
Quantum circuit design with reinforcement
learning

Francesco Montagna

September 8, 2021

Contents

1 Introduction 3

2 Reinforcement Learning 4
2.1 The Reinforcement Learning problem 4
2.2 Elements of the RL problem 5
2.3 Finite Markov Decision Process 6

2.3.1 Markov Property . 6
2.3.2 Fully Observable Environments 7
2.3.3 Finite MDP . 7
2.3.4 Goal and return . 8

2.4 Inside an RL agent . 8
2.4.1 Policy . 9
2.4.2 Value Function . 9
2.4.3 Model . 9
2.4.4 Optimality . 9

2.5 Bellman Equations . 10
2.6 Dynamic Programming . 11

2.6.1 Policy Evaluation . 11
2.6.2 Policy Improvement . 12
2.6.3 Policy Iteration . 14

2.7 Monte Carlo methods . 15
2.7.1 Monte Carlo prediction 15
2.7.2 Monte Carlo Control 16

2.8 Temporal Difference Learning 16
2.8.1 TD Learning prediction 17
2.8.2 TD Learning control: SARSA 17

1

3 Quantum Mechanics and Quantum Computation 18
3.1 The postulates of quantum mechanics 18

3.1.1 State space . 18
3.1.2 Time Evolution . 19
3.1.3 Quantum Measurements 20
3.1.4 Composite Systems . 22
3.1.5 Phase . 23

3.2 Quantum Computation . 23
3.2.1 The qubit . 24
3.2.2 Single qubit operators 24
3.2.3 Controlled operations 26
3.2.4 Universal quantum gates 27
3.2.5 Approximation accuracy 29

3.3 Density matrix . 31

4 Quantum-enhanced Reinforcement Learning Algorithm 33
4.1 Reinforcement learning set up 33

4.1.1 States and Actions . 33
4.1.2 Environment . 34
4.1.3 TD learning with linear function approximation 35
4.1.4 Q-learning . 36

4.2 Quantum Computation set up 36
4.2.1 Quantum state vector 37
4.2.2 Quantum Gates . 37

4.3 Hyper parameters tuning . 38
4.4 Algorithm Results . 38

5 Experimental results 39
5.1 IBM Quantum Lab . 39
5.2 Quantum state tomography 40
5.3 State Fidelity . 43

6 Conclusion 44

7 Appendix 46
7.1 Gradient Descent . 46
7.2 Bell states . 46
7.3 Two Qubit quantum state tomography 47

2

1 Introduction

Quantum Computing promises to solve computational problems much faster
than any classical computer, also unlocking solutions to challenges which can
not be approached with classical processors in any useful amount of time.
In this thesis we want to combine the power of reinforcement learning with
quantum computing: the goal is to train an agent to design a quantum circuit
which transforms an initial state vector associated to a quantum system into
a target state of interest.
We proceed by introducing the principles of Reinforcement Learning, Quan-
tum Mechanics and Quantum Computation. Then, we provide a detailed
description of the algorithm constructed and the results obtained. The de-
signed quantum circuit is then implemented and run on a real quantum
device from IBM Quantum Lab, to provide a comparison between classical
simulation and quantum experiment.

The code employed in this thesis is publicly available at this Github reposi-
tory: https://github.com/francescomontagna/Quantum-Reinforcement-Learning.
The reinforcement learning algorithm is implemented in Python, the experi-
mental part using the Qiskit framework.

3

https://github.com/francescomontagna/Quantum-Reinforcement-Learning

2 Reinforcement Learning

This chapter is mainly inspired by the content of [1] and [2].

Figure 1: Illustration of the reinforcement learning problem: the environment
(on the left) interacts with the agent (on the right) providing information on
its state, also known as observation, and a reward signal. The agent maps
these inputs into an action in the environment.

2.1 The Reinforcement Learning problem

Given an agent and its environment, the goal of a reinforcement learning
(RL) problem can be informally stated as learning how to map situations in
the environment into actions of the agent, in order to maximize a scalar re-
inforcement signal, namely the reward (Figure 1). For now, let the definition
rely on an intuitive idea of agent and environment.

Reinforcement learning can be seen as a branch of machine learning, along
with supervised and unsupervised learning. In particular, it differs from the
other paradigms in terms of:

• Lack of supervision in data: only a reward signal is given.

• Delayed feedback to actions, which have themselves long terms conse-
quences.

4

Rt

Agent

Ot

At

Figure 2: The agent uses its internal representation to map rewards and
states into an action.

• Non-stationarity of the problem: data sampled at different times are
not I.I.D (Independently Identically Distributed), since the agent’s ac-
tions affect data it receives in the future.

2.2 Elements of the RL problem

Reward

A reward is a scalar feedback function used to quantify how good an agent
is doing at a particular timestep t. It is used to define the goal of the agent,
whose job is to maximize the cumulative reward over time.
In this sense, we can state the objective of the RL problem by means of the
reward hypothesis :

All goals can be described in terms of maximization of the cumu-
lative expected reward.

Agent

The agent is a physical system inside an environment, in which it is able
to take actions which are codified in an algorithm. Its inputs are given by
Ot and Rt, respectively observation and reward at time t, and the output
is the action taken At, as shown in Figure 2. (Capital notation is used to
define these quantities as random variables.) The role of the agent is to
learn a mapping from situations represented by observations and rewards
into actions, to be applied at each timestep t.

Environment

Anything that is external to the agent is called the environment. In reinforce-
ment learning, agent and environment interact in a loop (Figure 3) where the
latter gets as input the action At and outputs Rt+1 and Ot+1, the agent’s in-
put of the next iteration. The time t is incremented at every environment
step.

State and History

5

Agent

Environment

AtOt+1 Rt+1

Figure 3: Agent-Environment interaction loop.

The notions of state and history are crucial in reinforcement learning. The
history Ht is the sequence of observation, reward and action triplets up to
time t:

Ht := O1, R1, A1, O2, R2, A2, . . . , At−1, Ot, Rt . (2.1)

The state is the information used to determine what happens next (in terms
of triplet at timestep t + 1), and it is formally defined as a function of the
history

St := f(Ht) . (2.2)

In practice, we can distinguish between the environment and the agent state.

Environment State
The environment state Set is the environment private internal representation
of information, i.e. whatever data are used to pick the next observation and
reward. Usually it is not visible to the agent.

Agent State
The agent state St is the information used to pick the next action by the
agent, given the reward and the observation input.

2.3 Finite Markov Decision Process

MDPs are a formalization of an RL environment, where states satisfy the
Markov property and the environment is said to be fully observable.

2.3.1 Markov Property

Along with the two definitions of states given in Section 2.2, we can provide
a third, formal one known as information or Markov state: a state St is said
to be a Markov state if it contains all the useful information from the history,
i.e. if it is a sufficient statistics of the future. In this sense, a Markov state

6

Agent

Environment

AtSt+1 Rt+1

Figure 4: Agent-Environment interaction loop for fully observable environ-
ment.

fully characterizes P, the probability distribution of transition from one state
to another:

P[St+1|St] = P[St+1|S1, S2, S3, . . . , St] . (2.3)

In words we say that the future is independent of the past given the present.

2.3.2 Fully Observable Environments

In a fully observable environment an agent directly observes the environment
state, leading to

Ot = Set = St , (2.4)

with the equivalence between agent and environment states. The Agent-
Environment interaction loop is displayed in Figure 4.

2.3.3 Finite MDP

We start by defining the Markov process or chain as a memoryless sequence
of random states satisfying the Markov property. A Markov chain’s dynamic
is characterized by the tuple < S,P >, being S the set of possible states, and
P the transition matrix that defines transition probabilities from the current
to the next state.

In the Markov Reward Process (MRP) we introduce two values to the tuple,
which becomes < S,P ,R, γ >, where the R function is the expected reward
given a state, and γ is the discount factor used in the cumulative reward
definition.

At last, we define a finite Markov Decision Process (MDP) as the tuple
< S,A,P ,R, γ > introducing decisions that are picked from the action set

7

A. In summary:

• S is the finite set of states

• A is the finite set of actions

• P is the transition matrix, with elements

Pass′ := P[St+1 = s′|St = s, At = a] (2.5)

• R is the expected reward function

Ra
s := E[Rt+1|St = s, At = a] (2.6)

• γ is the discount factor γ ∈ [0, 1].

2.3.4 Goal and return

We are now ready to formalize the idea of the reward hypothesis introducing
a quantity called the return, which is a mathematical expression for the
cumulative reward:

Gt := Rt+1 + γRt+2 + γ2Rt+3 + . . . =
∞∑
k=0

γkRk+t+1 , (2.7)

where γ ∈ [0, 1) guarantees the finiteness of the series. The discount γ is
also a way to weight the value that the agent credits, at timestep t, to the
observation of a reward in the future. For γ = 0 the agent is myopic, being
concerned only with maximization of the immediate reward. On the other
hand, for γ ≈ 1 we have a far sighted agent accounting more for future
rewards.
Note that in (2.7) the summation goes up to infinity, underlying a continu-
ing task in which the agent-environment interaction does not break down in
separate batches of time, called episodes. Instead if we can identify a termi-
nation state ST , remarking the end of the episode, the return is defined up
to time T , and we will refer to an episodic task.

