polito.it
Politecnico di Torino (logo)

Convolutional Networks for predicting Antimicrobial Resistance

Simone Alessandri'

Convolutional Networks for predicting Antimicrobial Resistance.

Rel. Giovanni Squillero, Alberto Paolo Tonda, Pietro Barbiero, Giulio Ferrero. Politecnico di Torino, Corso di laurea magistrale in Ingegneria Biomedica, 2021

[img] PDF (Tesi_di_laurea) - Tesi
Restricted to: Repository staff only until 15 December 2024 (embargo date).
Licenza: Creative Commons Attribution Non-commercial No Derivatives.

Download (4MB)
Abstract:

Antibiotic resistance is a growing public health concern worldwide. Many diagnostic techniques were developed, but none of them are fast enough to predict the presence of bacteria with a resistant phenotype. This work proposes the use of a convolutional neural network on bacterial DNA sequences to predict resistance. Once the optimal neural network architecture was selected, validation was performed using a k-fold procedure estimating the loss function of both validation and test and evaluating the confusion matrix. Thanks to this technology it would be possible to speed up the choice of a proper therapeutic strategy and to avoid the rise of untreatable infection diseases.

Relators: Giovanni Squillero, Alberto Paolo Tonda, Pietro Barbiero, Giulio Ferrero
Academic year: 2021/22
Publication type: Electronic
Number of Pages: 111
Subjects:
Corso di laurea: Corso di laurea magistrale in Ingegneria Biomedica
Classe di laurea: New organization > Master science > LM-21 - BIOMEDICAL ENGINEERING
Aziende collaboratrici: UNSPECIFIED
URI: http://webthesis.biblio.polito.it/id/eprint/21676
Modify record (reserved for operators) Modify record (reserved for operators)