hidden or unknown processes and
testing the correct description of the known ones. As it is going to be shown in
section 5.3, the comparison of ORCHIDEE1 estimates with transpiration and SIF
observations has provided interesting information and insights on the nature of
the described processes, and useful hints on the absence of important ones.

Moreover, ESMs are used to estimate quantities which are otherwise difficult
to measure directly on the field. An example that will be treated in this research
is the direct measurement of canopy transpiration, which would usually need
a large amount of sensors for every single plant in order to be properly quan-
tified. Instead, models solve this problem by simulating the whole-stand biotic
and abiotic dynamics in their entirety, providing the opportunity for estimating
a wide set of physical quantities, such as the aforementioned transpiration or
SIF. Whenever it is possible, model estimates should be validated against a set of
data to ensure the model is correctly describing the process. For instance, in the
present research transpiration estimates have been compared with observations
derived from SAPFLUXNET sap flow data in order to assess the performances of
the model and improve them through parameters optimization.

The validation procedure is strongly dependent on the quality and quantity
of the observationswhich are used to validate themodel. Local measurements be-
ing usually expensive and mostly localized in high- or middle-income countries

1see section 3.2 for more details
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(North America, Europe, Japan and China, see Figure 2.1), they can not provide
a complete and sufficient coverage over the entire land-surface. For this reason
satellite missions represent a fundamental source of global observations, which
would partially solve this problem and produce high resolution and wide cover-
age data for most of the countries, a precious contribution for the development
of ESMs. These types of dataset are also more suitable to be used for producing
large (or even global) scale simulations, which are the most useful for the study
of climate change on Earth.

Several models have been developed in the last few decades to simulate cli-
mate on a global scale. The Coupled Model Intercomparison Project Phase 6
(CMIP6) is a leading project in the scope of Earth-System modeling. It consists
in a ensemble of ”coupled models”, simulating all the principal domains in Earth
dynamics, their reciprocal interactions and transport phenomena. For example,
Institut Pierre-Simon Laplace maintains and develops the coupled model IPSL-
CM6A-LR[25], which gathers and couples three main models, LMDz, ORCHIDEE
and NEMO, respectively describing atmosphere, land-surface and ocean dynam-
ics.

All together, in the so-called ”coupled” or ”online mode”, these models can
describe most of Earth-System phenomena on a global scale, and they are still
undergoing a continued development to include more and more processes in
their simulations. ORCHIDEE by itself presentsmore than 50 active development
branches, implementing new functions, phenomena and improving performance
starting from the trunk version of the model2.

CMIP6 models can also be run independently (”uncoupled”) one from the
others (so-called ”offline mode”), when provided a meteorological and environ-
mental forcing dataset, consisting of local or global observations and re-analysis
data. For instance ORCHIDEE land-surface local simulations can be run for
single sites covered by the FLUXNET2015 database[16] (providing atmospheric
meteorological forcing data), while global simulations use ERA5 re-analysis data[19]
(see section 2.1 for further details about databases). The resolution of these global
simulations is usually on the order of 0.5°×0.5° in a latitude-longitude grid, while
for the local simulation the grid cell depends on the site footprint. For the 6 sites
analysed in this research the resolution of local simulations is 0.05° × 0.05°.

2for a complete list of all the development activities: https://forge.ipsl.jussieu.fr/
orchidee/wiki/DevelopmentActivities , last visit: 29/11/2022

https://forge.ipsl.jussieu.fr/orchidee/wiki/DevelopmentActivities
https://forge.ipsl.jussieu.fr/orchidee/wiki/DevelopmentActivities
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3.2 ORCHIDEE model: an overview

The Organising Carbon and Hydrology In Dynamic Ecosystems (ORCHIDEE)
model is a model developed by Institut Pierre-Simon Laplace (IPSL) as part of the
IPSL Earth-SystemModels (ESMs). Its simulations have contributed to the Nobel
prize winning efforts of the IPCC, as well as to numerous landmark projects such
as the Global Carbon Project, TRENDY[26], CMIP and related publications used
by IPCC. Themodel is currently at its 4𝑡ℎ release, but the one used in this research
is an implementation of version 2 including SIF computation. The soil description
of this version is structured as an 11-layer profile which accurately describes the
varying water stocks in the soil.

ORCHIDEE describes the functioning of the terrestrial biosphere and it can be
deployed as a stand alone model or in a coupled set-up, where other models from
IPSL contribute to the description of atmospheric and ocean dynamics, namely
LMDz and NEMO (see section 3.1). It needs atmospheric meteorological data
(precipitation, air temperature, wind, solar radiation, humidity) and atmospheric
𝐶𝑂2 as forcing data, which can be provided by the coupling with the LMDz
model or by an external dataset, for instance FLUXNET2015 or ERA5. The model
can run global and local simulations up to 2020, using ERA5 re-analysis data. In
the latter case it is suggested to use FLUXNET2015 data whenever is possible. If
the site is not covered, or the period exceed 2014, ERA5 data are used to extend
the simulations up to 2020.

ORCHIDEE solves the water and energy budgets and fast processes at a half-
hourly time step, within the module Sechiba, while most of the carbon cycle and
other slow processes (as carbon allocation and phenology) are computed on a
daily basis by the module Stomate (Figure 3.1). Outputs and the corresponding
output frequencies are specified by the user, depending on quantities of interest,
time scales of the investigated phenomena and computational resources availab-
ility.

The process which is followed to produce local ORCHIDEE simulations con-
sists in 3 phases: spin-up phase, transient phase and effective simulation.

The “spin-up” phase enables all carbon pools to stabilize towards a station-
ary state such that the net biome production oscillates around zero. A pseudo-
analytical iterative estimation of the carbon pools allows the simulation to reach
the equilibrium more quickly by inducing a 6-to-20 times faster convergence of
the algorithm[28]. The spin-up phase simulates 360 years and it is performed by
cycling the years available in the FLUXNET2015 forcing files over and over. Each
spin-up run has a computation time of 5 hours approximately, corresponding to
less than oneminute of computational time per simulated year. The computation
cost of the spin-up is also reduced by the fact that outputs and data are savedwith
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Figure 3.1: Structure of ORCHIDEEmodel and coupling with LMDz atmospheric model.
Source: Krinner et al. (2005)[27]

a much smaller frequency than the actual simulation phase, since the product of
this phase has a yearly output frequency.

The latter considerations hold also for the transient phase, which uses as
initial state of its own run the outcome of the spin-up phase. Transient phase
runs simulate 60 years between 1950 and 2010 cycling through the same forcing
files as before, and they introduce disturbances such as climate change, land use
change and increasing CO2 atmospheric concentrations in order to reproduce the
current environmental conditions. The computation time is about 1 or 2 hours
per run, with the same computational advantages of spin-up phase.

The actual simulations are run starting from the restart files generated at
the end of the transient phase. They can simulate whatever period within the
timespan covered by FLUXNET2015 or ERA5 data, used as a forcing files. A 10-
15 years simulation with a half-hourly output frequency over a single site usually
takes 20-30 hours to be completed.

All in all, the overall computational time required in this research to run all
the simulations and optimization amounts to 3900 hours approximately, corres-
ponding to 162 days of uninterrupted computation. It is important to mentions
that these calculations are not considering all the failed, wrong, repeated simula-
tions and the computational time used in the development and execution of the
analysis software. Using the LSCE supercomputer cluster, called Obelix, made
possible to run many simulations simultaneously, reducing the computational
time approximately by a factor 6. As a consequence, the computational cost of
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the whole process on the cluster amounts to about one month of computation in
real life.

Many other features are currently being developed in ORCHIDEE, mainly
concerning soil hydrology, carbon and nitrogen cycles, wetland and permafrost
dynamics, crop phenology and further parallelizations of the simulations. The
model is continuously developing and getting more and more accurate in the de-
scription of Earth-System dynamics, thanks to the contribution of many teams
and developersworking simultaneously on it. This cooperative development also
helps to discover new perspectives and spot undetected errors: having several
developers, researchers, students performing independent analyses and experi-
ments allows a mutual validation and correction of the modules from many dif-
ferent points of view and backgrounds. For instance, the optimization of ORCH-
IDEE through TROPOMI SIF observations carried out in this research project
has quantitatively brought out some inconsistencies in the newly added module
of SIF computation, as reported in section 5.3. The downside of this aspect is
the difficulty in maintenance and coordination between and within the different
teams. For instance, in the middle of the present research it has been decided
to change the model toward a new version, including SIF estimation, which has
been developed recently by the LSCE MOSAIC team. Similarly, the software for
Sensitivity Analysis (SA) used at the beginning of the optimization phase was
not the most recent release, but an older version steadily used by the team. This
version has been found not to be working properly for the set of experiments of
this research, due to a bug which was already being fixed in the latest version.
This kind of issues certainly increase the time spent on debugging and fixing the
errors, but also allows members of different teams to learn much more about the
model as a whole and not to focus only on their own research module.

The vegetation distribution can be modeled (with a yearly update frequency)
or prescribed, and the ecosystem is described in terms of a range of Plant Func-
tional Type (PFT) (Table 3.1). PFTs approximate the composition of the stand
and define all the biological features used in the model to simulate the vegeta-
tion. The computation of carbon fluxes uses the so-called ”big-leaf” approach,
assuming that canopy carbon fluxes have the same relative responses to the en-
vironment as any single sunlit leaf in the upper canopy, recently implemented
with the addition of diffuse light contribution (see section 3.3 for further details).
The model also computes its own phenology, i.e., the onset of leaves at the start
of the growing season for deciduous species and their turnover and senescence.
The soil texture is prescribed by a global soil map[29], but it can also be specified
site by site whenever more precise information about soil texture is available,
which is the case for the 6 study cases of this research. USDA soil texture classi-
fication is adopted (see Figure 3.2 for details).
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Plant Functional Types Long name

PFT1 Bare soil
PFT2 Tropical broadleaved evergreen forest
PFT3 Tropical broadleaved raingreen forest
PFT4 Temperate needleleaf evergreen forest
PFT5 Temperate broadleaved evergreen forest
PFT6 Temperate broadleaved summergreen forest
PFT7 Boreal needleleaf evergreen forest
PFT8 Boreal broadleaved summergreen forest
PFT9 Boreal needleleaf summergreen forest
PFT10 Temperate C3 grass
PFT11 C4 grass
PFT12 C3 agriculture
PFT13 C4 agriculture
PFT14 Tropical C3 grass
PFT15 Boreal C3 grass

Table 3.1: ORCHIDEE Plant Functional Types (PFTs).

Figure 3.2: Diagram describing the soil textures in the USDA classification. Each soil is
classified through its percentages of clay, sand and silt. Source: Wikimedia Commons,
author: Mike Norton.
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3.3 Transpiration and sun-induced
fluorescence in ORCHIDEE

Photosynthesis and all components of the surface energy and water budgets (in-
cluding transpiration and SIF) are calculated at a half‐hourly resolution in the
Sechiba section of ORCHIDEE. Photosynthesis main drivers are light availabil-
ity, CO2 concentration, soil moisture, and temperature. These drivers are related
to photosynthesis by following the approach of Yin and Struik (2009)[30]. This
formulation describes the main photosynthesis processes (i.e. electron transport
and carboxilation), and associated variables like the stomatal conductance, and
the intercellular CO2 partial pressure. In the version of the model that has been
used for this research, the calculations take in account the photosynthetic activ-
ity due to both direct and diffuse light absorption. In fact, several studies of in
situ observations have found that the presence of a high diffuse light fraction
(with respect to the overall irradiation level over the canopy) can enhance light
use efficiency and photosynthesis in the plants[31].