2.4 Inside an RL agent

Given the elements introduced so far, we can outline some core components
characterizing a reinforcement learning agent: a policy, the value functions
and a model.

8

2.4.1 Policy

A policy π is the agent behaviour, expressed as a map from states to actions.
It can be both deterministic, with a = π(s), or stochastic. In the latter case,
π is the distribution over actions given the state

π(a|s) := P[At = a|St = s] . (2.8)

The policy fully defines the agent’s behaviour, and given the Markov property
of the states in an MDP, we need to condition only on the last observation
rather than on the full history.

2.4.2 Value Function

The state value function for an MDP is the expected return from state s
under policy π:

vπ(s) := E[Gt|St = s] , (2.9)

while the action value function is also conditioned on the action taken,

qπ(s, a) := E[Gt|St = s, At = a] . (2.10)

Value functions quantify the goodness of a state (or state-action pair) at a
given time instant. In the simplest case, one can assume these functions to
be lookup tables, with a value associated to each state or state-action pair.

2.4.3 Model

A model is a prediction of what the environment will do next. It is defined if
the agent can access P and R of the MDP. Whenever this condition is met,
the agent can perform computations and simulations about the environment
behaviour without any external interaction, in order to improve its policy.
This is a well known sequential decision making problem called planning, in
which case the agent is said to be model-based. Being the model an optional
component, an agent can also be model-free, and it needs to interact with
the environment in order to improve its policy. This is known as the learning
problem.

2.4.4 Optimality

Most of the time RL algorithms involve the estimate of the value function,
which is used to find the optimal policy with respect to the agent’s goal. In
order to do so, we first need to define an ordering between policies, such that
we can formally say that one is better than another.

9

First, we define the optimal value functions as the maximum value function
v∗(s) and action value function q∗(s, a) over the policy space:

v∗(s) := max
π

vπ(s) , (2.11)

q∗(s, a) := max
π

qπ(s, a) . (2.12)

Now, given two policies π and π′, the ordering over them is expressed as

π′ ≥ π ⇐⇒ vπ′(s) ≥ vπ(s),∀s ∈ S , (2.13)

and the following theorem holds:

Theorem. For any MDP, there exists at least one deterministic optimal
policy π∗ that satisfies π∗ ≥ π, ∀π. All optimal policies achieves optimality
of the state and action value functions, where vπ∗(s) = v∗(s) and qπ∗(s, a) =
q∗(s, a) [1].

From (2.12) we can intuitively see how solving the MDP is equivalent to
finding q∗(s, a), since we know at each state what is the optimal action to
pick. This is achieved maximising over q∗(s, a):

π∗(a|s) :=

1 if a = argmax
a∈A

q∗(s, a)

0 otherwise .
(2.14)

2.5 Bellman Equations

It is possible to decompose value functions from (2.9) and (2.10) in a recur-
sive way. The decomposition results in the so called Bellman Expectation
equations [3]

vπ(s) = E[Rt+1 + γ vπ(St+1)|St = s] , (2.15)

qπ(s, a) = E[Rt+1 + γ qπ(St+1, At+1)|St = s, At = a] , (2.16)

which can be easily proved by expanding the return term and exploiting the
independence of the rewards random variables.

Moreover, we use the Bellman Optimality equations to recursively relate the
value functions v and q:

10

v∗(s) = max
a
q∗(s, a),∀s ∈ S , (2.17)

q∗(s, a) = Ra
s + γ

∑
s′∈S

Pass′v∗(s′) . (2.18)

The optimality equations (2.17) and (2.18) are non-linear due to the max
operator. Since in general there is no closed form solution, we introduce
Dynamic Programming solution methods for the RL problem.

2.6 Dynamic Programming

Dynamic programming (DP) is a collection of algorithms to find optimal
solutions for complex problems by breaking them down into simpler sub
tasks. In particular, Dynamic Programming can be applied to problems that
have two properties:

1. Optimal solutions can be decomposed into subproblems for which op-
timality principle applies, where according to the principle pieces of
optimal solutions are themselves optimal.

2. The identified subproblems recur many time, and their solutions can
be cached and reused.

Considering an MDP, both properties are satisfied, with Bellman Equations
providing a recursive decomposition, and being value functions a solution
that can be stored and reused on the next recursive call.
This class of algorithms can be used to solve a finite MDP only with the
assumption of perfect knowledge, i.e. only when a model is given. This
hypothesis is strongly limiting for real scenarios, nevertheless DP algorithms
introduce fundamental concepts for the resolution of reinforcement learning
tasks. The key idea is to use value functions in order to define the policy.
Underlying this approach there are two distinct problems, which are policy
evaluation or prediction, in which given a policy π we must find the value
function vπ, and control task, where the goal is to find optimal v∗(s) and π∗
for the MDP.

2.6.1 Policy Evaluation

We first consider the prediction problem of computing the state-value function
corresponding to a given policy π. We start picking an approximate value
function v0 of π arbitrarily, for example fixing v0(s) = 0, ∀s ∈ S. Then,

11

we use the Bellman Expectation equation (2.15) as update rule of the value
function, with k being the counter of the update steps:

vk+1(s) := E[Rt+1 + γvk(St+1)|St = s]

=
∑
a∈A

π(a|s)

(
Ra
s + γ

∑
s′∈S

Pass′vk(s′)

)
(2.19)

In policy evaluation equation (2.19) is applied iteratively:

v0 → v1 → v2 → . . .→ vπ ,

and convergence to real vπ can be proved.
Note that (2.19) updates the current estimate using another estimate, doing
a one step lookahead over states: this technique is commonly used in rein-
forcement learning algorithms, making it worth the mention, and goes by the
name of bootstrapping.
The pseudo code of the resulting algorithm is:

Algorithm 1: Iterative Policy Evaluation

Input policy π
Parameter θ: threshold for accuracy of the estimate

Initialize v(s), ∀s ∈ S;
repeat

foreach s ∈ S do
v ← V (s);

V (s)←
∑

a∈A π(a|s)
(
Ra
s + γ

∑
s′∈S Pass′vk(s′)

)
;

∆← max(∆, |v − V (s)|)
end

until ∆ < θ;

2.6.2 Policy Improvement

Policy improvement is the fundamental step for iterative control algorithms.
The general idea is that, given a policy π, we can first evaluate it by finding
vπ. Then, given vπ, we can improve π making it greedy with respect to the
computed value function.
A step of policy improvement is declined as follow:

1. evaluate π iteratively until convergence to vπ

12

2. define improved policy π′ := greedy(vπ).

We can prove that greedifying a policy with respect to its value function
guarantees improvement, unless the policy is already optimal. Formally, the
greedy version of the current policy π for an action s is

π′(s) := argmax
a∈A

qπ(s, a) . (2.20)

This improves the action value from any state s, being satisfied the condition

qπ(s, π′(s)) = max
a∈A

qπ(s, a) ≥ qπ(s, π(s)) = vπ(s) , (2.21)

which implies

vπ′(s) ≥ vπ(s), ∀s ∈ S . (2.22)

The implication of Equation (2.22) from (2.21) is proved by

vπ(s) ≤ qπ (s, π′(s))

= Eπ′ [Rt+1 + γvπ (St+1) | St = s]

≤ Eπ′ [Rt+1 + γqπ (St+1, π
′ (St+1)) | St = s]

= Eπ′ [Rt+1 + γEπ′ [Rt+2 + γvπ (St+2)] | St = s]

= Eπ′
[
Rt+1 + γRt+2 + γ2vπ (St+2) | St = s

]
≤ Eπ′

[
Rt+1 + γRt+2 + γ2Rt+3 + γ3vπ (St+3) | St = s

]
...

≤ Eπ′
[
Rt+1 + γRt+2 + γ2Rt+3 + γ3Rt+4 + · · · | St = s

]
= vπ′(s) ,

Recalling policy ordering defined in (2.13), we see that π′ improves π. This
result is known as policy improvement theorem.
Improvement stops when we substitute ≥ with the equality sign in (2.21),
which becomes

qπ(s, π′(s)) = max
a∈A

qπ(s, a) = qπ(s, π(s)) = vπ(s) . (2.23)

This is exactly the Bellman Optimality equation (2.17) for the value function,
which is by definition true if and only if π = π∗.

13

2.6.3 Policy Iteration

A policy iteration algorithm aims at finding an optimal policy by iteratively
repeating an evaluation step as defined in Algorithm 1 and a policy improve-
ment step towards the computed value function. The pseudo code of the
algorithm is provided in Algorithm 2 box below.

