polito.it
Politecnico di Torino (logo)

La capacità di purificazione dell'aria delle specie vegetali in ambienti indoor : aspetti teorici e metodologici

Matteo Melissari

La capacità di purificazione dell'aria delle specie vegetali in ambienti indoor : aspetti teorici e metodologici.

Rel. Elena Piera Montacchini, Roberto Giordano. Politecnico di Torino, Corso di laurea magistrale in Architettura Per Il Progetto Sostenibile, 2017

Questa è la versione più aggiornata di questo documento.

Abstract:

PREMESSA

Il presente documento riunisce una serie di studi che indicano l'influenza delle attività, dei materiali, delle destinazioni d'uso di edifici in relazione agli inquinanti dell'aria interna come C02 e livelli di VOC.

Nel corso di ogni intervento edilizio su cui interviene, la figura dell'architetto si occupa della scelta dei materiali da costruzione e seleziona un processo costruttivo piuttosto che un altro. Ha quindi un impatto rilevante sulle condizioni ambientali alle quali saranno esposti gli occupanti dei suoi ambienti progettati.

La volontà del testo è quella di portare maggior rilievo verso la grande importanza della qualità dell'aria, riunendo le conoscenze reperite da svariati ambiti: medico, botanico, fisicotecnico. Per riunirle in un approccio integrato, che abbia come denominatore comune la qualità dell'aria negli ambienti progettati e l'integrazione dei metodi naturali agli impianti di depurazione dell'aria. È stato riscontrato che questo tipo di integrazione si rivela produttiva pervia degli innumerevoli benefici di comfort e di benessere, oltre a fornire elementi di design fin ora poco frequenti.

Vengono presi in considerazione i metodi di integrazione con specie di piante da interni e viene valutato se essi possano avere un riscontro positivo sul bilancio energetico dell'edificio diminuendo la richiesta di energia elettrica e riducendo la spesa dovuta al mantenimento delle unità trattamento aria.

Relatori: Elena Piera Montacchini, Roberto Giordano
Tipo di pubblicazione: A stampa
Soggetti: A Architettura > AB Architettura degli interni
T Tecnica e tecnologia delle costruzioni > TE Tecnologia dei materiali
Corso di laurea: Corso di laurea magistrale in Architettura Per Il Progetto Sostenibile
Classe di laurea: Nuovo ordinamento > Laurea magistrale > LM-04 - ARCHITETTURA E INGEGNERIA EDILE-ARCHITETTURA
Aziende collaboratrici: NON SPECIFICATO
URI: http://webthesis.biblio.polito.it/id/eprint/5859
Capitoli:

INDICE

Titolo

Premessa

Introduzione

La sindrome da edificio malato SBS

I PARTE

1.Gli inquinanti

1.1.Classificazione inquinanti

1.2.I VOC

1.3.L'Anidride carbonica

1.4.Normative in Europa

1.5.Gli enti di certificazione ambientali e di sostenibilità

2.Gli inquinanti per tipologia edilizia

2.1.Le tipologie edilizie

2.2.Scuole

2.2.1.Studio: Scuola, Finlandia, Kuplo

2.2.2.Studio: Scuola, Serbia, Beograd

2.2.3.Studio: Scuola, Italia, Padova

2.3.Palestre

2.3.1.Studio: Palestre, Portogallo, Portuellano

2.4.Ospedale

2.4.1.Studio: Ospedale, Taiwan, Taipel

2.5.Residenze

2.5.1.Studio: Residenza, Korea, Yong-ln

2.5.2.Studio: Residenza, Cina, Beijing

2.5.3.Studio: Residenza, Giappone, Shizuoka

2.5.4.Studio: Residenze, Spagna, Portuellano

2.4.6 Studio: Residenza, Francia, Parigi

2.6.Uffici

2.6.1.Studio: Ufficio, Braunschweig, Germany

2.6.2.Studio: Uffici, Germania, Leipzig

2.7.Hotel

2.7.1.Studio: Hotel, Cina, Guangdong

2.8.Riepilogo dati

II PARTE

3.Ricerca di soluzioni sostenibili

3.1.L’uso consapevole delle piante

3.1.1.La biofiltrazione attiva dell’aria degli ambienti interni

3.1.2.Importanza dei batteri

4.Metodi e tecniche di integrazione delle piante in architettura

4.1.1.Tetto Giardino

4.1.2.Doppia pelle con verde integrato

4.1.3.Pareti Verdi

4.1.4.Parete verde attiva

4.1.5.Le piante in vaso

4.2.Esempio significativo

5.Benefici del verde indoor

5.1.Salute e confort degli occupanti

5.2.Benefici economici

5.3.Benefici energetici

III PARTE

STRUMENTI PER IL PROGETTO

6.Prontuario piante

1.Fittonia verschaffeltii

2.Hemigraphus alternata

3.Dracaena fragrans

4.Sanseveria trifasciata

5.Chlorophytum comosum

6.Anthurium

7.Dieffenbachia seguine

8.Philodendron scandens

9.Epipremnum aureum

10.Spathiphyllum wallisii

11.Syngonium podophyllum

12.Schefflera arboricola

13.Schefflera elegantissima

14.Hedera helix

15.Polyscias fruticosa

16.Hoya carnosa variegata

17.Guzmania

18.Codiaeum variegatum

19.Pelargonium graveolens

20.Asparagus densiflorus

21.Aspidistra elatior

22.Calathea rosea pietà

23.Maranta leuconeura

24.Ficus benjamina

25.Ficus elastica

26.Howea belmoreana

27.Peperomia dusiifolia

7.Software di calcolo

7.1.Introduzione

7.2.Guida all'uso del foglio di calcolo

7.2.1.Parte Prima - Informazioni relative all'edificio in questione

7.2.2.Parte Seconda - Valori intermedi

7.2.3.Parte Terza - Scelta specie di piante

7.2.4.Parte Quarta - Risultati

8.Considerazioni finali, limiti riscontrati, spunti futuri

8.1.Il software di calcolo

8.2.LIVING WALL SYSTEM, calcolo del metodo attivo di purificazione

9.Bibliografia

9.1.BIBLIOGRAFIA - PRIMA PARTE

9.2.BIBLIOGRAFIA - SECONDA PARTE

Bibliografia:

BIBLIOGRAFIA

Yoo, M. H., Kwon, Y. J., Son, K. C., & Kays, S. J. (2006). Efficacy of indoor plants for the removal of single and mixed volatile organic pollutants and physiological effects of the volatiles on the plants. Journal of the American Society for Horticultural Science, 131(4), 452 458.

De Bias, M., Navazo, M., Alonso, L., Durana, N., Gomez, M. C., & Iza, J. (2012). Simultaneous indoor and outdoor on-line hourly monitoring of atmospheric volatile organic compounds in an urban building. The role of inside and outside sources. Science of the total environment, 426, 327-335.

Daisey, J. M., Angeli, W. J., & Apte, M. G. (2003). Indoor air quality, ventilation and health symptoms in schools: an analysis of existing information. Indoor air, 13(1), 53- 64.

Giordano, R. (2010). I prodotti per l'edilizia sostenibile. Sistemi Editoriali, Napoli.

Salma, I., Dosztâly, K., Borsós, T., Sòveges, B., Weidinger, T., Kristóf, G., & Kertész, Z. (2013). Physical properties, chemical composition, sources, spatial distribution and sinks of indoor aerosol particles in a university lecture hall. Atmospheric environment, 64, 219-228.

Irga, P. J., Torpy, F. R., & Burchett, M. D. (2013). Can hydroculture be used to enhance the performance of indoor plants for the removal of air pollutants?. Atmospheric Environment, 77, 267 271.

Decreto 2011-321 du 23 mars 2011 relatif à l'étiquetage des produits de construction ou de revêtement de mur ou de sol et des peintures et vernis sur leurs émissions de pollutants

Settimo, G. (2012, June). Inquinamento dell'aria in ambienti confinati: orientamenti e valutazioni in campo nazionale e comunitario. In S. Fuselli, L. Musmeci, A. Pilozzi, A.

Santarsiero, & G. Settimo (Eds.), Workshop. Problematiche relative all'inquinamento indoor: attuale situazione in Italia. Istituto Superiore di Sanità, Roma (Voi. 25).

Spilhaus, A. (2010). Eco ibrium. Science, 175(4023), 711 715. Rivista scientifica. Raatikainen, M., Skòn, J. P., furunen, M., Leiviskà, K., & Kolehmainen, M. (2013).

]Eva¡uating Effects of Indoor Air Quality in School Buildings and Students 'Health: A Study in Ten Schools of Kuopio, Finland||. In 2013 2nd International Conference on Environment, Energy and Biotechnology, IPCBEE (Vol. 51).

] Turanjanin, V., Vucicevic, B., Jovanovic, M., Mirkov, N., & Lazovic, I. (2014). Indoor CO

measurements in Serbian schools and ventilation rate calculation. Energy, 77, 290 296.

I de Gennaro, G., Farella, G., Marzocca, A., Mazzone, A., & Tutino, M. (2013). Indoor and outdoor monitoring of volatile organic compounds in school buildings: Indicators based on health risk assessment to single out critical issues. International journal of environmental research and public health, 10(12), 6273-6291.

t Ramos, C. A., Wolterbeek, H. T., & Almeida, S. M. (2014). Exposure to indoor air pollutants during physical activity in fitness centers. Building and Environment, 82, 349-360.

Jung, C. C., Wu, P. C., Tseng, C. H., & Su, H. J. (2015). Indoor air quality varies with ventilation types and working areas in hospitals. Building and Environment, 85, 190- 195.