Some mechanisms have been found to be involved. First, diffuse light iso-
tropic nature allows the radiation to penetrate deeper in the canopy, reaching
leaves that would be otherwise mostly shaded for their position or orientation,
and limiting the waste over light-saturated sunlit leaves. Second, diffuse light is
usually related to cloudy weather, and as a consequence it is often accompanied
by less stressing temperatures and Vapour Pressure Deficit (VPD) for photosyn-
thesis.

These correlated environmental factors may cause the photosynthesis un-
der cloudier conditions to be more intense than the one estimated in a direct-
light-only absorption case, making a proper description of diffuse light effects
on vegetation fundamental for a correct evaluation of the canopy photosynthetic
activity in ORCHIDEE as well[32]. ORCHIDEE calculates the fraction of diffuse
light[33] as well as a process-based multilayer canopy light transmission model
to effectively represent the contribution of diffuse light fraction on photosyn-
thesis[34].

Transpiration is involved both in the calculation of energy balance and wa-
ter cycle. It is strictly related to Latent Heat Flux (LE) and gives an important
contribution to the description of ET processes3. Several environmental factors
influence the transpiration process, such as water stress linked to soil water con-

3Evapotranspiration is the transfer of energy from the Earth’s surface to the atmosphere in
the form of latent heat, due to the evaporation of water from the ground and bodies of wa-
ter, and the transpiration of water from plants. Source: https://energyeducation.ca/
encyclopedia/Evapotranspiration , last visit: 06/01/2023

https://energyeducation.ca/encyclopedia/Evapotranspiration
https://energyeducation.ca/encyclopedia/Evapotranspiration
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tent, air moisture, net radiation, wind and temperature. The characterisation of
biological features of the stand is defined by the associated PFT.

The output variable of transpiration in ORCHIDEE consists in the flux of
water transpired by the full canopy per stand area (𝑘𝑔𝑚−2 𝑠−1). Transpiration
𝑇 is computed through:

𝑇 = 𝑉 ⋅ ∑
𝑖∈𝑃𝐹𝑇𝑠

𝛽𝑖3 (3.1)

Here 𝛽𝑖3 represents the canopy transpiration resistance of PFT 𝑖 component of
the stand and 𝑉 is defined as:

𝑉 = Δ𝑡 ⋅ (1 − 𝛽1) (1 − 𝛽5) (𝑞𝑠,𝑠𝑎𝑡 − 𝑞𝑎) ⋅ 𝜌 ⋅ 𝑆𝑇𝑂𝐶 ⋅ 𝑞𝑑𝑟𝑎𝑔𝑐 (3.2)

where Δ𝑡 is the length of one timestep in the module Sechiba (𝑠), 𝛽1 and 𝛽5 are
respectively the snow sublimation resistance and floodplains resistance (dimen-
sionless), 𝑞𝑠,𝑠𝑎𝑡 is the saturation humidity corresponding to a particular surface
temperature (dimensionless), 𝑞𝑎 is the specific humidity in the atmosphere imme-
diately above the surface (dimensionless), 𝜌 is the air density (𝑘𝑔𝑚−3), 𝑆𝑇𝑂𝐶 the
Top Of the Canopy (TOC) wind speed (𝑚𝑠−1), 𝑞𝑑𝑟𝑎𝑔𝑐 the surface drag coefficient
(dimensionless).

SIF computation is carried out independently for each grid cell and PFT. Its
output variable consists in the upward flux of SIF (𝑊𝑚−2 𝑠𝑟−1 𝜇𝑚−1) at the
740nm wavelength emerging from the TOC. This value is comprehensive of the
contribution of the PSI and PSII (see section 1.2 for further details) activity of all
the leaves layers in the canopy, and it is given by:

𝑆𝐼𝐹 = (𝑆𝐼𝐹𝑃𝑆𝐼 + 𝑆𝐼𝐹𝑃𝑆𝐼𝐼) ⋅ 𝑣𝑒𝑔𝑒𝑡𝑚𝑎𝑥 (3.3)

where 𝑆𝐼𝐹𝑃𝑆𝐼 and 𝑆𝐼𝐹𝑃𝑆𝐼𝐼 are respectively the contributions from PSI and PSII,
and 𝑣𝑒𝑔𝑒𝑡𝑚𝑎𝑥 the maximum vegetation fraction for the PFT in the cell (dimen-
sionless).

These two contributions exhibit the same structure, as they differ only for the
photosystem considered when computing the total leaf fluorescence flux 𝑓𝛼𝑙𝑎𝑖,𝑖𝑟𝑟
(𝑊𝑚−2 𝑠𝑟−1 𝜇𝑚−1), where 𝛼 ∈ {𝑃𝑆𝐼, 𝑃𝑆𝐼𝐼}, 𝑙𝑎𝑖 indicates the canopy layer (the
use of the term 𝑙𝑎𝑖 refers to the Leaf Area Index, which is defined as the total one-
sided green leaf area per unit of ground surface[35], in this case corresponding to
a specific canopy layer) and 𝑖𝑟𝑟 indicates if the direct or diffuse light irradiation
is considered. Its explicit formula reads:

𝑓𝛼𝑙𝑎𝑖,𝑖𝑟𝑟 = 𝑃𝐴𝑅𝑙𝑎𝑖 ⋅ 𝑎𝑏𝑠𝑐ℎ𝑙 ⋅ 𝑎𝛼 ⋅ Φ𝛼 ⋅ 𝑒𝑒𝑓𝑓 (3.4)
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The factors in Equation 3.4 represent the Photosynthetic Active Radiation 𝑃𝐴𝑅𝑙𝑎𝑖
(𝑊𝑚−2) of the layer 𝑙𝑎𝑖 , the relative specific absorption coefficient of chloro-
phyll over the 400nm-750nm spectrum 𝑎𝑏𝑠𝑐ℎ𝑙 (dimensionless), the absorption
cross-section area of 𝛼 𝑎𝛼 (dimensionless), the quantum yield of fluorescence
Φ𝛼 (𝜇𝑚𝑜𝑙𝑝ℎ𝑜𝑡𝑜𝑛𝑚−2 𝑠−1) and finally the emission efficiency of 𝛼 at 740nm 𝑒𝑒𝑓𝑓
(𝜇𝑚−1). The contribution of PSI and PSII are not independent, 𝑎𝑃𝑆𝐼 and 𝑎𝑃𝑆𝐼𝐼
being related through the equation

𝑎𝑃𝑆𝐼 = 1 − 𝑎𝑃𝑆𝐼𝐼

while Φ𝑝𝑠𝐼 and Φ𝑝𝑠𝐼𝐼 through

Φ𝑝𝑠𝐼 = 𝑐Φ𝑝𝑠𝐼𝐼

(𝑐 being fixed ratio).
As mentioned before, each system contribution is the result of the integra-

tion over all the canopy layers and irradiation types (direct or diffuse light). In
fact, the integration is based on the evaluation ofℱ𝑙𝑎𝑖,𝑖𝑟𝑟 (𝑊𝑚−2 𝑠𝑟−1 𝜇𝑚−1), the
upward fluorescence flux emerging from the 𝑙𝑎𝑖-th layer (starting from the bot-
tom one) both related to direct and diffuse light (represented by 𝑖𝑟𝑟). Defining
the bottom layer fluorescence flux

ℱ𝛼
0,𝑖𝑟𝑟 =

1
2𝜋𝑓

𝑎𝑙𝑝ℎ𝑎
0,𝑖𝑟𝑟 (3.5)

where the factor 1
2𝜋

emerges by considering only the upward fluorescence flux,
𝑆𝐼𝐹𝛼 is given by

𝑆𝐼𝐹𝛼 = ℱ𝛼
0,𝑑𝑖𝑟+

𝑛𝑙𝑎𝑖−1
∑
𝑖=1

ℱ𝛼
𝑖,𝑑𝑖𝑟+

1
2𝜋𝑓

𝛼
𝑛𝑙𝑎𝑖,𝑑𝑖𝑟+ℱ

𝛼
0,𝑑𝑖𝑓+

𝑛𝑙𝑎𝑖−1
∑
𝑖=1

ℱ𝛼
𝑖,𝑑𝑖𝑓+

1
2𝜋𝑓

𝛼
𝑛𝑙𝑎𝑖,𝑑𝑖𝑓 (3.6)

𝑛𝑙𝑎𝑖 being the total number of layers, representing also the TOC layer index.
ℱ𝛼
𝑖,𝑖𝑟𝑟, with 𝑖 ∈ {1, 𝑛𝑙𝑎𝑖 − 1} are computed recursively, starting from the bottom

layer and computing the contribution of the upper ones by considering their
own absorption, emission and reflectance, based on the leaf absorption of 740nm
wavelength radiation.

Unlike transpiration, SIF is only a diagnostic variable, which is not involved
in any further computation. For this reason the aforementioned error in the
modeling of the SIF radiative transfer within the canopy does not compromise
the whole simulation, despite producing wrong values for SIF itself.



Chapter 4

Methodology of research

4.1 Preliminary analysis

4.1.1 Importance of data preliminary studies
The research has been grounded on the study and comparison of 4 databases,
introduced in section 2.1. A graphical representation of the research structure is
displayed in Figure 4.1.

Each database required a proper analysis and study in order to determine its
full potential and assess the comparability with the model and the other data.
The deep diversity of the 4 sources in terms of data sampling frequency, format,
coverage, and the specificity of the sites themselves emerged as a major chal-
lenge in the design of experiments which could effectively produce statistically
relevant and comparable results, as will be explained in the following sections.

A graphical visualization of the data has been used to qualitatively evaluate
the noise associated to the measurements. With this information the data has
been averaged towards daily and weekly values, depending on the observations,
in order to obtain a more distinguishable, less noisy and physically meaningful
signal. As it is possible to observe in Figure 4.2, it is also important to mention
that taking daily averages is also necessary whenever the diel cycle needs to be
ruled out due to statistical reasons.

The preliminary analyses (Figure 4.1b) have also pointed out the difficulty
of comparing results from different sites due to the lack of overlapping periods
in SAPFLUXNET data. For example, the optimisation against transpiration data,
introduced in section 4.2, has been performed over different periods from site
to site, and therefore the differences emerging from the comparison between
different PFT could be due to that. Also, it has not been possible to compute
directly correlation between SIF and GPP or transpiration data because there
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Figure 4.1: The diagram in (a) represents the main steps followed during the research,
starting from the original databases and ORCHIDEE configuration and ending with the
optimized models. The preliminary analysis and pre-processing procedures undergone
by the databases presented in section 2.1 are displayed in (b).
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(a) daily values (b) weekly means

(c) daily means (d) weekly means

(e) daily means (f) weekly means

Figure 4.2: Comparison between TROPOMI SIF daily data (a) and their weekly average
with shaded uncertainties (b) over 3 growing seasons (from 2018 to 2020). The signal is
almost indistinguishable in the first case, while it is muchmore evident in the second one.
The same considerations hold also for SAPFLUXNETobservations andORCHIDEE estim-
ates, which are originally sampled with half-hourly frequency. Here they are presented
in (c) and (e) as daily averages and in (d) and (f) as weekly ones over a year. The reported
errors in (b) are the standard deviations of the daily samples for each week.
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was no overlapping between their time-series, and this is one of the reasons why
an indirect correlation through meteorological observations has been analyzed.