Algorithm 2: Policy Iteration

Initialize v(s) ∀s ∈ S and π(s) ∈ A(s)
Parameter θ: threshold for accuracy of the estimate

policy-stable← true;
repeat

/* Policy Evaluation */

repeat
foreach s ∈ S do

v ← V (s);
V (s)←

∑
a π(a|s)(Ra

s + γ
∑

s′ Pass′V (s′));
∆← max(∆, |v − V (s)|)

end

until ∆ < θ;

/* Policy Improvement */

foreach s ∈ S do
old-action← π(s);
π(s) = argmax

a
(Ra

s + γ
∑

s′∈S Pass′V∗(s′));

if π(s) 6= old-action and policy-stable then
policy-stable← false;

end

end

until policy-stable;

Graphically it results in

π0
E−→ vπ0

I−→ π1
E−→ vπ1

I−→ . . .
I−→ π∗

E−→ v∗

where convergence is guaranteed asymptotically, since the number of avail-
able policies is finite.

We call Generalized Policy Iteration (GPI) the idea of letting policy evalua-
tion and policy improvement processes interacting in order to reach conver-

14

π v

π∗ v∗

v → vπ

Evaluation

π = greedy(v)

Improvement

Figure 5: Generalized Policy Iteration.

gence to an optimal policy. A graphical representation (without any partic-
ular rigorous meaning) of the idea is given in Figure 5.

2.7 Monte Carlo methods

In GPI, we have described the general idea supporting prediction and control
in reinforcement learning. Applying dynamic programming algorithms we
need to assume a model of the MDP to be provided, such that the agent can
access the distribution of next state and reward given an action: being this
condition not always satisfied, we need to introduce some methods which can
be exploited in practice in a model-free fashion.

2.7.1 Monte Carlo prediction

In the prediction problem we have a given policy and the goal is to estimate
its value function. Monte Carlo methods perform the task by averaging over
sampled returns: being the value function defined as the expectation of the
return random variable (2.9), the average is an unbiased estimate of this
quantity.
Monte Carlo prediction consists of sampling a full episode, storing the sam-
pled return for every state. Defining the quantities N(s) number of visits to
a state during all sampled episodes, and S(s) the incremental total return of
a state, we estimate the value function as

V (s) = S(s)/N(s) . (2.24)

15

Being the episodes independent and identically distributed, by the law of
large numbers we have

V (s)→ vπ(s) for N(s)→∞ . (2.25)

Monte Carlo method is sample inefficient, since estimates are updated only
once for every sampled episode. Moreover it is limited to episodic tasks,
resulting not suitable for online learning (i.e. for learning during the episode
rather than at the end of it).

2.7.2 Monte Carlo Control

We can use Monte Carlo methods, taking the average of the sampled returns
as value function estimates, to solve the control problem. Equation (2.19)
can be rewritten in a general incremental form as follow

NewEstimate = OldEstimate+ α(Target−OldEstimate) , (2.26)

with α ≥ 0 being a constant hyper parameter and (Target− OldEstimate)
the error in the current estimate.
Monte Carlo methods defines the target in the error using the sampled return,
obtaining the following incremental update rule of V(S) average value:

V (St)← V (St) + α(Gt − V (St)) , (2.27)

At this point executing the policy improvement step in GPI, we greedify the
policy with respect to the new value function estimate, obtaining:

π′(s) = argmax
a∈A

Ra
s + Pass′V (s′) . (2.28)

The problem with (2.28) is that we can not access R and P , being Monte
Carlo a model-free approach. Rather than using an estimate of the value
function, we can equivalently use Monte Carlo prediction method to estimate
the action value function Q(s, a) with the sample average using (2.26), and
replace it into (2.28), which becomes

π′(s) = argmax
a∈A

Q(s, a) . (2.29)

2.8 Temporal Difference Learning

Temporal Difference (TD) Learning is a class of model-free methods, where
the agent learns directly from sampled experience. The difference with re-

16

spect to Monte Carlo based methods is that learning happens from incom-
plete episodes, by a technique called bootstrap, which is commonly used in
reinforcement learning.

2.8.1 TD Learning prediction

Bootstrap technique can be stated as an update of a guess towards a guess.
During policy evaluation we use the rule in (2.26) to update the value function
estimate towards a target: in the TD Learning version of GPI, the target
consists of the sum between the observed reward and the previous estimate
of the value function itself. The resulting rule is

V (St)← V (St) + α(Rt+1 + γV (St+1)− V (St)) , (2.30)

where

Rt+1 + γV (St+1) (2.31)

is called the TD target, and is used as an estimate of the return.

With respect to Monte Carlo policy evaluation, TD learning value function
approximation introduces sample noise just once for each update (with the
value of Rt+1). Moreover, as already suggested, learning can happen in non
episodic tasks and in an online fashion, i.e. during the sampled episode itself.

2.8.2 TD Learning control: SARSA

The idea is to use TD Learning in GPI control loop. As described for Monte
Carlo method, maximization over an action requires an estimate of action
value functions rather than the approximation of V (S). Applying TD on
Q(S,A) to perform updates at each time step, combined with epsilon greedy
policy improvement is a control algorithm known as SARSA. The incremental
update of the action value function can be written as

Q(S,A)← Q(S,A) + α(Rt+1 + γQ(St+1, At+1)−Q(S,A)) . (2.32)

17

3 Quantum Mechanics and Quantum Com-

putation

Preliminarly to the introduction of the designed reinforcement learning algo-
rithm for quantum engineering, we devote this section to review the basics
of quantum mechanics and quantum computation, whose content reference
can be found at [4].

3.1 The postulates of quantum mechanics

Quantum mechanics is the description of the behavior of matter and light in
all their details and, in particular, of the happenings on an atomic scale [5].
The link between the physical world and this theory is given by the basic
postulates of quantum mechanics, which will be described in the following
paragraphs.

3.1.1 State space

The first postulate provides a description of quantum physical systems.

Postulate 1. Any isolated physical system is associated to a complex vector
space with inner product (i.e. an Hilbert space), known as the state space.
Our information about a physical system is encoded in a state vector, which
is a unit vector in the system’s state space.

This postulate does not tell anything about the state space associated to a
specific physical system, neither about the actual state vector describing it.
This postulate can be immediately applied to the simplest quantum system,
the quantum bit, or qubit for short: a qubit is associated to a two-dimensional
complex space, where it is described using the bra-ket notation by the state
vector

|ψ〉 = a |0〉+ b |1〉 . (3.1)

This is a superposition of the elements in the computational basis {|0〉 , |1〉}
which is nothing but a linear combination in the form

∑
i αiψi, with the αi

scalar known as the amplitude associated to the state ψi.
By Postulate 1 we know that |ψ〉 must satisfy |〈ψ|ψ〉| = 1, which is equivalent
to |a|2 + |b|2 = 1. This is known as the normalization condition of state
vectors.

18

3.1.2 Time Evolution

The second postulate of quantum mechanics provides a description of the
evolution in time of the state vector of a quantum system.

Postulate 2. The dynamic of a closed quantum system is described by a
unitary transformation. That is, in the discrete time case, the state |ψ〉
at time t1 is associated to |ψ′〉 at time t2 by a unitary transformation U
depending only on t1 and t2, such that

|ψ′〉 = U |ψ〉 . (3.2)

A meaningful example of unitary operators on a qubit is given by the set

σX :=

[
0 1
1 0

]
(3.3)

σY :=

[
0 −i
i 0

]
(3.4)

σZ :=

[
1 0
0 −1

]
, (3.5)

known as the Pauli matrices, which also includes the identity matrix I.

The content of Postulate 2 can be reformulated in continuous time using the
Schrödinger equation. Given a closed quantum system with state vector |ψ〉,
its evolution in time is described by

i~
∂

∂t
|ψ〉 = H |ψ〉 , (3.6)

with H being the Hamiltonian of the closed system, which we assume to be
time independent.

Note that Postulate 2, in both its discrete and continuous time formulations,
applies to closed systems. On the other hand, in quantum mechanics we
often speak of applying a unitary operator to a physical system, for example
the qubit: this implies the interaction of an external subject with the quan-
tum system, appearing to be contradictory with the closeness requirement.
The upshot is that, despite the interaction with the environment, there are
situations in which with good approximation a system can be assumed to be
closed and Postulate 2 can be applied. Nevertheless this consideration raises
the need of a time evolution description able to account for the dynamics of
open systems.

19

3.1.3 Quantum Measurements

Imagine an experimentalist and its equipement interacting with a quantum
system: in this setting, the assumption of closeness can not be considered
satisfied, requiring a new description of the system evolution, which is no
longer necessarily unitary. To this end, we define Postulate 3, describing the
effect of a quantum measurement operator. Let M be a quantum measure-
ment device acting on a system |ψ〉:

Postulate 3. The action of the associated quantum operator M is defined by
a set of measurement operators {Mm} acting on the Hilbert space of interest,
with {m} being the set of possible measurement outcomes. Given a quantum
system in state |ψ〉 immediately before applying the measurement, then the
probability of outcome m occurring is

p(m) = 〈ψ|M+
mMm |ψ〉 , (3.7)

and the state of the system after the measurement, given the outcome m, is

Mm |ψ〉√
〈ψ|M+

mMm |ψ〉
. (3.8)

The set of measurement operators must satisfy the completeness equation∑
m

M+
mMm = I , (3.9)

in order to guarantee that the sum of probabilities over all outcomes is nor-
malized to 1.

