polito.it
Politecnico di Torino (logo)

Hardware Aware Optimization of Embedded Convolutional Neural Networks

Flavio Ponzina

Hardware Aware Optimization of Embedded Convolutional Neural Networks.

Rel. Andrea Calimera. Politecnico di Torino, Corso di laurea magistrale in Ingegneria Informatica (Computer Engineering), 2018

Abstract:

This work presents a framework for Deep Neural Networks compression targeting on-edge inference on low power embedded systems. The work first shows the limitation of state-of-the-art compression techniques, which do not consider the target hardware in the optimization loop. Then, it presents an hardware-aware compression tool based on network pruning and knowledge distillation. As key features, the proposed technique (i) provides an optimized model which satisfies the hardware constraints while maximizing the target accuracy (ii) it does not need a labelled dataset. Experimental results highlight the necessity of a two-step approach, in which both model compression and model fine-tuning have a critical relevance. Results also show that the presented framework offers better results with respect to many SoA proposals.

Relatori: Andrea Calimera
Anno accademico: 2018/19
Tipo di pubblicazione: Elettronica
Numero di pagine: 61
Informazioni aggiuntive: Tesi secretata. Fulltext non presente
Soggetti:
Corso di laurea: Corso di laurea magistrale in Ingegneria Informatica (Computer Engineering)
Classe di laurea: Nuovo ordinamento > Laurea magistrale > LM-32 - INGEGNERIA INFORMATICA
Aziende collaboratrici: NON SPECIFICATO
URI: http://webthesis.biblio.polito.it/id/eprint/9810
Modifica (riservato agli operatori) Modifica (riservato agli operatori)