4.1.2 Transpiration integration methods

For each site SAPFLUXNET provides a set of single plant half-hourly transpira-
tion measurements, in terms of vapour flux (usually around 1 ÷ 10 𝑘𝑔𝑚−2𝑠−1).
The amount of plants simultaneously under observation is very variable, depend-
ing on the site and period considered. For example, FR-Puemeasurements extend
over thewhole year, being the standmostly composed by evergreen broad-leaved
trees, which present a non-negligible transpiration also during the winter. On
the contrary, RU-Fyo, FI-Hyy, US-UMB and US-UMd are under observation only
during the growing season, or even for shorter periods in the case of the US sites.
Some sites, for instance the US sites and FR-Pue, have an excellent coverage, with
more than 20 trees belonging to diverse species simultaneously measured, while
other sites observe less than 10 trees. In FI-Hyy only 4 trees are sampled, and in
most of the time series only one or two are present due to missing data.

It is immediately clear how, in order to obtain a reliable up-scaling towards
the canopy transpiration representation, a careful integration has to be performed.
Fortunately, SAPFLUXNET metadata provide information about the stand (in
particular the total basal area1 and the stand plants density), its composition
(basal area percentage occupied by each species) and the characteristics of all
the plants under observation for the chosen sites (amongst these also the single
plant diameter at breast high is reported, which can be used to estimate the plant
individual basal area). By combining this information it is possible to properly
weight the contribution of each plant and produce a full canopy transpiration
estimate while discarding time steps where the coverage is not complete enough
to guarantee a reliable result. This integration method has been referred to as
Basal Area Integration (BAI). However, these metadata are not always available,
therefore it is interesting to evaluate how the BAI method performs with respect
to a simple arithmetic mean, which is the only up-scaling method one can carry
out for sites where stand composition information is missing. This approach has
been denominated Brute Force Approach (BFA).

The rejectingmechanism, which has been devised by the author, prevents the
algorithm from producing estimates whenever the available data do not allow to
obtain a statistically relevant description of the stand. This happens when more
than half of the stand composition is not represented, i.e., when it is not possible
to describe the behaviour of more than 50% of the trees in the stand because

1Basal area is the cross-sectional area of trees at breast height.
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there are no measurements of any plants belonging to those species. The species
percentage in the stand is computed from Equation 4.1:

𝑝𝑠 = 𝑝𝑠ℬ
̄ℬ𝑠 ⋅

𝜌𝑡𝑜𝑡ℬ
𝜌𝑡𝑜𝑡 (4.1)

where 𝑝𝑠 represents the percentage of plants belonging to species s in the
stand, 𝑝𝑠ℬ the percentage of basal area ℬ occupied by the species s, 𝜌𝑡𝑜𝑡ℬ the total
basal area per surface unit (dimensionless), ̄ℬ𝑠 the average basal areaℬ of plants
observed in the dataset belonging to species s (𝑚2), and finally 𝜌𝑡𝑜𝑡 the stand
plant density (plants per 𝑚2).

Once 𝑝𝑠 is defined, the rejecting algorithm proceeds to evaluate the data-
sets time step by time step, checking that in each one the set of available meas-
urements includes trees belonging to enough species to reach the acceptance
threshold. The actual number of plants for each species is not taken in consid-
eration here: as far as one plant is present its measurement is used to obtain a
re-scaled estimate of the whole species contribution, given the species percent-
age 𝑝𝑠 in the stand. However, this approximation can lead to unrealistic results
whenever a small number of measures are available and their behaviour is atyp-
ical. This is the case shown in Figure 4.3a, where only one plant is under observa-
tion and its behaviour seems to be much less intense than ORCHIDEE predicted
one. However, it is not possible to know in principle which between the plant
measurements or ORCHIDEE estimates are more correct, and an epistemic point
of view suggests to put more trust in the observations rather than the model. By
observing other results from PFT7 stands like Figure 5.8, where a solid amount
of plants is under observation, it appears that ORCHIDEE tends to overestim-
ate transpiration also for this site, even if not as much as in the previous case.
This difference may suggest that also an atypical behaviour of the single plant
considered in Figure 4.3a is present, or some other phenomenon is not correctly
being described causing a wider error in the estimates.

The canopy transpiration 𝑇𝑐𝑎𝑛 (𝑚𝑚𝑑−1) at time step t is finally given by:

𝑇𝑐𝑎𝑛(𝑡) = ∑
𝑠
{
∑𝑖∈𝑠

𝑇𝑖(𝑡)
ℬ𝑖

𝑁𝑠(𝑡)
⋅ ̄ℬ𝑠𝑝𝑠}𝜌𝑡𝑜𝑡 (4.2)

Here the new quantities are: the transpiration measure of the 𝑖𝑡ℎ tree of spe-
cies s at time t 𝑇𝑖(𝑡) (𝑚𝑚𝑑−1), the total number of trees under observation be-
longing to species s at time t 𝑁𝑠(𝑡) and ℬ𝑖, the basal area of the 𝑖𝑡ℎ tree (𝑚2).

The results of both BAI and BFA have been compared, using ORCHIDEE
estimates of transpiration as a reference (Figure 4.3).
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(a) FI-Hyy data comparison (b) FR-Fon data comparison

(c) FR-Pue data comparison (d) US-UMB data comparison

(e) FR-Fon error comparison (f) US-UMB error comparison

Figure 4.3: Subfigures (a) to (d): comparison of integration methods and ORCHIDEE
simulations. In (a) it is possible to observe how the presence of a reduced set of meas-
urement (in this case only 1) can lead to huge errors, no matter which method is used,
due to the influence of atypical behaviour of the observed plant. In (b) the number of
plants under observation is still small (only 8 plants), nevertheless the BAI considerably
improves the final result. When increasing the data coverage, the two methods become
more and more accurate and give similar results, as observed in (c) and (d). Subfigures
(e) and (f): Root Mean Square Deviation (RMSD) of integrated transpiration data with re-
spect to ORCHIDEE simulations, computed over single-year data. The aforementioned
improvement of BAI on poorly-sampled sites is independent of the year considered (e),
while in case of better coverage (f) it is not possible to clearly define whichmethodworks
better. The reported errors in (a), (b), (c) and (d) consist in the standard deviation of the
daily samples for each week.
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Figure 4.4: Scatter plot of average sap flow and basal area for all the plants in US-UMB.
The color represents the species the plant belongs to. The hypothesis of a linear relation
between the two quantities is compatible with the observed trend, with different slopes
depending on the species considered.

The comparison does not allow to clearly assess which method performs bet-
ter in full generality, due to the specificity of each site and the natural variability
of each set of measurements. However, it seems possible to observe how for
poorly-sampled data (as in the FR-Fon site) the BAI re-scaling consistently im-
proves the agreement with respect to ORCHIDEE estimates. This is not the case
when the quality of the data is extremely poor (as for FI-Hyy in 2013, where only
one plant is sampled and its behaviour is quite atypical), or when the coverage
is sufficiently good to properly describe the whole stand behaviour without the
need of a re-scaling procedure (that is the case of US-UMB and FR-Pue).

Since BAI is physically motivated and guarantees a further protection from
statistical errors due to a poor data coverage, it has been chosen as the reference
integration method for SAPFLUXNET data in the following steps of the research.
The two biggest criticalities of this method are the assumption of a linear de-
pendency between sap flow and basal area and the approximation of neglecting
the plant growth over the years. These assumptions are reasonable, but they are
strictly dependent on the local PFT and site. The relation between basal area and
sap flow has been investigated, and the linear hypothesis seems to be consistent
in most of the cases, as shown in Figure 4.4 for US-UMB.

Another debatable point comes up when considering the comparison with
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ORCHIDEE simulations. It consists in defining whether or not plants belonging
to PFTs other than the one prescribed in ORCHIDEE, but nonetheless present in
the real forest composition, should be considered in the computation. From one
point of view, the model is built to simulate a certain stand composition (which
can consist in a single PFT or a mix of different ones), and comparing data with a
different one would inevitably lower its predictive power. On the other hand, the
use of PFTs aims to approximate and simplify the description of the actual stand
composition, even if it would include a certain amount of trees not belonging to
the predominant species identified by the PFT itself.

In order to investigate these aspects two different experiments have been per-
formed. First, two sets of ORCHIDEE simulations have been run, one presenting
the FLUXNET2015 prescribed PFT, and the other one using a mix of different
PFTs based on the real stand composition given by SAPFLUXNET stand data. It
turned out the model exhibits little or no difference between the two configura-
tions. The same comparison has been done between SAPFLUXNET data, where
BAI has been performed first including only the species belonging to the pre-
scribed PFT (normalizing the stand composition in order to replace the percent-
age of excluded species) and then considering all the species with no distinction
in terms of PFT belonging. The major differences observed in this comparison
are the ones showed in Figure 4.5, where the relative discrepancy corresponds
to an almost uniform upward shift of about 7% of single-PFT-integrated data
with respect to the more inclusive one. The negligible effects observed in this
analysis are a validation of the prescribed PFT choice. Since the computational
cost of a mixed-PFT simulation is higher than a single-PFT one, only this latter
configuration has been used in the following.

4.1.3 Sun-induced fluorescence observations

SIF data available from TROPOMI satellite observations have been aggregated at
a daily sample frequency and different options in terms of spatial resolution. In
the present research the dataset with the 0.1°×0.1° resolution has been used, the
closest to the chosen resolution of ORCHIDEE single site simulations (0.05° ×
0.05°). The cloud coverage used in the retrieval algorithm has been set to 50%,
since SIF estimates are degraded above by the masking effect of clouds.

As shown in Figure 4.2 and Figure 4.6 the data acquisition algorithm produces
some unrealistic negative values. According to the literature, this can be related
to calibration issues or uncertainties in the retrieval algorithm[14]. Although
these values could easily be identified and discarded, it has been decided to keep
them in order to maintain a comparability with other analogous databases and
not to create biased means. Moreover, by observing Figure 4.2b and Figure 4.6b it
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Figure 4.5: Comparison of SAPFLUXNET integrations including all PFTs and only the
main one in data from US-UMB in summer 2011. In green the single-PFT-integrated
data, in orange the ones including all the species. It is the major discrepancy observed
amongst all sites and seasons, amounting to ∼ 7%.

is interesting to see how using weekly averages instead of daily observations not
only reduces the noise of the data and produces a clearer signal, but also removes
almost all the negative data points, retrieving a physically meaningful signal. For
these reasons only weekly mean values have been used in the following.

GOSAT and GOME-2 satellites observations from Jeong et al.[36] (Figure 4.7),
Joiner et al.[37] and Walther et al.[38] have been visually compared with TRO-
POMI data (in Figure 4.10). By this comparison it has been possible to assess
TROPOMI correct observation of the effect of phenology on plant seasonal cycle.
Indeed, deciduous forests (PFT6, FR-Fon and US-UMB) present a steeper increase
in SIF during the start of the season, when leaf onset occurs, and a slower and
steady decrease after the peak. Also, their emission intensity is consistently
higher than evergreen trees one, as expected. On the other side, evergreen
needle-leaf forests (PFT7, FI-Hyy and RU-Fyo) and evergreen broad-leaved ones
(PFT5, FR-Pue) show a more symmetrical and smooth seasonal curve.

Looking at the US-UMB site, a 4-6 week phase delay of leaf onset, season peak
and dormancy emerges in TROPOMI observations with respect to the average
behaviour between 1999 and 2006 computed by Joiner et al.[37] from GOME-2
and GOSAT data (Figure 4.8). However, the leaf onset mostly depends on the
local meteorology over a period of a few weeks, and therefore this discrepancy
causes no concern, as TROPOMI observations of growing seasons only cover
2019 and 2020.
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(a) daily values (b) weekly means

Figure 4.6: Comparison between TROPOMI SIF daily data (a) and their weekly average
with shaded uncertainties (b) between May 2018 and December 2020 from the FR-Fon
site. Re-sampling into weekly frequency not only improves the readability and compar-
ability of the signal, but also corrects the presence of outliers with negative intensity
measure due to calibration and retrieval algorithm structural uncertainties[14]. The re-
ported errors in (b) consist in the standard deviations of the daily samples for each week.