This formulation of the postulate provides a description of

1. The probability of a specific outcome of a measurement.

2. The evolution of the system after applying the quantum measurement,
which is not necessarily unitary.

There are situations in which we are not interested in the post-measurement
evolution of the quantum system. To this end, we introduce the POVM
(Positive Operator-Valued Measures) formalism, which can be simply derived
as a consequence of Postulate 3. Suppose we have a measurement and its
operators {Mm} associated to it, acting on the system in state |ψ〉. Let us
define

Em := M+
mMm . (3.10)

20

Then, from Postulate 3 we have that the p(m) = 〈ψ|Em |ψ〉 and that com-
pleteness equation

∑
mEm = I is satisfied. Moreover, being Em positive

semi-definite from simple linear algebra considerations, the POVM elements
of the measurement are non-negative operators, i.e. they satisfy 〈ψ|Em |ψ〉 ≥
0.

We finally introduce the last special class of measurements, known as projec-
tive measurements.
Let the observable M be an Hermitian measurement operator such that it
has spectral decomposition

M =
∑
m

mPm , (3.11)

with m eigenvalues of the matrix representation and Pm eigenvectors, the
projectors on the m eigenspace of M. Given the quantum system with state
|ψ〉, the probability of measurement outcome equals to m is

p(m) = 〈ψ|Pm |ψ〉 , (3.12)

with the post-measurement state of the quantum system equals to

|ψm〉 :=
Pm |ψ〉√
p(m)

. (3.13)

Recalling Postulate 3, defining a projective measurement is equivalent to
add restrictions on {Mm} operators such that they are Hermitian and that
MmMm′ = δmm′Mm. We can easily see that this constrained version of
measurement operators, which must also satisfy the completeness equation,
specifies orthogonal projectors on the eigenspace of m, satisfying (3.12) and
(3.13). This way we can eventually define projective measurements as special
case of the general measurement postulate.

Some nice properties make projective measurements of particular interest:
given a projector Pm, one has that

PmPn = δmnPm , (3.14)

PmPm = Pm . (3.15)

These equations tell us that given a projective measurement Pm on a system
in state |ψ〉, then successive projective measurements recover the same state
|ψm〉 again. This property is known as repeatability.
Moreover, it is straightforward to calculate the expected value for projective
measurements M :

21

E(M) =
∑
m

m p(m) =

=
∑
m

m 〈ψ|Pm |ψ〉 =

= 〈ψ|
∑
m

m Pm |ψ〉 =

= 〈ψ|M |ψ〉 .

(3.16)

To conclude our discussion on quantum measurements, we remark the fact
that exploting equations (3.10) and (3.15), we can write Em = Pm, thus
making projective measurements a special case of POVM.

3.1.4 Composite Systems

At this point, we want to consider a composite system, made of two or more
distinct physical systems: in order to proceed we need to define a formalism
describing the resulting state vector and the new Hilbert space.

Postulate 4. The state space of a composite system is given by the tensor
product of the state spaces of the component physical subsystems, namely
⊗niHi, with Hi being the Hilbert space associated to a single particle.

Note that, while the resulting space is always the tensor product of the
subspaces, it is not always possible to represent the composite system state
vector as the tensor product of the state vectors associated to the single
particles. Given a basis set {|i〉} for each Hi, the most general state is written
as linear combination of those bases. For clarity, consider the Hilbert space
of a composite system being HA⊗HB, with subspaces respectively associated
to bases {|iA〉} and {|jB〉}: then, any vector in the resulting space can be
written as

∑
i,j cij |iA〉 ⊗ |jB〉, such that

∑
i,j |cij|

2 = 1.
As a consequence, being |HA| and |HB| the cardinality of the subspaces, the
composite state space is characterized by dimensionality equals to |HA|·|HB|.

At this point, it useful to recall some properties of the vector space resulting
from a tensor product. Note that as a matter of notation, we define as
perfectly equivalent |ψ〉 ⊗ |φ〉, |ψ〉 |φ〉 and |ψφ〉:

1. For |ψ〉 ∈ HA, |φ〉 ∈ HB and arbitrary scalar α, then

α |ψ〉 |φ〉 = |αψ〉 |φ〉 = |ψ〉 |αφ〉 (3.17)

22

2. Given |ψ1〉 , |ψ2〉 ∈ HA and |φ〉 ∈ HB, then

(|ψ1〉+ |ψ2〉) |φ〉 = |ψ1〉 |φ〉+ |ψ2〉 |φ〉 (3.18)

3. Given operators T on HA, S on HB, and the state vectors |ψ〉 ∈ HA

and |φ〉 ∈ HB, we have a corresponding operator T ⊗ S on HA ⊗HB,
such that

(T ⊗ S)(|ψ〉 ⊗ |φ〉) = (T ⊗ IHB)(IHA ⊗ S)(|ψ〉 ⊗ |φ〉)
= T |ψ〉 ⊗ S |φ〉

(3.19)

with IHA and IHB identity operators on HA and HB respectively.

3.1.5 Phase

Now that we have introduced the four postulates of quantum mechanics,
we can move forward into the description of the key concepts associated to
quantum computation. But before doing so, let us introduce the notion of
global phase.

Consider the state eiθ |ψ〉, where i is the imaginary unit and θ is a real valued
number: we state that the two vectors |ψ〉 and eiθ |ψ〉 are physically equal.
The meaning of this claim is that the measurement statistics associated to
the two states are the same. We can easily proof this directly applying (3.7)
to both vectors:

p(m) = 〈ψ|M+
mMm |ψ〉

p(m) = 〈ψ| e−iθM+
mMme

iθ |ψ〉 = 〈ψ|M+
mMm |ψ〉 ,

where the two expressions turn out to be exactly the same.

3.2 Quantum Computation

At this point, we have all of the quantum mechanics knowledge we need to
introduce the main concepts of quantum computation. We are going to start
doing so by presenting the basic quantum computation model, namely, the
quantum circuit. Then, we will provide a definition of quantum gates and of
universal set of gates.

23

3.2.1 The qubit

We already introduced the qubit as the simplest quantum system in a two-
dimensional state space. Recall that in the computational basis it is defined
as the superposition

|ψ〉 = a |0〉+ b |1〉 . (3.20)

In addition, we mention that a qubit can be visualized in the so called Bloch
sphere. Given the amplitudes coefficients a and b subject to the normalization
condition |a|2 + |b|2 = 1, and the Euler formula eix = cos(x) + i sin(x), we
can rewrite Equation (3.20), up to a global phase factor, as

|ψ〉 = cos
θ

2
|0〉+ eiφ sin

θ

2
|1〉 , (3.21)

where the real numbers θ and φ define a point (sin θ cosφ, sin θ sinφ, cos θ)
on a unit three-dimensional sphere, the Bloch sphere (Figure 6).

ϕ

θ

x̂

ŷ

ẑ
|ψ〉

|0〉

|1〉

Figure 6: Bloch sphere representation of a single qubit.

3.2.2 Single qubit operators

Operations on a single qubit must preserve the normalization condition over
the amplitudes: this is guaranteed defining single qubit operators by 2×2
unitary matrices, since they preserve the inner product between state vectors.
Thus, given a unitary U applied to state vector |ψ〉, then |〈ψ|U+U |ψ〉| =
|〈ψ|ψ〉| = 1 holds.

We already introduced a set of unitary operators, known as the Pauli ma-
trices, with equations (3.3), (3.4), (3.5). Additionally, we define other three

24

important quantum gates, that are the Hadamard gate H, the phase gate S
and the π/8 gate T :

H :=
1√
2

[
1 1
1 −1

]
; S :=

[
1 0
0 i

]
; T :=

[
1 0
0 exp(iπ/4)

]
. (3.22)

From the above, it is straightforward to verify that H = (X + Z)/
√

2 and
S = T 2.

A useful class of unitary matrices is the one of the rotation operators, which
arises when exponentiating Pauli matrices. They are defined by the following
equations:

Rx(θ) := e−iX
θ
2 = cos

θ

2
I − i sin

θ

2
X =

[
cos θ

2
−i sin θ

2

−i sin θ
2

cos θ
2

]
(3.23)

Ry(θ) := e−iY
θ
2 = cos

θ

2
I − i sin

θ

2
Y =

[
cos θ

2
− sin θ

2

sin θ
2

cos θ
2

]
(3.24)

Rz(θ) := e−iZ
θ
2 = cos

θ

2
I − i sin

θ

2
Z =

[
e−i

θ
2 0

0 ei
θ
2

]
. (3.25)

In general, we can combine these three operators to get a rotation θ around
arbitrary axis n̂ = (nx, ny, nz) unit vector with:

Rn(θ) := exp

(
−in̂ · ~σ θ

2

)
= cos

θ

2
I − i sin

θ

2
(nxX + nyY + nzZ) (3.26)

with ~σ the vector of Pauli matrices (X, Y, Z).

