polito.it
Politecnico di Torino (logo)

Lightweight Semantic Location and Activity Recognition on Android Smartphones with TensorFlow

Mele, Marco

Lightweight Semantic Location and Activity Recognition on Android Smartphones with TensorFlow.

Rel. Elena Maria Baralis. Politecnico di Torino, Corso di laurea magistrale in Ingegneria Informatica (Computer Engineering), 2019

[img]
Preview
PDF (Tesi_di_laurea) - Tesi
Document access: Anyone
Licenza: Creative Commons Attribution Non-commercial No Derivatives.

Download (3MB) | Preview
Abstract:

Study on sensor-based, low-power Semantic Location and Activity Recognition for Android devices using Keras and TensorFlow frameworks

Relators: Elena Maria Baralis
Academic year: 2018/19
Publication type: Electronic
Number of Pages: 155
Subjects:
Corso di laurea: Corso di laurea magistrale in Ingegneria Informatica (Computer Engineering)
Classe di laurea: New organization > Master science > LM-32 - COMPUTER SYSTEMS ENGINEERING
Ente in cotutela: UNIVERSITY OF ILLINOIS AT CHICAGO (STATI UNITI D'AMERICA)
Aziende collaboratrici: UNSPECIFIED
URI: http://webthesis.biblio.polito.it/id/eprint/11176
Modify record (reserved for operators) Modify record (reserved for operators)