Figure 4.7: Normalizedmean seasonal cycle of area averagedGOSAT SIF, GOME SIF and
other greenness indices over northern temperate and boreal forests for the period 2010–
2012, in deciduous and evergreen forests over Eurasia (a, b) and over North America (c,
d). Source: Jeong et al.[36]
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Figure 4.8: GPP and SIF measurements and multi-model ensemble estimates as day-of-
the-year averages over US-UMB in the period 1999-2006. Source: Joiner et al.[37].

In terms of signal amplitude, TROPOMI estimates for the site RU-Fyo have
been compared with those from GOME-2 by Walther et al.[38] (who report non-
normalized average values between 2007 and 2012), showing an uniform under-
estimation of about 30% by TROPOMI data with respect to GOME-2 ones (Fig-
ure 4.9). This discrepancy is not caused by a difference in the treatment of negat-
ive values, because they are not uniformly distributed amongst the whole period,
but it could be related to different calibrations and retrieval algorithms, or to dif-
ferent meteorological conditions.

4.1.4 Study of correlation

The link between transpiration and SIF through photosynthetic activity is well-
known and physically reasonable. A certain degree of correlation is expected to
be observed when comparing the behaviour of the two on a common stand and
period. In fact SIF and transpiration are expected to covary, since they share some
common abiotic drivers[22]. TROPOMI and SAPFLUXNET data do not cover any
common period (TROPOMI starts from 2018, while SAPFLUXNET ends in 2016),
so the correlations with their common drivers are the only tools which can be
used to qualitatively assess if a covariance between transpiration and SIF exists
in the observations.

The most commonly used correlation measure is Pearson correlation coeffi-
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Figure 4.9: Comparison of flux tower GPP observations and the satellite SIF measure-
ments from GOME-2 over Ru-Fyo. Source: Walther et al.[38].

cient, defined for two variables 𝑥 and 𝑦 as:

𝜌(𝑥, 𝑦) = 𝑐𝑜𝑣(𝑥, 𝑦)
𝜎𝑥 ⋅ 𝜎𝑦

(4.3)

where 𝑐𝑜𝑣(𝑥, 𝑦) is the covariance between 𝑥 and 𝑦, while 𝜎𝛼 represent the stand-
ard deviation associated with the variable 𝛼 ∈ {𝑥, 𝑦}.

If a numerical relation between two variables of interest is needed, using their
correlation coefficient will give misleading results whenever another confound-
ing variable (often called ”controlling variable”) numerically related to both the
variables of interest is present. This could easily be the case when considering
biological systems depending on environmental variables. Therefore an altern-
ative measure is defined: the partial correlation coefficient. It aims to evaluate
the degree of association between two random variables, while taking into ac-
count the effect of a set of controlling random variables. The formal definition
is: ”The correlation between the deviations of the values of a variate from their
least square estimates by a regression function linear in terms of an external set
of variates, with the corresponding deviations of another variate from its own
regression function linear in the same external set.”[B1].

Using amore explicitmathematical formalism, the partial correlation between
two random variables can be computed using linear regression. Define two ran-
dom variables 𝑥 and 𝑦, and a set of 𝑘 control random variables z, belonging to ℝ.
𝑥𝑖, 𝑦𝑖 and z𝑖 represent the values of the 𝑖𝑡ℎ observation amongst the 𝑁 sampled
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(a) FI-Hyy week of the year (b) FR-Fon week of the year

(c) FR-Pue weekly means (d) FR-Pue week of the year

(e) RU-Fyo weekly means (f) RU-Fyo week of the year

(g) US-UMB weekly means (h) US-UMB week of the year

Figure 4.10: TROPOMI SIF observations and averages. The reported errors in the
graphs consist in the standard deviations of the daily samples for each week or group
of weeks (depending whether the weekly mean or the week-of-the-year mean is con-
sidered).
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from their joint probability distribution.
The 𝑘 dimensional linear regression coefficients w𝑥 and w𝑦 of the variables

𝑥 and 𝑦 with respect to z are given by:

w𝑥 = 𝑎𝑟𝑔𝑚𝑖𝑛w {
𝑁
∑
𝑖=1

(𝑥𝑖 − ⟨w, z𝑖⟩)
2} (4.4)

w𝑦 = 𝑎𝑟𝑔𝑚𝑖𝑛w {
𝑁
∑
𝑖=1

(𝑦𝑖 − ⟨w, z𝑖⟩)
2} (4.5)

where ⟨⋅, ⋅⟩ represents a scalar product. Defining the residuals 𝑅𝑥,𝑖 and 𝑅𝑦,𝑖
as

𝑅𝑥,𝑖 = 𝑥𝑖 − ⟨w𝑥, z𝑖⟩ (4.6)

𝑅𝑦,𝑖 = 𝑦𝑖 − ⟨w𝑦, z𝑖⟩ (4.7)

the partial correlation of variables 𝑋 and 𝑌 with control variables Z is given
by:

𝜌z(𝑥, 𝑦) =
∑𝑁

𝑖=1 𝑅𝑥,𝑖𝑅𝑦,𝑖

√∑𝑁
𝑖=1 𝑅2𝑥,𝑖 ⋅ √∑𝑁

𝑖=1 𝑅2𝑦,𝑖
(4.8)

Both coefficients have been used to evaluate the correlation between transpir-
ation and SIF with respect to air temperature, soil water content, vapour pressure
deficit and air moisture, and their comparison is reported in section 5.2.

4.2 ORCHIDAS: a tool for sensitivity analysis
and optimisation

Parametrization is a key aspect in models design. It is especially complex when
dealing with a wide class of interacting phenomena, in many different external
conditions, and producing several outputs which have to give the most accurate
description of each process.

In ORCHIDEE the parametrization of the model can be obtained from values
known in the literature or by optimizing the simulation results against a set of
observations. The optimization procedures used to obtain the best parameter es-
timates are referred to as ”experiments” in the following. These experiments are
performed through the ORCHIDEE Data Assimilation System (ORCHIDAS)[39].
This software allows to optimize a set of parameters by using a machine learn-
ing technique (specifically the Genetic Algorithm[B2]) to find the combination
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of parameter values producing the most accurate estimate of a given observed
quantity. This algorithm computational cost depends on both the length of ob-
servation time series and on the number of optimized parameters, and can be
run simultaneously for multiple sites and using multiple variables as references
to obtain a more general result.

Since not all the parameters influence every phenomena, and not with the
same intensity, it is important to determinewhich parameters have to be included
in the optimization procedure. This information is obtained through Sensitivity
Analysis (SA), which is a first step to identify the key parameters before aiming at
calibrating them. Indeed, focusing on the key model parameters for calibration
both limits the computational cost of optimization and the risk of over-fitting.

SA is carried out by a built-in tool, which receives as inputs the set of can-
didate parameters to analyse and the variable of interest that the optimisation
procedure aims at reproducing. Both in SA and optimization each parameter is
characterized by a default value and a range of variation around that. There is no
standard procedure in this definition, which is one of the most delicate aspects
of the model, especially when introducing a new parameter. Unfortunately, the
choice of a default value from literature is not always possible, since often the
study of biological phenomena are strictly related to the specific environment
and conditions the experiments are performed into, and they can not be prop-
erly employed in more general situations. When a parameter default value is
roughly approximated and needs to be refined, the choice of a proper variation
range is crucial. Taking an excessively narrow interval does not allow the op-
timization to really explore the influence of the parameter in the model, while
giving too much freedom can drive the system towards a numerically optimal
configuration which realizes completely un-physical dynamics. Usually these
pathological behaviours are identified by a saturation of some parameters value
at the extremes of the range, as it is shown in section 5.3.

The first selection of parameters included in the SA of GPP and SIF is based
on previous SA performed with ORCHIDEE[40][41]. Experiments regarding
transpiration measurements assimilation and SA had never been performed on
ORCHIDEE, so its choice of the parameter set has followed a direct analysis of the
parameters involved in transpiration calculation (see Figure 3.1). In general, the
goal has been to include in the SA all the parameters that can possibly play a role
in the phenomena related to transpiration, GPP, and SIF, in order to be sure not to
exclude any important one. These parameters can be involved in the represent-
ation of photosynthesis, phenology, carbon allocation, conductance, respiration,
biomass, or soil hydrology for example[41]. SA is quite fast to run, especially
if compared with the optimization algorithm, and evaluating large sets of para-
meters is not prohibitive in terms of computational cost. Whenever little or no
information was available to constrain the values of a parameter, an arbitrary
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variation range of 40% of the parameter default value itself has been used.
Depending on the configuration, for each parameter a variable number of

values are sampled within the variation range and are used to run independent
simulations, in order to assess the influence of each trajectory (i.e., set of para-
meters, since the path in the space of parameters defines a specific value for each
one of them) on the target quantity. The Morris method[42] has been used for
the sensitivity analysis as it is relatively low time-consuming and enables to rank
the parameters by importance. This qualitative method requires only a low num-
ber of simulations (𝑝 + 1)𝑛, with 𝑝 the number of parameters and 𝑛 the number
of random trajectories generated, which has been set to 10 in this context. The
computational time required from each SA to be completed is around 3 hours per
site.

The optimization algorithm has a similar structure as well, but in addition
it requires a set of data to optimize the model against. This procedure is often
referred to as ”data assimilation”. In this algorithm the values assumed by the sets
of parameters are not randomly sampled. Instead, the machine learning Genetic
Algorithm is used to find the combination of parameters which better reproduces
the observed behaviour of the variable used as a reference for the optimization
(GPP, transpiration or SIF in this case). Its computational time is about 6 hours
per optimization, depending on the length of the timeseries of the assimilated
quantity and the number of parameters involved.

The goal of the research is to investigate how the optimization against these
3 different quantities improves the predictive power of the model. The availab-
ility of data is quite different amongst the 3 databases. GPP in FLUXNET2015
and transpiration derived from SAPFLUXNET cover usually a similar number of
years. However, some SAPFLUXNET sites only reports data during the growing
season, therefore the overall number of entries can still be quite different. These
discrepancies are negligible when considering the TROPOMI SIF dataset, which
covers the period between May 2018 and December 2020, with no gapfilling and
showing frequently missing data during the cold season. Such an inhomogeneity
between the databases is an issue, since the optimization performance, as with
every machine learning technique, strongly depends on the amount of training
data. In order to preserve comparability between the diverse optimizations, only
3 years of observations have been used as training data for all the experiments.
This choice drastically reduces the performance, but it allows to compare the
effective potential of each new database in terms of model optimization.

A neat dependence on PFTs of performances of ORCHIDEE estimates emerged
from the comparison of ORCHIDEE transpiration estimates and SAPFLUXNET
data, as shown in subsection 5.1.2. For this reason, the optimization procedure
has been carried out on groups defined by PFT and operating amulti-site optimiz-
ation. This approach is also meant to simultaneously optimize those parameters
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which are PFT-dependent together with all the sites with that PFT and not inde-
pendently one from the other.

The computational time of the optimization algorithm depends on the num-
ber of sites considered in the procedure. The FR-Pue single site optimization
takes around 6 hours to be completed, while the 2-3 sites ones (respectively PFT7
and PFT6) take around 14 hours.