The Rn(θ) rotation matrix is useful because any single qubit unitary operator
U can always be written as the product of a global phase factor and a rotation
of an angle θ around an axis n̂:

U = eiαRn̂(θ) . (3.27)

The above is a general formulation of the special case of Z-Y decomposition
for a single qubit : according to this, given a unitary operator U on a single
qubit, there exist real numbers α, β, γ, δ such that

U = eiαRz(β)Ry(γ)Rz(δ) . (3.28)

25

⊕

|c〉 |c〉

|t〉 |t⊕ c〉

Figure 7: CNOT gate in the computational basis.

This last result can be used to derive that any unitary operator on a single
qubit can be decomposed with rotations around arbitrary unit, non parallel
axes m̂ and n̂ such that, for appropriate choices of α, β, γ, δ, the following is
true:

U = eiαRn(β)Rm(γ)Rn(δ) , (3.29)

where this result will be used in later analysis of the error introduced by gate
approximation through a universal set.

3.2.3 Controlled operations

Controlled operations instructions can be expressed in the form “If A is true,
than do B”. To understand how these operations work in a quantum circuit,
we start by introducing the most notable controlled gate, the CNOT gate.
It is characterized by two input qubits, known as the target and the control.
Consider the case of qubits in the computational basis: the action of CNOT
on control |c〉 and target |t〉 is |c〉 |t〉 → |c〉 |c⊕ t〉, as represented in Figure
7. This is equivalent to applying the quantum NOT gate X to the target
whenever the control is set to |1〉, else an identity when the control is |0〉.
The matrix representation of the CNOT gate is

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .

Starting from CNOT formalization, we can generalize to a definition for any
controlled gate Uc on a single qubit. The effect of Uc is such that Uc |c〉 |t〉 →
|c〉Uc |t〉 when the control is set, else an identity.
Up to now, we considered only controlled operations involving a single qubit
as control, with unitary gate acting on a single target. This is a special case
of the more general condition in which we have n control qubits along with k
targets, the input qubits of the controlled operator. An example with n = 4
and k = 3 is provided in Figure 9. The resulting circuit can be formulated

26

U

Figure 8: Controlled operation circuit.

U

Figure 9: Controlled operations on multiple qubits.

defining the controlled operator Cn(U) such that Cn(U) |x1x2 . . . xn〉 |ψ〉 =
|x1x2 . . . xn〉U |x1x2...xn〉 |ψ〉, where U is applied on |ψ〉 only if x1, x2, . . . , xn
product factors are all set to one.

As a final remark, note that there is nothing special in the control qubit being
set to one: a controlled gate can as well implement the logic “If A is false,
than do B”, that is equivalent to applying a unitary gate to the target if and
only if the control is set to zero. The equivalent quantum circuit notation is
provided in Figure 10.

3.2.4 Universal quantum gates

We can now introduce the concept of universal quantum gates. Similarly to
what happens in a classical setting, a universal set of gates for a quantum
circuit is a finite set of operators such that a circuit made only of those ele-
ments can be used to approximate at an arbitrary accuracy level any unitary
operator. In particular, our goal is to show that the Hadamard, CNOT ,
phase and π/8 gates form together a universal set, and to provide insights
on the error introduced by the resulting approximated implementation.

U

Figure 10: Controlled operation circuit.

27

To explore the constructions behind our claim, we start by introducing two-
level unitary operators: a two-level unitary matrix on an n-dimensional space
acts non-trivially on the space spanned by only two or less basis vectors.
Now, we want to show that two-level unitary gates are a universal set: to
do so we provide the intuition for the three-dimensional case, and assume
generalization to any dimension to be true. Given a 3× 3 unitary matrix U

U =

a b c
d e f
g h i

 (3.30)

we can find U1, U2, U3 two-level unitary matrices such that

UU1U2U3 = I , (3.31)

meaning that

U = U+
3 U

+
2 U

+
1 . (3.32)

Thus, given that (3.31) can be proved, we have shown how to decompose any
3× 3 unitary matrix into the product of two-level operators.
Generalizing, for any U on any d dimensional space, we can find a set of k
two-level unitary gates Vi such that

U = V1 . . . Vk (3.33)

with k ≤ (d − 1) + (d − 2) + . . . + 1 = d(d − 1)/2. An important corollary
derived from the latter result is that any arbitrary unitary n×n matrix of an
Hilbert space can be written as a product of at most 2n−1(2n − 1) two-level
matrices, bounding implementation complexity to O(4n).

The second construction needed to define the universal set of quantum gates
is based on the fact that any two-level unitary matrix on a n qubit system
can be implemented by a combination of CNOT and single qubit gates: by
this claim, we state that CNOT along with the union of all 2×2 operators
is a universal set.

In the analysis of H, CNOT , phase and π/8 gates, as we keep building on
previous constructions we need to add a final layer, that is: any single qubit
gate can be approximated to arbitrary accuracy as a combination of H and
T in a circuit. We can suggest the key points exploited to prove this claim
considering the operators T and HTH. Composing these matrices, we get,
up to a global phase factor,

28

exp
(
−iπ

8
Z
)

exp
(
−iπ

8
X
)

=[
cos

π

8
I − i sin

π

8
Z
] [

cos
π

8
I − i sin

π

8
X
]

=

cos2
π

8
I − i

[
cos

π

8
(X + Z) + sin

π

8
Y
]

sin
π

8
,

(3.34)

where the result is a rotation around (cos π
8
, sin π

8
, cos π

8
) direction, with an

angle θ such that cos θ/2 := cos2 π/8, meaning that we can construct R~n(θ)
simply combining π/8 and Hadamard gates.
Iterating the application of (3.34), it can be proved that R~n(θ), with θ con-
strained as mentioned above, can be used to implement any arbitrary rotation
R~n(α). In the next section we formalize the error’s definition along with some
useful insights.

3.2.5 Approximation accuracy

Up to now we talked about how we can use Hadamard, phase, T and CNOT
gates to approximate a unitary operator with arbitrary accuracy. At this
point, we still need to define what we mean by arbitrary accuracy, giving a
notion of error. Suppose that two unitary matrices U and V on the same
state space are given. The error introduced in a circuit implementing V in
place of U is defined as

E(U, V) := max
|ψ〉
|(U − V) |ψ〉 | , (3.35)

where the maximum is over all possible states |ψ〉 in the state space.
We can interpret the above equation by saying that any measurement per-
formed on the state V |ψ〉 gives measurement statistics approximately equals
to those returned by measures on U |ψ〉 if E(U, V) is small. More precisely,
imagine Mm to be a POVM element of a measure, associated to outcome m.
Then, the difference between measurement statistics PU for state U |ψ〉 and
PV for state V |ψ〉 is upper bounded as follow:

|PU − PV | ≤ 2E(U, V) . (3.36)

Thus, given E(U, V) small, so is the difference between measurement statis-
tics involving U and V . Moreover, in the general case where U1U2 . . . Un is
approximated by V1V2 . . . Vn, then we have that

E(U1U2 . . . Un, V1V2 . . . Vn) ≤
n∑
j=1

E(Uj, Vj) , (3.37)

29

meaning that the error adds up at most linearly.
Putting together Equations (3.36) and (3.37), we can constraint the difference
in probability of a measurement outcome between the original circuit and its
approximation up to a maximum tolerance ∆ > 0. It is sufficient to guarantee
E(Uj, Vj) ≤ ∆/(2n) for each j, as we show below:

∆

2n
≥ E(Uj, Vj), ∀j ⇒ |PU1U2...Un − PV1V2...Vn|

≤ 2E(U1U2 . . . Un, V1V2 . . . Vn)

≤ 2
n∑
j

E(Uj, Vj)

≤ ∆ .

(3.38)

We want now to consider the rotation defined in Equation (3.34): as we
claimed, a repeated iteration of such Rn̂(θ) can be used to approximate to
arbitrary accuracy any rotation Rn̂(α). This means that, for any ε > 0 there
exists a value n such that

E(Rn̂(α), Rn̂(θ)n) <
ε

3
, (3.39)

with n̂ having direction (cos π
8
, sin π

8
, cos π

8
). It is easy to see that

HRn̂(α)H = Rm̂(α) , (3.40)

with unit m̂ directed as (cos π
8
,− sin π

8
, cos π

8
), from which it follows

E(Rm̂(α), Rm̂(θ)n) <
ε

3
. (3.41)

At this point, we need to recall that, according to Equation (3.29), any single
qubit unitary U can be decomposed as

U = eiαRn̂(β)Rm̂(γ)Rn̂(δ) , (3.42)

where the global phase factor can be dropped and n̂, m̂ are non parallel
vectors. We can now compute the approximation error of U implemented
with (3.42): applying to each factor Equation (3.39), chained with (3.40),
and recalling the inequality in (3.37) for which the error adds up at most
linearly, we show that, for suitable integer values n1, n2, n3,

E(U,Rn̂(θ)n1HRn̂(θ)n2HRn̂(θ)n3) < ε . (3.43)

30

That is, we can control the approximation error for the implementation of
an arbitrary single qubit unitary matrix U , using a circuit composed only of
Hadamard and π/8 gates.

