Francesco Montagna
Quantum circuit design with reinforcement learning.
Rel. Davide Girolami. Politecnico di Torino, Corso di laurea magistrale in Data Science And Engineering, 2021
|
PDF (Tesi_di_laurea)
- Tesi
Licenza: Creative Commons Attribution Non-commercial No Derivatives. Download (908kB) | Preview |
Abstract: |
Quantum Computing promises to solve computational problems much faster than any classical computer, also unlocking solutions to challenges which can not be approached with classical processors in any useful amount of time. In this thesis we want to combine the power of reinforcement learning with quantum computing: the goal is to train an agent to design a quantum circuit which transforms an initial state vector associated to a quantum system into a target state of interest. We proceed by introducing the principles of Reinforcement Learning, Quantum Mechanics and Quantum Computation. Then, we provide a detailed description of the algorithm constructed and the results obtained. The designed quantum circuit is then implemented and run on a real quantum device from IBM Quantum Lab, to provide a comparison between classical simulation and quantum experiment |
---|---|
Relators: | Davide Girolami |
Academic year: | 2021/22 |
Publication type: | Electronic |
Number of Pages: | 50 |
Subjects: | |
Corso di laurea: | Corso di laurea magistrale in Data Science And Engineering |
Classe di laurea: | New organization > Master science > LM-32 - COMPUTER SYSTEMS ENGINEERING |
Aziende collaboratrici: | UNSPECIFIED |
URI: | http://webthesis.biblio.polito.it/id/eprint/20525 |
Modify record (reserved for operators) |