Chapter 5

Results and Discussion

5.1 Transpiration-related observations and dis-
crepancy from ORCHIDEE estimates

5.1.1 Comparison between observations

Transpiration, canopy Latent Heat Flux (LE), GPP and SIF are all strictly related to
plant photosynthetic activity and the resulting fluxes, and they are sampled with
different frequencies. However, on a weekly scale it is possible to compare the
average behaviour of these quantities and a good phase agreement is expected
to be observed.

Unfortunately the aforementioned lack of overlapping time series from TRO-
POMI SIF data with the other two databases does not allow a direct comparison
between all the quantities simultaneously, as shown in Figure 5.1. In fact, while
it is possible to run simulations up to 2020 thanks to the re-analysis data from
ERA5, this database does not include any flux, but only meteorological variables.

FLUXNET2015 not only contains a LE estimate from eddy covariance meas-
ures, but for some sites it also provides a LE estimate corrected by imposing
energy balance closure[17], referred to as LE_fC in the following. LE_fC has
been included in the comparison to have a qualitative idea of the consistency of
LE data along the period.

In Figure 5.2 it is possible to observe the effects of the energy balance cor-
rection on LE and its correlation with transpiration. Indeed the early months of
1998 appearing in Figure 5.2a exhibit a behaviour which can not be related to
vegetation activity, since out of the growing season the transpiration is almost
quiescent. Evaporation being equivalent to LE (they only differ in terms of unit
of measures), this trend could be related to snow sublimation after the end of
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Figure 5.1: Plot of normalized values of transpiration-related quantities for the whole
period of coverage of each database on site FI-Hyy. Amongst FLUXNET2015 estimates
(LE_f, LE_fC and GPP), LE_f represents the Latent Heat flux and LE_fC its value when
the energy balance closure correction is applied. It is possible to observe the different
periods of coverage of each database. The series are normalized with respect to their
own mean values.

the winter, but this phenomenon can not account for the anomalous values of
GPP, and the local meteorological observations do not highlight any substantial
difference from the same period in other years within the timeseries. Also, LE
and GPP being closely related to ET, it is unlikely to observe values close to the
peak during the winter. This behaviour is effectively corrected in LE_fC, which
shows a more realistic curve. The study of this phenomenon is outside the scope
of the present article and warrants further research. The close phase agreement
between transpiration and LE is particularly evident in Figure 5.2b, where their
matching is almost perfect, especially around the season peak.

It is important to mention that, the measures being normalized through the
seasonal mean, whenever the coverage is not complete on the whole year (for
instance transpiration in Figure 5.2b) or a pathological behaviour alters the curve
(as LE or GPP suggest in Figure 5.2a) the sample is re-scaled differently from
other measurements. Therefore, the only information it is possible to extract
from these graphs is about phase agreement, since the positions of peaks and
minima are not influenced by the scale.

The results of this analysis are not sufficient to draw a big picture of a com-
mon behaviour amongst these quantities. It is clear that they share some drivers,
mostly related to their seasonal cycle and the good agreement which emerges
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(a) RU-Fyo 1998

(b) FR-Fon 2006

Figure 5.2: Comparison of normalized values of observations for transpiration, SIF, LE
and GPP. It is interesting to observe in (a) how the energy balance correction on LE cor-
rects the un-physical behaviour of the early stage of the year. In (b) the phase agreement
between LE and transpiration is particularly evident, showing how these two quantities
are strictly correlated.
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frequently (for example between GPP and transpiration in Figure 5.3a, and Fig-
ure 5.4a), but several discrepancies suggest that other drivers differentiate their
behaviour on shorter scales (Figure 5.3b).

Even if it is not possible to directly compare SIF observations to other quant-
ities due to the lack of overlap between the databases, it is interesting to notice
the similarity of the patterns observed in Figure 5.4a and Figure 5.4b. Also, FR-
Pue being a PFT5 site (which implies a predominance of evergreen broad-leaved
trees) at intermediate latitude (with a non negligible incoming radiation even
during the cold season), all its observed quantities exhibit non-vanishing values
over the whole year.

The comparison has been carried out also for ORCHIDEE estimates of the
aforementioned quantities, with the goal of highlighting the most evident differ-
ences and common points between observations and simulations.

In Figure 5.5 it is possible to notice two features of the observations which
are correctly reproduced in the simulations. First, the presence of a non-zero
LE during the cold season, when photosynthetic activity (and therefore most
of the transpiration process) is strongly reduced, but snow sublimation (very
important for sites with presence of snow) and other ET processes are still active.
Second, the trigger condition that has to be reached in order for photosynthesis
to be enabled (both RU-Fyo and FI-Hyy are evergreen needle-leaf forests, so no
leaf onset is occurring here), which is visible in the sharp transition between a
quiescence to a non negligible activity observed for example in the simulation of
April 2011 for FI-Hyy.

Simulated quantities exhibit similar behaviours, as shown in Figure 5.5, Fig-
ure 5.6 and Figure 5.7, proving the consistency of the model in describing these
physically related quantities.

Also leaf onset for summergreen PFT can be observed in the simulations, as
shown in Figure 5.6. Of course, depending on the meteorology and biome the
onset can be triggered in different moments in the season, in this case in mid
May 2011 for US-UMB and early April 2011 for FR-Fon.

5.1.2 Transpiration matching between ORCHIDEE
estimates and SAPFLUXNET observations

Some characteristic behaviours depending on the PFT belonging of the stand
have emerged in the comparison between ORCHIDEE estimates of transpira-
tion and SAPFLUXNET-derived observations. For instance, simulations of PFT7
present a distinctive tendency to overestimate transpiration, as shown in Fig-
ure 4.3a and Figure 5.8, even if their overall phase agreement is quite good.

Two of the most complex and important features of deciduous species for
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(a) RU-Fyo 1999

(b) FR-Fon 2013

Figure 5.3: Comparison of normalized values of observations for transpiration, LE and
GPP. It is interesting to observe in (a) how the phase agreement for GPP and transpiration
is very accurate (considering the different vertical stretch). On the opposite in (b) even if
the seasonal cycle is clear and the amplitudes seem comparable, the curves behave quite
differently.
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(a) FR-Pue 2001

(b) FR-Pue 2019

Figure 5.4: In (a) comparison of normalized values of observations for transpiration, SIF,
LE and GPP. In (b) the seasonal behaviour of SIF observed in FR-Pue 2019. It is interesting
to notice the similarity of the patterns observed in (a) and (b), due to meteorological
oscillations and the nature of the local biome, which lead photosynthetic activity to be
present along the whole period.
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(a) RU-Fyo 2003

(b) FI-Hyy 2011

Figure 5.5: Comparison of normalized values of ORCHIDEE estimates for transpiration,
SIF, LE and GPP. The existence of a snow contribution to ET during the cold season and
of a photosynthetic activity activation mechanism is shown by the simulated behaviour
in the first months of the year.
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(a) US-UMB 2011

(b) FR-Fon 2011

Figure 5.6: Comparison of normalized values of ORCHIDEE estimates for transpiration,
SIF, LE and GPP.
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Figure 5.7: Comparison of normalized values of ORCHIDEE estimates for transpiration,
SIF, LE and GPP. The aforementioned ”everlasting” photosynthetic activity of PFT5 is
correctly reproduced by the model.

a model to simulate are leaf onset and senescence. Unfortunately only a very
narrow period within the growing season is sampled each year for the US-UMB
and US-UMd sites, so it is not possible to draw any consideration regarding the
accuracy in the realization of these two phenomena performed by themodel from
these sites. Also the accuracy of the model with respect to the observations is
not completely satisfying for these sites (see Figure 5.9a as a reference).

By comparing the disturbed and control samples of US-UMB it is interesting
to observe in Figure 5.9 how the 2 sites, despite them being approximately 10
km apart, present quite different behaviours both in the observations and sim-
ulations. In fact, their meteorological forcing files show some differences both
in terms of time coverage (US-UMB measurement period is twice longer than
the US-UMd one) and values, with data of precipitation and wind speed being
substantially different all along the timeseries. This aspect is outside the scope
of the present thesis and warrants further research.

The model performance on correctly reproducing leaf onset and senescence
can be observed in the other PFT6 site, FR-Fon. In fact, a common behaviour
amongst FR-Fon simulations is the presence of a late leaf onset and an early senes-
cence, as the comparison with SAPFLUXNET observations shows in Figure 5.10,
coupled with a persistent underestimation of transpiration levels, which seems
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Figure 5.8: Transpiration SAPFLUXNET measures and ORCHIDEE estimates for RU-
Fyo in 1999. The reported errors consist in the standard deviations of the half-hourly
samples for each week.

(a) US-UMd 2012 (b) US-UMB 2012

Figure 5.9: Transpiration SAPFLUXNET measures and ORCHIDEE estimates for US-
UMd and UMB in 2012. The reported errors consist in the standard deviations of the
half-hourly samples for each week.
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Figure 5.10: Transpiration SAPFLUXNET measures and ORCHIDEE estimates for FR-
Fon in 2009. The reported errors consist in the standard deviations of the half-hourly
samples for each week.

to suggest ORCHIDEE is not correctly describing the transpiration process with
respect to the actual one.

In PFT5 simulations ORCHIDEE almost always reproduces the correct sea-
sonal cycle, as observed in Figure 5.11. The estimates are mostly inside the error
range, which on the other side is not a very restrictive condition tomeet, since the
uncertainties on both measurements and estimates are considerable. However,
in some cases (for instance Figure 5.11b) very important features like seasonal
peak and strong local minima are not correctly reproduced.
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(a) FR-Pue 2000 (b) FR-Pue 2014

Figure 5.11: Transpiration SAPFLUXNET measures and ORCHIDEE estimates for FR-
Pue in 2000 and 2014. The reported errors consist in the standard deviations of the
half-hourly samples for each week.

5.2 Pearson and partial correlations of stud-
ied quantities with respect to main met-
eorological drivers

5.2.1 Qualitative analysis
The most simple and direct way to infer correlations between variables is by
the observation of scatter plots. In this case 4 variables from the observation
databases (transpiration, LE, GPP, SIF) have been correlated to 4 drivers, namely
air temperature 𝑇𝑎𝑖𝑟, near-surface specific humidity of air 𝑄𝑎𝑖𝑟, downward short
wave radiation 𝑆𝑊𝑑𝑜𝑤𝑛 and Vapour Pressure Deficit 𝑣𝑝𝑑. The variables being
dependent on several drivers, it is important to realize that each scatter plot rep-
resents a projection along one axis of the multi-dimensional ensemble of data-
points collected from the meteorological time series. Therefore, some apparent
relations could emerge from the projection operation, which do not carry any
physical information. For instance, in Figure 5.12a two trends are distinguishable:
one is a logarithm-like growth, the other a plateau for almost vanishing values of
GPP. While the log-like growth has a physically reasonable interpretation, pho-
tosynthetic activity being asymptotically related to the incoming solar radiation,
the plateau is not interpretable without considering the high dimensionality of
the problem. What is being observed is the presence of many data-points which,
even for values of 𝑆𝑊𝑑𝑜𝑤𝑛 that would normally allow photosynthesis to happen,
do not exhibit a significant GPP value because an other variable is blocking the
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(a) complete data (b) cropped data

Figure 5.12: Scatter plot of 𝑆𝑊𝑑𝑜𝑤𝑛 (on the horizontal axis) and GPP (on the vertical
axis) for FI-Hyy site. On the left the entire dataset is plotted. On the right the data-points
below the temperature threshold are removed.

process, for instance water stress or low temperatures.
This is one of the reasons why the data show such a high dispersion and

they do not seem to provide precise information about the underlying relation
between 𝑆𝑊𝑑𝑜𝑤𝑛 and GPP, as it is possible to see also in Figure 5.13a for𝑄𝑎𝑖𝑟 and
GPP. Other sources of dispersion are the systematic and random uncertainties in
the measurements, and those due to the extraction and pre-processing of fluxes
and derived quantities from the observations.