To summarize, we write down the chain of constructions that allow us to use
H, T , S and CNOT as universal set of quantum gates: first, we described
how to use two-level unitary matrices to implement any n×n quantum gate.
Than, we claimed that CNOT and single qubit operators can implement
any two-level unitary matrix, making themselves a universal set. Finally, we
showed how to use Hadamard and T gates to approximate any single qubit
operator to an arbitrary error. Note that our universal set also includes the
phase gate S, which can be implemented as the square of T : this is due to
reasons that are beyond the scope of this thesis, so they will not be treated
here.

3.3 Density matrix

As last topic of this chapter it is useful to introduce an extended formulation
of quantum mechanics, which is not based on the language of state vectors.
In Postulate 1 we have defined a state vector associated to a quantum system,
but this is not the only possible representation we can exploit: the density
operator (or density matrix) provides an equivalent description for a quantum
system in an unknown state. Suppose in fact that a system is associated to
one of the vectors belonging to the set {|ψi〉}, where each state is associated
to a probability pi. We can thus introduce the new set {pi, |ψi〉}, which is
called an ensemble of pure states. The resulting description of the quantum
system associated is the density matrix ρ, defined as

ρ =
∑
i

pi |ψi〉 〈ψ| , (3.44)

with
∑

i pi = 1 by definition of probability. A density operator must satisfy
the following three properties:

• tr(ρ) = 1, which is known as the trace condition.

• ρ must be positive semi-definite.

• ρ = ρ+ is self-adjoint.

The formalism allows to perform an important distinction: we talk about
pure states for a quantum system associated to a state vector |ψ〉 with prob-
ability 1. In this case (3.44) becomes ρ = |ψ〉 〈ψ|. Else ρ is said to be a mixed

31

state, which is a mixture of pure states, each one associated to a probability
value. To distinguish between these two conditions, we need to compute the
quantity tr(ρ)2: this is 1 in case of pure states, < 1 when ρ is a mixture.

32

4 Quantum-enhanced Reinforcement Learn-

ing Algorithm

We now want to apply the reinforcement learning paradigm to a problem of
interest in quantum computing. Given a quantum system in an initial state
|ψ〉, we would like to know the sequence of unitary operations to be applied
in order to transform it into |ψ′〉, which is any target state of interest. The
goal of this thesis is to implement and train an RL agent able to design
a quantum circuit transforming |ψ〉 into |ψ′〉. In this control problem the
objective is to learn an optimal policy such that the number of gates applied
in the circuit is minimized.
For the sake of simplicity, we assume |ψ〉 and |ψ′〉 associated to quantum
states of two qubits.

4.1 Reinforcement learning set up

We proceed in the description of states, actions, environment and learning
algorithm implemented to perform the task.

4.1.1 States and Actions

From equation (3.20), we can write any qubit as the linear combination of the
basis spanning its space. Applying Postulate 4 we generalized this notion,
for which the quantum state associated to two qubits can be expressed in
the computational basis as:

|ψ〉 = a00 |00〉+ a01 |01〉+ a10 |10〉+ a11 |11〉 , (4.1)

given that the normalization condition is satisified. Also recall that coeffi-
cients aij are complex scalars: we use this consideration to define the state of
an agent as the set of flat mapped tuples {(Re(aij), Im(aij))}, where real and
imaginary parts are separated in order to operate always with real numbers
in the algorithm. The resulting environment states become vectors in this
form:

s = [Re(a00),Re(a01),Re(a10),Re(a11),

Im(a00), Im(a01), Im(a10), Im(a11)] .
(4.2)

It is intuitive to see that the resulting state space S is continuous, anticipating
the infeasibility of using a tabular value function.

33

In order to train the agent to design a quantum circuit, we define the actions
it takes as consisting of picking a gate U at each timestep t. The learned pol-
icy will therefore map a state s - set of amplitudes of the quantum state as in
(4.2) - into a gate U . The set of gates (actions) defined in the algorithm con-
sists of the CNOT plus the rotation operators of an angle θ ∈ {π, 2π

3
, π
2
, π
3
, π
4
}

around the three axis x̂, ŷ, ẑ, acting on both the first and second qubits.

4.1.2 Environment

In our setting the environment is a fully observable MDP, as formalized in
Equation (2.4): in fact, considering the loop in Figure 4, the agent takes
an action after observing the environment state. We still need to specify the
form of the reward and the discount factor in order to characterize the MDP:

• The task is undiscounted, meaning we set γ = 0.

• We define a discrete reward function, assigning positive value of +100
whenever the terminal state is reached, and a negative signal of -1 for all
actions mapped into any other state. This choice reflects the definition
of optimality we decided for our policy, which is the one minimizing the
number of gates needed to transform the initial state into the target
one. Thus, penalizing each step leading to a state different from the
terminal, we push the agent to learn a policy minimizing the number
of steps before reaching the solution. This is similar to the approach
one would use to train an agent to reach a target state in a grid world:
setting a negative reward for any action mapped into a state different
than the terminal one incentivizes the agent to minimize the time spent
inside of the grid world [6].

At this point, we need to provide a better definition of what we mean by
terminal state, which in our setting is not equivalent to the target. We mark
an episode as ended whenever the agent reach a state similar enough to the
target: in quantum information theory, we measure the similarity of two
probability distributions using state fidelity, which can be applied to two
state vectors [7].
Given our target vector |ψ′〉 and the current vector |ψ(t)〉 at time t, we
measure the fidelity between the two states as:

F (ψ′, ψ(t)) = |〈ψ′|ψ(t)〉|2 , (4.3)

which defines F ∈ [0, 1]. Since a fidelity exactly equals to 1 in general is not
achievable by a finite set of gates, we define a tolerance parameter: this way,

34

any state whose fidelity with respect to the target is included in the range
[1 − tolerance, 1] is a terminal state. Increasing the tolerance decreases the
lower bound of the interval of accepted solutions.

4.1.3 TD learning with linear function approximation

Now we need to provide a detailed description of the learning algorithm.
We train the agent using temporal difference learning with linear function
approximation algorithm. Being our task episodic, both Monte Carlo and
TD Learning are suitable options, but we privilege the latter due to the
better sampling efficiency.

As we mentioned in Section 4.1.1, it is not feasible to rely on the tabular
approach on a continuous state space, i.e. storing the action value func-
tions on a matrix whose entries are identified by the pair (state, action).
An alternative to this technique is to exploit some method to approximate
q̂π(S,A): among the many options available (neural networks, decision trees,
...) we opt for a linear approximator based on stochastic gradient descent.
A description of the optimization algorithm is provided in Section 7.1 of the
Appendix.

In order to estimate q̂π(S,A) under a certain policy π, we introduce the set
of parameters ~w, the weights of the function. Moreover, we need to define a
set of features to represent a state of the agent inside of the function. For
our task, we simply map the state to itself, defining the features vector ~x(S)
with the identity operator. This way the features correspond to the set of flat
mapped tuples made of real and imaginary parts of the amplitudes. Then,
we define the q̂π(S,A, ~w) estimate as:

q̂π(S,A, ~w) := ~x(S) · ~w(A) (4.4)

with a different weight vector learned for each of the possible actions.

Now we need a differentiable value function to minimize, in order to learn
meaningful weights: the algorithm implemented relies on the mean square
error (MSE). If we imagine to have access to the real action value function
qπ(S,A) then we would minimize distance with our estimate as follow:

J(~w) = Eπ([qπ(S,A)− q̂π(S,A, ~w)]2) , (4.5)

with J(~w) objective function in stochastic gradient descent. The resulting
update rule would be written as:

35

∆~w = α(q̂π(S,A)− ~x(S) · ~w(A)) · ~x(S) . (4.6)

Since we can not access the real value of q̂π(S,A), we bootstrap on cur-
rent estimate as already done in TD learning, defining a new target Rt+1 +
γq̂π(St+1, At+1, ~w) for the MSE. Then we rewrite (4.5) as:

J(~w) = Eπ([Rt+1 + γq̂π(St+1, At+1, ~w)− q̂π(S,A, ~w)]2) , (4.7)

while (4.6) becomes:

∆~w = α(Rt+1 + γq̂π(St+1, At+1, ~w)− ~x(S)~w(A)) · ~x(S) . (4.8)

4.1.4 Q-learning

In the control problem, the goal is to learn an optimal policy. This can be
done learning a policy π from data (state to action transitions) sampled from
π itself: this setting is called on policy, and is the only one introduced so far.
Another option is to define two policies π and b, namely the target and the
behavioural ones:

• π: it is the policy that we want to optimally learn. In the implemented
algorithm, this is fully greedy, meaning that actions are taken as follow:

π(s) = argmax
a∈A

q̂(s, a, ~w) .

• b: this is the policy used at training time to sample next action, given
a state s. In order to ensure exploration, we decide to make b(s) fully
random: at each time step, an action is sampled uniformly among the
set of available quantum gates.