The presence of a temperature threshold for photosynthetic activity is well-
known in the literature, and it seems quite evident also from the data (for instance
in Figure 5.15a, and also in Figure 5.12 and Figure 5.13, as it will be explained
later). These data pose a structural problem in the evaluation of Pearson correl-
ation, because they enforce the un-realistic hypothesis of GPP independence of
𝑇𝑎𝑖𝑟 and 𝑄𝑎𝑖𝑟. For this reason, a cropping has been applied to the dataset, re-
moving all the data-points with a temperature entry under a certain threshold,
which account for around 5%÷10% of the whole dataset. The phenomenon be-
ing dependent on the biological features of the plants, a different threshold has
been chosen for each PFT, based on the observations, as reported in Table 5.1.
For FR-Pue (PFT5) no threshold has been consistently observed, as shown for
example in Figure 5.14. This is consistent with the aforementioned hypothesis
of photosynthesis temperature threshold, FR-Pue being an evergreen forest in a
temperate biome, therefore allowing continuous photosynthetic activity along
the whole year.
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(a) complete data (b) cropped data

Figure 5.13: Scatter plot of𝑄𝑎𝑖𝑟 and GPP for US-UMB site. On the left the entire dataset
is plotted. On the right the data-points below the temperature threshold are removed.

PFT Phenology 𝑇0(𝐾)
5 evergreen broad-leaved NA
6 summergreen broad-leaved 278
7 evergreen needle-leaf 270

Table 5.1: Temperature threshold 𝑇0 for photosynthetic activation depending on the
PFT. The value for PFT5 (FR-Pue) is not clearly distinguishable in the scatter plots and
therefore it has not been considered.
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Figure 5.14: Scatter plot of 𝑇𝑎𝑖𝑟 and transpiration for FR-Fon site. No temperature
threshold is observed, as expected from PFT5 in a temperate biome.

The effect of the cropping is presented in Figure 5.12b, Figure 5.13b and Fig-
ure 5.15b. It is possible to see a much smaller density of low-GPP points in the
plateau, which is therefore much less influential in the computation of correla-
tion. In order to give a clearer grasp of the magnitude of the correction applied,
the scatter plots of US-UMB 𝑇𝑎𝑖𝑟 and GPP full and cropped data are showed in
Figure 5.15. From now on corrected datasets are used if not specified otherwise.

Another pathological behaviour has been observed in FLUXNET2015-derived
quantities. It consists of the appearance of lines of points exhibiting a strong
linear correlation, as shown in Figure 5.16. Those lines are immediately visible
since they are located outside the main bulk of data-points, but they could also
be present inside it without being noticeable. Since their correlation seems quite
artificial and appears only in FLUXNET2015 data, which undertake a gap-filling
procedure during the database formation, these points are most likely gap-filled
data. Their behaviour strongly separates from real measurements, so it would
be beneficial to remove these points before performing the quantitative analysis.
Unfortunately, most of the entries from FLUXNET2015 are flagged as gap-filled
or corrected in the metadata associated with the measurements, therefore it is
impossible to neatly identify them. A rigorous correction being not applicable,
it has been chosen not to remove these points from the dataset.

TROPOMI observations only comprise data during the growing season and
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(a) complete data (b) cropped data

Figure 5.15: Scatter plot of 𝑇𝑎𝑖𝑟 and GPP for US-UMB site. On the left the entire dataset
is plotted. On the right the data-points below the temperature threshold are removed.

(a) LE (b) GPP

Figure 5.16: Scatter plot of 𝑇𝑎𝑖𝑟 and LE (a) and GPP (b) for RU-Fyo site. The full dataset
with no correction is shown. In both plots some series of quite likely gap-filled points
are visible: in (a) for values of LE in 50 ÷ 100𝑊 𝑚2 and 𝑇𝑎𝑖𝑟 in 255 ÷ 280𝐾, in (b) for
values of GPP in 2.5 ÷ 8.5 𝑔𝐶𝑚−2 per timestep and 𝑇𝑎𝑖𝑟 in 255 ÷ 280𝐾.
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Figure 5.17: Scatter plot of 𝑇𝑎𝑖𝑟 and SIF for FR-Pue.

around it, at the exclusion of the coldest months, between May 2018 and Decem-
ber 2020. As a consequence, the number of data-points is quite small compared
to the other quantities and the correlation measure is less accurate, because it
is more sensible to stochastic oscillations and aforementioned dispersion effects
(see Figure 5.17). Vapour Pressure Deficit (here 𝑣𝑝𝑑) being extracted from SAPF-
LUNET database (which has no overlapping periods with the TROPOMI one), its
correlation to SIF cannot be evaluated without deriving it from ERA5 re-analysis
data, a procedure which would introduce new sources of uncertainties. As a
consequence, this correlation is not available in the analysis.

5.2.2 Quantitative analysis
Once the discrete threshold behaviours have been taken into account and solved,
the major issue in quantifying the correlation between each quantity and its
drivers stems from the dispersion of the data-points due to the presence of sev-
eral controlling variables, namely the other drivers.

Using Pearson correlation in these conditions could lead to misleading res-
ults, therefore also partial correlation coefficients have been computed. Unfor-
tunately, some of the assumptions needed for partial correlation to be properly
applied are not fulfilled by the data. For example, the presence of linear relations
amongst all the variables is not guaranteed (see Figure 5.12 and Figure 5.16) and
the requirement of a gaussian distribution of the measurements is not met for
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Figure 5.18: Histogram of the distribution of transpiration data for FR-Pue.

the majority of the quantities considered, as shown for transpiration data in Fig-
ure 5.18. Moreover, partial correlation is very sensible to outliers[43], which are
quite common in these datasets as it is possible to observe from the previous
scatter plots. As a consequence, an optimal measure of correlation is missing,
and both have been considered in the following.

A wide discrepancy emerges comparing partial correlation coefficients and
Pearson ones (see Table 5.2, Table 5.3, Table 5.4), in some cases even suggesting
unrealistic physical relations or a substantial independence of some quantities
with respect to important drivers. For example, in Table 5.3 for the FR-Fon site
the partial correlation between temperature and SIF is negative and the almost
vanishing value of the one between 𝑇𝑎𝑖𝑟 and LE suggests an independence of the
two, in stark contrast with the literature.

It is important to mention, though, that the partial correlation is correctly
grasping the strong dependency of photosynthetic activity on the presence of
solar radiation. In fact, comparing partial correlation coefficients of each quant-
ity with respect to 𝑆𝑊𝑑𝑜𝑤𝑛 and all the other meteorological variables, it is pos-
sible to notice how 𝑆𝑊𝑑𝑜𝑤𝑛 results to be much more correlated than all the oth-
ers. A possible explanation for this behaviour can be found by considering the
nature and the importance of eachmeteorological driver in the biological process
of photosynthesis. 𝑄𝑎𝑖𝑟 and 𝑣𝑝𝑑 are both linked to the presence of water in the
environment. Indeed, this a fundamental factor for the growth of the plants, but
the presence of reservoirs and the length scale of water stress effects make these
two drivers less strongly correlated to the photosynthetic activity on a diel scale.
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Sites Drivers Correlation tran SIF LE GPP

FR-Pue

𝑇𝑎𝑖𝑟
Pearson 0.44 0.46 0.45 0.36
Partial 0.27 -0.08 0.30 0.25

𝑄𝑎𝑖𝑟
Pearson 0.13 0.35 0.12 0.13
Partial -0.24 0.13 -0.24 -0.20

𝑆𝑊𝑑𝑜𝑤𝑛
Pearson 0.70 0.58 0.69 0.61
Partial 0.59 0.41 0.61 0.63

𝑣𝑝𝑑 Pearson 0.47 NA 0.53 0.31
Partial -0.36 NA -0.31 -0.44

Table 5.2: Pearson and partial correlations for PFT5 site FR-Pue. NA labels for 𝑣𝑝𝑑 and
SIF correlation indicate the absence of overlapping periods and therefore it is impossible
to evaluate a correlation between these two quantities.

In the same way, also the temperature is frequently involved in long time scale
processes. For instance it is strongly related to the start and end of the growing
season, where temperature constraints matter more. On the other side, 𝑆𝑊𝑑𝑜𝑤𝑛
represents the incoming solar radiation, which affects the photosynthetic activity
instantaneously and it is an essential element for it to happen. As a consequence,
it is not unreasonable for 𝑆𝑊𝑑𝑜𝑤𝑛 to be more correlated to the observable data
in a partial correlation analysis, at least on a diel scale.

As previously mentioned, transpiration and SIF observations do not overlap
on any period. As a consequence, an indirect measure of their mutual correl-
ation has been found in the comparison of the correlations of both quantities
with respect to the 4 drivers used above. For completeness, GPP and LE have
been included in the comparison as well. For simplicity, the correlations with
respect to 𝑣𝑝𝑑 have not been considered, since its observations do not overlap
with SIF ones. In this analysis the correlations of each quantity with the drivers
are represented as a vector in the form:

𝜌𝑥 = ( 𝜌(𝑥, 𝑇𝑎𝑖𝑟), 𝜌(𝑥, 𝑆𝑊𝑑𝑜𝑤𝑛), 𝜌(𝑥, 𝑄𝑎𝑖𝑟)) (5.1)

where 𝑥 represents one amongst the 4 observations (GPP, LE, tran, SIF) and
𝜌(𝑥, 𝛼) its correlation coefficient with respect to the driver 𝛼. The agreement
between the correlations of two quantities 𝑥 and 𝑦 with respect to the drivers is
quantified by 𝑑(𝑥, 𝑦):

𝑑(𝑥, 𝑦) = 1
3 ∑𝛼

|𝜌(𝑥, 𝛼) − 𝜌(𝑦, 𝛼)| (5.2)

with 𝛼 ∈ {𝑇𝑎𝑖𝑟, 𝑆𝑊𝑑𝑜𝑤𝑛, 𝑄𝑎𝑖𝑟}. The values of 𝑑(𝑥, 𝑦) for all couples (𝑥, 𝑦) and
sites are reported in Table 5.5.
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Sites Drivers Correlation tran SIF LE GPP

FR-Fon

𝑇𝑎𝑖𝑟
Pearson 0.70 0.27 0.75 0.74
Partial 0.32 -0.41 0.02 0.16

𝑄𝑎𝑖𝑟
Pearson 0.44 0.17 0.57 0.58
Partial -0.20 0.38 0.10 0.02

𝑆𝑊𝑑𝑜𝑤𝑛
Pearson 0.72 0.70 0.75 0.75
Partial 0.59 0.73 0.63 0.63

𝑣𝑝𝑑 Pearson 0.66 NA 0.61 0.52
Partial -0.22 NA -0.01 -0.21

US-UMB

𝑇𝑎𝑖𝑟
Pearson 0.25 0.57 0.73 0.73
Partial 0.05 0.23 0.12 0.17

𝑄𝑎𝑖𝑟
Pearson -0.16 0.43 0.50 0.59
Partial -0.06 -0.03 0.07 0.07

𝑆𝑊𝑑𝑜𝑤𝑛
Pearson 0.65 0.52 0.69 0.58
Partial 0.37 0.38 0.56 0.53

𝑣𝑝𝑑 Pearson 0.58 NA 0.78 0.68
Partial 0.12 NA 0.24 -0.02

US-UMd

𝑇𝑎𝑖𝑟
Pearson 0.03 0.57 0.62 0.69
Partial -0.10 0.23 0.26 0.46

𝑄𝑎𝑖𝑟
Pearson -0.16 0.43 0.42 0.54
Partial 0.08 -0.03 -0.12 0.29

𝑆𝑊𝑑𝑜𝑤𝑛
Pearson 0.59 0.52 0.71 0.63
Partial 0.43 0.38 0.48 0.52

𝑣𝑝𝑑 Pearson 0.48 NA 0.67 0.43
Partial 0.25 NA 0.15 -0.37

Table 5.3: Pearson and partial correlations for PFT6 sites. NA labels for 𝑣𝑝𝑑 and SIF
correlation indicate the absence of overlapping periods and therefore it is impossible to
evaluate a correlation between these two quantities.
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Sites Drivers Correlation tran SIF LE GPP

FI-Hyy

𝑇𝑎𝑖𝑟
Pearson 0.43 0.56 0.79 0.84
Partial -0.16 0.14 0.19 0.44

𝑄𝑎𝑖𝑟
Pearson 0.26 0.43 0.55 0.61
Partial 0.21 0.04 0.02 -0.11

𝑆𝑊𝑑𝑜𝑤𝑛
Pearson 0.56 0.42 0.81 0.80
Partial 0.38 0.19 0.50 0.54

𝑣𝑝𝑑 Pearson 0.50 NA 0.76 0.71
Partial 0.13 NA -0.04 -0.33

RU-Fyo

𝑇𝑎𝑖𝑟
Pearson 0.58 0.57 0.71 0.80
Partial 0.11 0.05 0.04 0.12

𝑄𝑎𝑖𝑟
Pearson 0.20 0.45 0.52 0.67
Partial -0.05 0.13 0.11 0.18

𝑆𝑊𝑑𝑜𝑤𝑛
Pearson 0.72 0.56 0.79 0.76
Partial 0.34 0.36 0.51 0.58

𝑣𝑝𝑑 Pearson 0.71 NA 0.65 0.63
Partial 0.08 NA -0.10 -0.22

Table 5.4: Pearson and partial correlations for PFT7 sites. NA labels for 𝑣𝑝𝑑 and SIF
correlation indicate the absence of overlapping periods and therefore it is impossible to
evaluate a correlation between these two quantities.
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FR-Pue tran SIF LE GPP

tran - 0.12 0.01 0.06
SIF 0.30 - 0.11 0.12
LE 0.02 0.31 - 0.06
GPP 0.03 0.29 0.04 -

FR-Fon tran SIF LE GPP

tran - 0.24 0.07 0.07
SIF 0.24 - 0.31 0.31
LE 0.07 0.27 - 0.01
GPP 0.07 0.35 0.08 -

US-UMB tran SIF LE GPP

tran - 0.35 0.43 0.44
SIF 0.13 - 0.13 0.13
LE 0.13 0.13 - 0.07
GPP 0.13 0.10 0.03 -

US-UMd tran SIF LE GPP

tran - 0.36 0.37 0.41
SIF 0.07 - 0.08 0.11
LE 0.15 0.09 - 0.09
GPP 0.27 0.21 0.12 -

FI-Hyy tran SIF LE GPP

tran - 0.15 0.30 0.33
SIF 0.22 - 0.25 0.28
LE 0.22 0.25 - 0.04
GPP 0.36 0.28 0.14 -

RU-Fyo tran SIF LE GPP

tran - 0.14 0.17 0.24
SIF 0.09 - 0.15 0.22
LE 0.14 0.06 - 0.09
GPP 0.16 0.11 0.07 -

Table 5.5: Distances between each couple of Pearson (upper triangular matrix in red)
or partial (lower triangular matrix in green) correlations vectors 𝜌𝑥 and 𝜌𝑦 for all the
sites. The distances are computed as the average discrepancy between the correlation
coefficients of the 2 quantities with respect to each driver.
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(a) GPP (b) LE

Figure 5.19: Scatter plots of GPP (a) and LE (b) with respect to 𝑄𝑎𝑖𝑟 for FR-Fon site.

GPP and LE are by far the two most closely correlated quantities both for
Pearson and Partial correlations amongst all the sites, which is coherent with
their similar behaviour. An example of that is observed in Figure 5.16 and in Fig-
ure 5.19, showing a very similar dependence of GPP and LE with respect to 𝑇𝑎𝑖𝑟
and 𝑄𝑎𝑖𝑟. A possible reason behind their similarity can be found in the common
origin of these quantities, both derived by FLUXNET2015, which also implies
the same spatial coverage. Indeed, this is not the case for TROPOMI and SAP-
FLUXNET data. We also observe a relevant link between LE and transpiration,
when looking at partial correlations. On the other hand, the SIF-GPP relation is
not so strong, as depicted by their correlations.

5.3 Sensitivity analysis and model
optimisation

Sensitivity Analysis results are summarized in the heat-maps in Figure 5.21 and
Figure 5.22. For each observable, these maps report the 25 most relevant para-
meters amongst those involved in ORCHIDEE computation of the observable
itself, on a scale from 1 (black, high sensitivity of the variable with respect to
the parameter) to 0 (white, independent). Around 12 parameters, amongst the
highest-ranked ones for each PFT, have been used later as parameters set for the
optimization procedure with ORCHIDAS.

It is possible to notice a good level of agreement regarding the most influ-
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ential parameters within each PFT. Indeed some differences still appear, which
are probably due to features of the sites such as soil texture and climate. As a
consequence, it has been decided to optimize the parameters grouping the simu-
lations by PFT, extracting the union of the most important parameters for all the
sites belonging to each PFT and then using their combined datasets to obtain a
wider training set for the optimization algorithm.

The two US sites present similar correlation coefficients if compared with
those of other sites, despite the artificial disturbance on US-UMd which causes
the forest population to have more young trees than the US-UMB one. The
standard deviations of their Pearson and partial correlation coefficients are re-
spectively equal to 0.07 and 0.15, with the wider discrepancies regarding tran-
spiration correlation coefficients (see Table 5.3). Amongst those coefficients, the
largest errors affect the correlation with 𝑇𝑎𝑖𝑟, while the correlations with 𝑆𝑊𝑑𝑜𝑤𝑛
and 𝑄𝑎𝑖𝑟 are the most compatible. As it is possible to see in the scatter plots in
Figure 5.20 for the US-UMB site, almost no correlation seems to be present for
𝑇𝑎𝑖𝑟 (Figure 5.20a), while 𝑆𝑊𝑑𝑜𝑤𝑛 (Figure 5.20b) exhibits a much more evident
one, and the same holds for the site US-UMd, showing from this point of view a
similar behaviour. It has been chosen to use also the disturbed-site US-UMd data
in the optimization procedure, in order to enrich the dataset and obtain more re-
liable results while not only representing mature forests, but also younger ones.
Moreover, as mentioned in subsection 5.1.2, US-UMB and US-UMd simulations
and observations are substantially different, so their contribution is comparable
to that of 2 independent sites and doesn’t pose a threat to the validity of the
machine learning technique.

In Figure 5.22 the most influential parameter for all the sites is
alpha_NPQ_reversible, a coefficient involved in the description of Non Photo-
chemical Quenching (NPQ) phenomena. The relative rate constant for fluores-
cence 𝑘𝐹 , which presents a direct proportionality to SIF in the computation, is
the second most important parameter.

Three optimization procedures have been run, each one optimizing themodel
estimate of a different quantity among transpiration, GPP and SIF. The actual
performance of the model after the optimization can be deduced by measuring
the discrepancy of each model (the original and the three optimized ones) es-
timates from the three sets of observations. These comparisons are showed in
Figure 5.23, where a normalized Root Mean Square Deviation (RMSD) has been
used as measure of the distance of ORCHIDEE estimates from the observations.

A few interesting features emerge from the diagrams. The original model
and the one optimized by GPP data show the same performance in almost every
site and quantity considered. The reason behind this similarity is found in the
fact that GPP has been used as a reference quantity while building the model,
and it is one of the quantities which the model simulates reasonably well. This
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Parameter Description (unit)

A1 Empirical factor involved in the calculation of fvpd
ARJV a coefficient of the linear regression (a+bT) defining

the Jmax25/Vcmax25 ratio (𝜇𝑚𝑜𝑙 𝜇𝑚𝑜𝑙−1𝐶𝑂2)
ASJ A coefficient of the linear regression (a+bT) defining

the Entropy term for Jmax (𝐽𝐾−1𝑚𝑜𝑙−1)
ASV A coefficient of the linear regression (a+bT) defining

the Entropy term for Vcmax (𝐽 𝐾−1𝑚𝑜𝑙−1)
B1 Empirical factor involved in the calculation of fvpd
BRJV b coefficient of the linear regression (a+bT) defining

the Jmax25/Vcmax25 ratio (𝜇𝑚𝑜𝑙 𝜇𝑚𝑜𝑙−1𝐶𝑂2(°𝐶)−1)
CLUMPING Clumping index of leaves
CT Heat transfer coefficient of the leaf
CWRR_N_VANGENUCHTEN Van Genuchten coefficient n
G0 Residual stomatal conductance when irradiance

approaches zero (𝑚𝑜𝑙𝑚−2 𝑠−1 𝑏𝑎𝑟−1)
GB_REF Leaf bulk boundary layer resistance (𝑠𝑚−1)
GDDNCD_CURVE Constant in the computation of critical GDD
GDDNCD_OFFSET Constant in the computation of critical GDD
GDDNCD_REF Reference value used in the computation of critical GDD (𝑑𝑎𝑦𝑠)
HYDROL_HUMCSTE Root profile (𝑚)
KMC25 Michaelis-Menten constant of Rubisco for CO2

at 25°C (𝜇𝑏𝑎𝑟)
LAI_MAX Maximum LAI (Leaf Area Index) (𝑚2𝑚−2)
LAI_MAX_TO_HAPPY SAI/LAI ratio, Larcher 1991
LEAFAGECRIT Critical leaf age, tabulated (𝑑𝑎𝑦𝑠)
SECHIBA_QSINT Interception reservoir coefficient (𝑚)
SLA Specif leaf area (𝑚2 𝑔𝐶−1)
TAU_LEAFINIT Time to attain the initial foliage using the

carbohydrate reserve (𝑑𝑎𝑦𝑠)
TAU_T2M_MONTH Time constant for the monthly 2-meter temperature (𝑑𝑎𝑦𝑠)
VCMAX25 Maximum rate of Rubisco activity-limited

carboxylation at 25 °C (𝜇𝑚𝑜𝑙𝑚−2 𝑠−1)
VWC_FC Volumetric water content field capacity
VWC_SAT Saturated soil water content
ZSNOWTHRMCOND1 Snow thermal conductivity parameter 1 (𝑊𝑚5 𝑘𝑔−2𝐾−1)
ZSNOWTHRMCOND_CVAP Snow thermal conductivity (vapor) parameter c (𝐾)