An off policy TD algorithm is known as Q-learning. In Figure 11 we illustrate
the weights learned by stochastic gradient descent, visualized in a heatmap.

4.2 Quantum Computation set up

We now want to discuss the implementation details of the actions and states
of our algorithms, which respectively correspond to quantum gates and state
vector amplitudes.

36

Figure 11: Example of learned weights associated to the policy found by Q-
learning. This is a n×m matrix, where n is the number of possible actions,
and m is the cardinality of the feature vector describing a specific state,
as defined in (4.2). The mapping between a number on the y-axis and the
corresponding gate can be found in the code on the public Github repository
of the project.

4.2.1 Quantum state vector

As previously mentioned, the designed circuit operates on a two qubits com-
posite system. This has been coded exploiting the computational basis of the
Hilbert space spanned by the set |00〉 , |01〉 , |10〉 , |11〉: the only information
stored in order to define any state are the amplitudes of the basis elements
in the linear combination, as expressed in equation (4.1).

4.2.2 Quantum Gates

We want to implement quantum states such that they can have a quantum
gate applied, resulting into an update of the amplitudes. Given a generic
gate U (an action in our RL setting)

U =

[
u00 u01
u10 u11

]
, (4.9)

and the state|ψ〉 = a00 |00〉+ a01 |01〉+ a10 |10〉+ a11 |11〉, applying U on the
first qubit of |ψ〉 results in the following updated vector of the amplitudes:

u00 a00 + u01 a10
u00 a01 + u01 a11
u10 a00 + u11 a10
u10 a01 + u11 a11

 . (4.10)

37

Step size Negative reward Positive reward Discount
0.0001 -1 100 0

Table 1: Algorithm hyper parameters.

The effect of U on the second qubit of the state vector instead provides
amplitudes equals to:

u00 a00 + u01 a01
u10 a00 + u11 a01
u00 a10 + u01 a11
u10 a10 + u11 a11

 . (4.11)

Results in (4.10) and (4.11) are hard coded in the algorithm.

4.3 Hyper parameters tuning

Before presenting the outcomes of the simulations, we provide an overview
of the tuned values for the hyper parameters of the algorithm. These are the
step size defined in equation (4.6), the scalar signals associated to negative
and positive rewards, and the discount. According to the results observed we
define the agent as myopic, i.e. we set γ = 0. The resulting hyper parameters
schema we choose to train the agent with is provided in Table 1.

4.4 Algorithm Results

In this section we present the results obtained running the algorithm with
the described characteristics. Since we are dealing with an episodic task, we
train for a fixed number of episodes which has been set to 100. In order to
end an episode, the agent must either hit a terminal state, or use a number
of gates equals to an upper bound of 300: in this case, the state is just reset
to the initial one, and a new episode begins.
We define tolerance = 0.15, fixing the set of terminal states as those matching
with 0.85 or larger fidelity the target.
The initial state is always fixed to be |ψ〉 = |00〉, while a distinct agent
is trained for each of the four Bell states (defined in Appendix 7.2), which
are treated as different problems. The learned policies provides the results
presented in Table 2. Recall that we define optimality in terms of minimum
number of gates needed to reach any terminal state.
We report that results in terms of number of gates are quite dependent on
the seed of the behavioural policy, which determines the exploratory steps
taken.

38

Bell state Fidelity Number of gates

1√
2
(|00〉+ |11〉) 1 2

1√
2
(|00〉 − |11〉) 1 4

1√
2
(|01〉+ |10〉) 1 3

1√
2
(|01〉 − |10〉) 0.93 3

Table 2: Algorithm results on Bell states.

q0 : H •
q1 :

Figure 12: Agent-designed quantum circuit to prepare the Bell state (|00〉+
|11〉)/

√
2. Note that, despite Hadamard not being in the set of actions of the

agent, given the state |00〉 a rotation of π/4 around the Y axes has the same
effect of the H gate.

5 Experimental results

The algorithm described in the previous section has been run only on a
classical device. This is suitable for the training of the agent, since we can
access the amplitudes of a state vector. Nevertheless, if we want to apply
the results in practice, the designed circuit must be implemented on a real
quantum hardware. This can be done on the IBM Quantum Lab [8], a cloud
platform providing access to quantum devices.
Given that the circuit found to prepare (|00〉+ |11〉)/

√
2 is the shortest (see

Table 2), this is the target on which we focus this experimental part. The
quantum circuit designed by the agent is represented in Figure 12.

5.1 IBM Quantum Lab

IBM Quantum Lab is a cloud based service from IBM, providing remote
access to a real quantum device. All quantum systems engineered by IBM
Quantum are based on superconducting qubit technology. The Quantum Lab
allows to run quantum circuits on the devices through a Jupyter Notebook
interface, using Qiskit, a Python based framework.

39

5.2 Quantum state tomography

Ideally, the output from our classical simulation would match the one coming
from the real device: unfortunately, the latter is characterized by noise. For
this reason, we compare the similarity between the expected and experimen-
tal terminal states distributions exploiting once again the fidelity measure.
In order to do so, we must be able to reconstruct the experimental state,
output of the quantum circuit implemented on the real device. This can be
done using quantum state tomography [9].
Quantum state tomography is a technique based on maximum likelihood and
numerical optimization to estimate a quantum state by repeated measure-
ments on identically prepared states. In this case, instead of relying on the
vector state representation, we use the density matrix : the two descriptions
are perfectly equivalent, but are sometimes preferable one to the other, de-
pending on which one is the simplest to implement.

First we consider the case of a single qubit, from which it will be easy to
generalize to a larger system, which is what we are interested in. A single
qubit can be associated to a density matrix written in the form:

ρ =
I + ~r · ~σ

2
, (5.1)

with ~r entries being the components of the Bloch vector of the qubit and
~σ = (σX , σY , σZ).
Moreover, each component of ~r, can be rewritten using the trace operator
such that the following equality holds:

〈σi〉 = tr(ρσi) = ri , (5.2)

with 〈σi〉 the expectation of a component in the Pauli vector.

Being ~r the only unknown of our problem, it is sufficient to compute the
expectation of σX , σY , σZ operators in order to have the correct value of the
density matrix. Given the qubit initialized to |0〉, we repeatedly measures
the state in all of the basis of the Pauli matrices. In this way, we obtain an
estimate of the expectations required, which will be closer to the real value
of 〈σi〉 the larger the number of measurements repetitions. The circuits
implementing these measurements are illustrated in Figure 13.

At the end of this procedure, we ideally found the density matrix ρ of our
system. Unfortunately, this is not the case in practice: due to the noisy and
probabilistic nature of the measurements, we are not able to ensure that the

40

|0〉 : H

c0 :/1
0

|0〉 : S† H

c0 :/1
0

|0〉 :

c0 :/1
0

Figure 13: Measures on the Pauli matrix basis.

resulting estimate respects the trace and positive semi-definite conditions.
Still the question is open: how can we approximate ρ from our sample mea-
surements? Following the steps suggested in [10], the problem can be solved
using the maximum likelihood technique, where we define as our estimate
the real density matrix which maximizes the likelihood of the observed data.
Given a distribution with unknown set of parameters θ, and a set of i.i.d.
observations ~x from a certain distribution, the likelihood function is defined
as

L(~x|θ) =
n∏
i

fθ(xi) , (5.3)

with fθ(xi) distribution of the data. The estimate of θ maximizing the like-
lihood of the observed data is

θ̂ = argmax
θ

L(~x|θ) , (5.4)

which is perfectly equivalent to find θ̂ maximizing the logarithm of the like-
lihood. In order to apply this technique to the case under study, we define
θ := ρ. The observed data are the counts {Ni} of the observed measurements
outcomes. For each basis set chosen, we have two values {Nj}, one for each
orthogonal state in the basis. Supposing a Gaussian distribution of the noise,
we can assume our observations to be sampled from a normal distribution.
The resulting log-likelihood is

41

logL(N1, · · · , N6|ρ) =
6∑
i

(Ni − 〈Ni〉)2

2 〈Ni〉
, (5.5)

where 〈Ni〉 = Ntot 〈i| ρ |i〉 and Ntot equals the total number of measurements
taken. In order to perform optimization over the density matrix, we define
the ρ entries by means of some tunable parameters, as suggested in [10]. In
particular, it can be proven that

ρ =
T ′T

tr(T ′T)
(5.6)

and

T =

 t1 0

t3 + it4 t2

 , ti ∈ R , (5.7)

where T ′ denotes the T matrix transposed.
The above problem can be solved numerically, returning a density matrix
maximizing the likelihood of the observed data and respecting the desired
conditions on both trace and eigenvalues.

The concepts just introduced can be applied to reconstruct the density ma-
trix of a system with an arbitrary large number of qubits. In our setting
we are interested in applying quantum state tomography to a two particles
composite system. Similar to the single qubit case, ρ can be expanded as

ρ =
∑
i,j

rijσi ⊗ σj , (5.8)

and can be constructed via 16 projective measurements defined by all the
combinations of the matrices in {I, σX , σY , σZ} via tensor product. The
resulting circuits are shown in Appendix 7.3.
The likelihood function over which to maximize becomes

logL(N1, · · · , N16|ρ) =
16∑
i

(Ni − 〈Ni〉)2

2 〈Ni〉
, (5.9)

where we have a measurement count for each orthogonal state in each basis.

Finally, the matrix T of the tunable parameters can be shown to be

42

T =

t1 0 0 0

t5 + it6 t2 0 0

t11 + it12 t7 + it8 t3 0

t15 + it16 t13 + it14 t9 + it10 t4

 , ti ∈ R . (5.10)

and the estimated density operator ρ̂ found according to equation (5.6) is

ρ̂ =

0.506 0.002− i 0.017 −0.001− i 0.017 0.461 + i 0.012

0.002 + i 0.017 0.017 0.001 + i 0.004 −0.003 + i 0.013

−0.001 + i 0.017 0.001− i 0.004 0.02 0.001− i 0.001

0.461− i 0.012 −0.003− i 0.013 0.001 + i 0.001 0.457

5.3 State Fidelity

By measuring the fidelity between the expected and the estimated density
matrices, associated to the output of the circuit in Figure 12, we obtain

F (ρ, ρ̂) = 0.943 , (5.11)

with ρ being the expected result and ρ̂ the corresponding estimate. With
a number of measures infinite in the limit, we would expect the fidelity to
approach 1, with the residual error due to the noise.

43

6 Conclusion

The presented approach provides promising results, looking as a good starting
point to automatize the design of a circuit able to prepare a system into an
arbitrary quantum state vector. Despite these satisfactory outcomes some
limitations still remain unsolved: as one can observe in the results of Table
2, optimality in terms of minimum number of gates is not guaranteed. In
particular, being the search space of minima in the approximated function
Q(S,A, ~w) large, it is easy to optimize the weights such that a local minimum
is reached. This aspect is hardly under control being dependent on the
randomness of the behavioural exploratory policy, which can be fixed with
a seed for reproducibiliy but does not allow for a general solution applicable
to any quantum states pair (initial, target).

Another problem of interest is to apply inverse reinforcement learning to re-
construct the reward function given a set of samples representing the sequence
of actions, output of an optimal given policy, in the context of designing a
circuit transforming one state to another. We aim at developing this second
part of the work in the future.

44

References

[1] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An
Introduction. Cambridge, MA, USA: A Bradford Book, 2018.

[2] DeepMind x UCL. Introduction to Reinforcement Learning with David
Silver. 2015. url: https://deepmind.com/learning-resources/-
introduction-reinforcement-learning-david-silver.

[3] Richard Bellman. Dynamic Programming. Princeton, NJ, USA: Prince-
ton University Press, 1957.

[4] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and
Quantum Information: 10th Anniversary Edition. Cambridge Univer-
sity Press, 2010.

[5] Richard Feynman, Robert Leighton, and Matthew Sands. The Feyn-
man Lectures on Physics. 1964.

[6] Jan Leike et al. “AI Safety Gridworlds”. In: CoRR abs/1711.09883
(2017). arXiv: 1711.09883. url: http://arxiv.org/abs/1711.

09883.

[7] Marin Bukov et al. “Reinforcement Learning in Different Phases of
Quantum Control”. In: Physical Review X 8.3 (Sept. 2018). issn: 2160-
3308. doi: 10.1103/physrevx.8.031086. url: http://dx.doi.org/
10.1103/PhysRevX.8.031086.

[8] IBM Quantum. 2021. url: https://quantum-computing.ibm.com/.

[9] Luca Rossi. Studio di Sistemi Quantistici Correlati con Metodi di Teo-
ria dell’Informazione Quantistica. 2020.

[10] Daniel F. V. James et al. “Measurement of qubits”. In: Physical Review
A 64.5 (Oct. 2001). issn: 1094-1622. doi: 10.1103/physreva.64.

052312. url: http://dx.doi.org/10.1103/PhysRevA.64.052312.

45

https://deepmind.com/learning-resources/-introduction-reinforcement-learning-david-silver
https://deepmind.com/learning-resources/-introduction-reinforcement-learning-david-silver
https://arxiv.org/abs/1711.09883
http://arxiv.org/abs/1711.09883
http://arxiv.org/abs/1711.09883
https://doi.org/10.1103/physrevx.8.031086
http://dx.doi.org/10.1103/PhysRevX.8.031086
http://dx.doi.org/10.1103/PhysRevX.8.031086
https://quantum-computing.ibm.com/
https://doi.org/10.1103/physreva.64.052312
https://doi.org/10.1103/physreva.64.052312
http://dx.doi.org/10.1103/PhysRevA.64.052312

7 Appendix

7.1 Gradient Descent

Gradient descent is a minimization algorithm applicable to differentiable
functions. In its most generic description we have an objective function
J(~w) depending on a set of tunable weights. Our goal is to find ~w such that
J is minimized. To do so, we need to compute the gradient of the objective
function, defined as:

∇~w(J) =

∂J
∂w1

...

∂J
∂wn

 (7.1)

In the gradient descent algorithm expression (7.1) is evaluated over the whole
dataset of pairs (si, v

π
i). A more efficient approach is given by stochastic

gradient descent : rather than sampling a dataset D and computing the full
gradient over it, we repeatedly evaluate the gradient on a single sample, and
use its value for the update rule

~w = ~w − 1

2
α∇~w(J) , (7.2)

with α known as the step size parameter.

7.2 Bell states

A very well known set of states in quantum mechanics is given by the Bell
states, which we employed as targets for our experiments. We briefly intro-
duce them providing their state vectors:

|β00〉 =
|00〉+ |11〉√

2
, (7.3)

|β01〉 =
|01〉+ |10〉√

2
, (7.4)

|β10〉 =
|00〉 − |11〉√

2
, (7.5)

|β11〉 =
|01〉 − |10〉√

2
. (7.6)

46

7.3 Two Qubit quantum state tomography

The space in this section is used to show the quantum circuits designed to
perform the measurements necessary for quantum state tomography.

Figure 14: Measurement on XI basis

|0〉 : H • H

|0〉 :

c0 : /2
1 0

Figure 15: Measurement on XX basis

|0〉 : H • H

|0〉 : H

c0 : /2
0 1

Figure 16: Measurement on XY basis

|0〉 : H • H

|0〉 : S† H

c0 : /2
0 1

Figure 17: Measurement on XZ basis

|0〉 : H • H

|0〉 :

c0 : /2
1 0

47

Figure 18: Measurement on YI basis

|0〉 : H • S† H

|0〉 :

c0 : /2
1 0

Figure 19: Measurement on YX basis

|0〉 : H • S† H

|0〉 : H

c0 : /2
1 0

Figure 20: Measurement on YY basis

|0〉 : H • S† H

|0〉 : S† H

c0 : /2
0 1

Figure 21: Measurement on YZ basis

|0〉 : H • S† H

|0〉 :

c0 : /2
1 0

Figure 22: Measurement on ZI basis

|0〉 : H •
|0〉 :

48

Figure 23: Measurement on ZX basis

|0〉 : H •
|0〉 : H

c0 : /2
0 1

Figure 24: Measurement on ZY basis

|0〉 : H •
|0〉 : S† H

c0 : /2
0 1

Figure 25: Measurement on ZZ basis

|0〉 : H •
|0〉 :

Figure 26: Measurement on IX basis

|0〉 : H •
|0〉 : H

c0 : /2
0 1

Figure 27: Measurement on IY basis

|0〉 : H •
|0〉 : S† H

c0 : /2
0 1

49

Figure 28: Measurement on IZ basis

|0〉 : H •
|0〉 :

50

	Introduction
	Reinforcement Learning
	The Reinforcement Learning problem
	Elements of the RL problem
	Finite Markov Decision Process
	Markov Property
	Fully Observable Environments
	Finite MDP
	Goal and return

	Inside an RL agent
	Policy
	Value Function
	Model
	Optimality

	Bellman Equations
	Dynamic Programming
	Policy Evaluation
	Policy Improvement
	Policy Iteration

	Monte Carlo methods
	Monte Carlo prediction
	Monte Carlo Control

	Temporal Difference Learning
	TD Learning prediction
	TD Learning control: SARSA

	Quantum Mechanics and Quantum Computation
	The postulates of quantum mechanics
	State space
	Time Evolution
	Quantum Measurements
	Composite Systems
	Phase

	Quantum Computation
	The qubit
	Single qubit operators
	Controlled operations
	Universal quantum gates
	Approximation accuracy

	Density matrix

	Quantum-enhanced Reinforcement Learning Algorithm
	Reinforcement learning set up
	States and Actions
	Environment
	TD learning with linear function approximation
	Q-learning

	Quantum Computation set up
	Quantum state vector
	Quantum Gates

	Hyper parameters tuning
	Algorithm Results

	Experimental results
	IBM Quantum Lab
	Quantum state tomography
	State Fidelity

	Conclusion
	Appendix
	Gradient Descent
	Bell states
	Two Qubit quantum state tomography