Table 5.6: Transpiration and LE SA parameters description. Dimensionless quantit-
ies have no unit of measure reported. For further details: https://orchidas.lsce.
ipsl.fr/overview/orchidee.php

https://orchidas.lsce.ipsl.fr/overview/orchidee.php
https://orchidas.lsce.ipsl.fr/overview/orchidee.php
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Parameter Description (unit)

a_psII Absorption cross-section area of PSII
alpha_NPQ_reversible Reversible NPQ coefficient
ARJV a coefficient of the linear regression (a+bT) defining

the Jmax25/Vcmax25 ratio (𝜇𝑚𝑜𝑙 𝜇𝑚𝑜𝑙−1𝐶𝑂2)
ASJ A coefficient of the linear regression (a+bT) defining

the Entropy term for Jmax (𝐽𝐾−1𝑚𝑜𝑙−1)
ASV A coefficient of the linear regression (a+bT) defining

the Entropy term for Vcmax (𝐽 𝐾−1𝑚𝑜𝑙−1)
BRJV b coefficient of the linear regression (a+bT) defining

the Jmax25/Vcmax25 ratio (𝜇𝑚𝑜𝑙 𝜇𝑚𝑜𝑙−1𝐶𝑂2(°𝐶)−1)
BSJ b coefficient of the linear regression (a+bT) defining

the Entropy term for Jmax (𝐽𝐾−1𝑚𝑜𝑙−1°𝐶−1)
CLUMPING Clumping index of leaves
CWRR_N_VANGENUCHTEN Van Genuchten coefficient n
D_JMAX Energy of deactivation for Jmax (𝐽𝑚𝑜𝑙−1)
E_JMAX Energy of activation for Jmax (𝐽𝑚𝑜𝑙−1)
GB_REF Leaf bulk boundary layer resistance (𝑠𝑚−1)
GDDNCD_CURVE Constant in the computation of critical GDD
GDDNCD_REF Reference value used in the computation of critical GDD (𝑑𝑎𝑦𝑠)
HYDROL_HUMCSTE Root profile (𝑚)
k_F Relative rate constant for fluorescence
k_P Relative rate constant for photochemistry
KMC25 Michaelis-Menten constant of Rubisco for CO2

at 25°C (𝜇𝑏𝑎𝑟)
KMO25 Michaelis-Menten constant of Rubisco for O2 at 25°𝐶 (𝜇𝑏𝑎𝑟)
LAI_MAX Maximum LAI (Leaf Area Index) (𝑚2𝑚−2)
LAI_MAX_TO_HAPPY SAI/LAI ratio, Larcher 1991
LEAFAGE_LASTMAX Leaf age at which vmax falls below vcmax_opt

in fraction of critical leaf age
LEAFAGECRIT Critical leaf age, tabulated (𝑑𝑎𝑦𝑠)
SCO25 Relative CO2/O2 specificity factor for Rubisco at 25°𝐶
SLA Specif leaf area (𝑚2 𝑔𝐶−1)
TAU_T2M_MONTH Time constant for the monthly 2-meter temperature (𝑑𝑎𝑦𝑠)
TAU_T2M_RACZKA Speed of plant temperature adaptation defined

in Raczka et al. (2019) (𝑑𝑎𝑦𝑠)
TAU_T2M_WEEK Time constant for the weekly 2-meter temperature (𝑑𝑎𝑦𝑠)
TPHOTO_MIN Minimum temperature for photosynthesis (°𝐶)
THETA Convexity factor for response of J to irradiance
VCMAX25 Maximum rate of Rubisco activity-limited

carboxylation at 25 °C (𝜇𝑚𝑜𝑙𝑚−2 𝑠−1)
VMAX_OFFSET Minimum relative vcmax, offset

Table 5.7: SIF and GPP SA parameters description. Dimensionless quantities have no
unit of measure reported. For further details: https://orchidas.lsce.ipsl.fr/
overview/orchidee.php

https://orchidas.lsce.ipsl.fr/overview/orchidee.php
https://orchidas.lsce.ipsl.fr/overview/orchidee.php
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(a) 𝑇𝑎𝑖𝑟 (b) 𝑆𝑊𝑑𝑜𝑤𝑛

Figure 5.20: Scatter plots of transpiration with 𝑇𝑎𝑖𝑟 (a) and 𝑆𝑊𝑑𝑜𝑤𝑛 (b) for the US-UMB
site.

is indeed confirmed by observing how GPP is on average the quantity which is
the most correctly reproduced by all the models, even those which are optimized
with respect to transpiration and SIF.

The model optimized through the use of SIF data is almost always showing
the worst performances in predicting GPP and transpiration, with the only ex-
ception being US-UMd. At the same time, the original model and the ones op-
timized by transpiration and GPP show a very low predictive power when trying
to produce SIF estimates. This fact suggests a substantial difference of the SIF-
informed model from all the others. During the last week of this research pro-
ject the model has been found out to present some inconsistencies in the module
computing SIF, which explains the source of the atypical behaviour of the SIF-
optimized model. The computational time needed to re-run all the simulations
and analyses is around 2-3 weeks, so it has not been possible to produce the new
data with the corrected model by the end of the internship and SIF estimates
presented in this research have to be revised. However, on a personal and pro-
fessional dimension, it has been deeply interesting and educational to be able to
effectively perceive and measure this problem from the comparison and study of
model estimates against observations.

Another interesting point comes from the observation of the performances
of the transpiration-optimized model. It has been found to produce better results
than the original and GPP-based model when it comes to considering transpir-
ation and SIF estimates (in particular in Figure 5.23e and f, PFT7 sites), while
having almost the same performance in all the other cases. Therefore, transpira-
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(a) tran

(b) LE

Figure 5.21: Sensitivity analysis results over transpiration and LE, on a scale from 1
(black, high influence) to 0 (white, no influence).
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(a) SIF

(b) GPP

Figure 5.22: Sensitivity analysis results over SIF and GPP, on a scale from 1 (black, high
influence) to 0 (white, no influence).
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(a) FR-Pue (b) US-UMB

(c) US-UMd (d) FR-Fon

(e) RU-Fyo (f) FI-Hyy

Figure 5.23: Performance evaluation for original and optimized models obtained
through the comparison between model estimates and observed values for transpiration,
SIF and GPP.
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tion data seem to be able to correctly constrain the model, improving its overall
predictive power. An example of this behaviour is observed in Figure 5.24.

The updated parameters are displayed in Figure 5.25. The observation of
their new values can provide a validation of the success (or failure) of the optim-
ization and an idea of the size of the changes that have been applied. From a
quick inspection of the diagram, it is clear that the optimization procedure has
not been completely successful. Indeed, several parameters have been optimized
towards their upper or lower limits, as for GB_REF (leaf bulk boundary layer
resistance, 𝑠𝑚−1) in Figure 5.25a for the GPP-based optimization, B1_07 (which
is an adimensional empirical factor involved in the calculation of the effect of
leaf-to-air vapour difference on stomatal conductance 𝑔𝑠) in Figure 5.25b for the
transpiration-based one or k_F (relative rate constant for fluorescence, 𝑠−1) in
Figure 5.25c using SIF.

This behaviour indicates that either the range of variation which is used in
the optimisation of the parameters is not adequate, too wide or too small, or the
model does not include some important processes, instead it is trying to account
for them by modifying the ones it possesses to reproduce the observations.

In the first case, the prescribed range for the parameter could have been set
too wide. As a consequence, very unrealistic values of the parameters have been
taken into consideration, and theymight have produced a better numerical result
within the algorithm execution than other more realistic ones by chance. In fact,
there are several local minima in the parameters space that can be solutions for
the optimization even if they are unrealistic, depending on the variation range
of the parameters themselves. However, the stochastic nature of the genetic al-
gorithm used for the optimization procedure should prevent the system from
falling into local minima. If this is happening, decreasing the range could solve
the problem by constraining the variable to assume values closer to the more
realistic ones.

In the opposite situation the parameter variation interval could be too small.
In fact, especially when dealing with new parameters not well known in the
literature, the range is chosen almost arbitrarily. Therefore it is not sure whether
the optimal value is included in the interval or not. In these cases, the range has
to be widened, in order to allow the algorithm to explore more values for the
parameter and find the optimal one.
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(a) transpiration, US-UMB 2011

(b) SIF, FI-Hyy 2019

Figure 5.24: Comparison of transpiration (a) and SIF (b) estimates from the original and
optimized models with respect to the observed data over the sites US-UMB and FI-Hyy.
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(a) PFT5

(b) PFT6

(c) PFT7

Figure 5.25: Parameter updates after the optimization process. On the top (a) the results
for PFT5, in the middle (b) those for PFT6 and at the bottom (c) PFT7. The original values
are labelled in grey, those optimized with respect to GPP in red, transpiration in green
and in blue the ones obtained from SIF. Each column corresponds to a parameter and
it has an extension equal to the variation range of the parameter itself. It is possible to
observe several saturations of the parameters during the optimization, for instance SECH-
IBA_QSINT shrinks to its minimum in (a) when considering the transpiration-informed
optimization.



Chapter 6

Conclusions

Indeed, for the two databases that have been investigated and used in this re-
search, SAPFLUXNET and TROPOMI, positive and negative aspects have been
found, which have to be taken into account for a proper assimilation into ORCH-
IDEE.

Transpiration estimates from SAPFLUXNET sap flow data have produced
good results in terms of optimization performance, and they have been proven
to be potentially effective in constraining the model and increasing its predict-
ive power, not only with respect to transpiration estimates but also with SIF
ones. Given enought data, it would be possible to calibrate the model over all
the PFTs and run global simulations optimized through local data. However, the
need for choosing sites which overlap with FLUXNET2015 to run local simula-
tions strongly reduces their number and the amount of available data which can
be used to optimize the model. As a consequence, it is currently impossible to
optimize the model over the other PFTs. A possible way out could be found us-
ing ERA5 re-analysis meteorological data to run simulations over SAPFLUNXET
sites not covered by FLUXNET2015, as it has been done for the period between
2015 and 2020. However, the use of ERA5 re-analysis data implies a lower accur-
acy of the simulations, once again limiting the effectiveness of the optimization
procedure.

The integration of sap flow single-plant data to transpiration at canopy level
could be improved too. In particular the current method assumes a linear relation
between basal area and sap flow. This is a realistic approximation for some plants,
as shown by Güney, A. (2018)[44], but it is heavily dependent on the species
and the environmental conditions. Therefore, a further step could improve the
integration by adopting in the computation a single-tree basal area distribution
of the stand and a more realistic relation between basal area and sap flow. This
latter relation could be directly extrapolated from the data if not available in the
literature.
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The considerations it is possible to draw from SIF observations are limited
by the inconsistencies in ORCHIDEE regarding the computation of this quantity,
which is scheduled to be updated in early 2023. The investigation of the dataset
has brought out some criticalities, like the presence of a very strong noise in the
data and strong limitations due to the short time coverage, but also highlighted
some interesting and promising aspects.

Regarding the amount of available data, including the last two years of ob-
servations of TROPOMI, currently not available for this research, would almost
double the dataset and the mission will keep producing data for several years,
further increasing the dimension of the dataset. Moreover, previous data from
GOME-2 and GOSAT satellites observations could be integrated, even if they use
different resolutions. The FLuorescence EXplorer (FLEX) satellite, planned to be
launched in 2025, is going to provide spatially high-resolution measurements of
SIF, which will be a complement to products from other existing satellite mis-
sions and high-temporal resolution products from upcoming geostationary mis-
sions. Its new observations could provide enough data to better constrain plant
transpiration, assess the impacts of water stress on plants, and infer processes
occurring in the root zone through the soil-plant water column[12].

Finally, the results of the partial correlation of 𝑆𝑊𝑑𝑜𝑤𝑛 and themeasurements
of correlation discrepancies betweenGPP and LEwith respect to the other drivers
have pointed out the potential effects of diverse time-scales and spatial resolu-
tions in data analysis. These behaviours suggest putting specific care into the
role of observation time and spatial resolution. Photosynthesis at the leaf level is
instantaneously influenced by some drivers (such as solar radiation), differently
from other observables which have longer response scales. Therefore, consider-
ing a shorter time scale in the optimization could be useful in order to properly
describe this feature in the model. Since sub-daily data are not available for SIF,
but they are for transpiration (through sap flow measurements), the use of these
two contributions together (for example within a simultaneous optimization of
the model with respect to both observations) could provide a stronger and more
suitable constraint for the model vegetation description.
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