Kim, S. S., Kang, D. H., Choi, D. H., Yeo, M. S., & Kim, K. W. (2008). Comparison of strategies to improve indoor air quality at the pre-occupancy stage in new apartment buildings. Building and Environment, 43(3), 320-328.

Liang, W., Yang, C., & Yang, X. (2014). Long-term concentrations of volatile organic compounds in a new apartment in Beijing, China. Building and Environment, 82, 693- 701.

Ohura, T., Amagai, T., Shen, X., Li, S., Zhang, P., & Zhu, L. (2009). Comparative study on indoor air quality in Japan and China: Characteristics of residential indoor and outdoor VOCs. Atmospheric Environment, 43(40), 6352-6359.

Villanueva, F., Tapia, A., Amo-Salas, M., Notario, A., Cabañas, B., & Martínez, E. (2015). Levels and sources of volatile organic compounds including carbonyls in indoor air of homes of Puertollano, the most industrialized city in central Iberian Peninsula. Estimation of health risk. International journal of hygiene and environmental health, 218(6), 522 -534.

Wolverton, B. C., Johnson, A., & Bounds, K. (1989). Interior landscape plants for indoor air pollution abatement.

i] Chan, W., Lee, S. C., Chen, Y., Mak, B , Wong, K., Chan, C. S.,... & Guo, X. (2009).

Indoor air quality in new hotels' guest rooms of the major world factory region. International Journal of Hospitality Management, 28(1), 26-32.

] Yael Stav, (2008). Living Wall and their potential contribution to sustainable urbanism, tesi di design, Facoltà di ambiente ed ingegneria del Queensland University of Technoogy.

I Wolverton, B. C., Johnson, A., & Bounds, K. (1989). Interior landscape plants for indoor air pollution abatement.

] George Irwin (2009)., Green Walls and indoor Air Quality

] Soreanu, G., Dixon, M., & Darlington, A. (2013). Botanical biofiltration of indoor gaseous pollutants-A mini-review. Chemical engineering journal, 229, 585-594.

] Pérez-Urrestarazu, L., Fernández Cañero, R., Franco, A., & Egea, G. (2016). Influence of an active living wall on indoor temperature and humidity conditions. Ecological Engineering, 90,120-124.

] Li, J. F., Wai, O. W., Li, Y. S., Zhan, J. M., Ho, Y. A., Li, J., & Lam, E. (2010). Effect of green roof on ambient CO 2 concentration. Building and Environment, 45(12), 2644- 2651.

1 Stec, W. J., Van Paassen, A. H. C., & Maziarz, A. (2005). Modelling the double skin façade with plants. Energy and Buildings, 37(5), 419-427.

] Burchett, M. D., Torpy, F., Brennan, J., & Craig, A. (2010). Greening the great indoors for human health and wellbeing. Fin. Rep. to Hort. Aust. Ltd.

|Wang, Z., & Zhang, J. S. (2011). Characterization and performance evaluation of a full scale activated carbon-based dynamic botanical air filtration system for improving indoor air quality. Building and Environment, 46(3), 758-768.

|Wang, I., Pei, J., & Zhang, J. S. (2014). Experimental investigation of the formaldehyde removal mechanisms in a dynamic botanical filtration system for indoor air purification. Journal of hazardous materials, 280, 235-243.

IGokhale, S., Konajda, T., & Schlink, U. (2008). Source apportionment of human personal exposure to volatile organic compounds in homes, offices and outdoors by chemical mass balance and genetic algorithm receptor models. Science of the Total Environment, 407(1), 122-138.

Salthammer, (\, Mentese, S., & Marutzky, R. (2010). Formaldehyde in the indoor environment. Chemical Reviews, 110(4), 2536-2572.

Derbez, M., Berthineau, B., Cochet, V., Lethrosne, M., Pignon, C., Riberon, J., & Kirchner, S. (2014). Indoor air quality and comfort in seven newly built, energy efficient houses in France. Building and Environment, 72,173-187.

Aydogan, A., & Montoya, L. D. (2011). Formaldehyde removal by common indoor plant species and various growing media. Atmospheric environment, 45(16), 2675 2682.

Bari, M. A., Kindzierski, W. B., Wheeler, A. J., Heroux, M. E., & Wallace, L. A. (2015). Source apportionment of indoor and outdoor volatile organic compounds at homes in Edmonton, Canada. Building and Environment, 90, 114-124.

Bernstein, J. A., Alexis, N., Bacchus, H., Bernstein, I. L., Fritz, P., Horner, E.,... & Reijula, K. (2008). The health effects of nonindustrial indoor air pollution. Journal of Allergy and Clinical Immunology, 121(3), 585-591.

Berrios, I. T., Zhang, J. S., Guo, B., Smith, J., & Zhang, Z. (2005). Volatile organic compounds (VOCs) emissions from sources in a partitioned office environment and their impact on IAQ. In 10th International Conference on Indoor Air Quality and Climate (Indoor Air 2005), Beijing, China, Tsinghua University Press.

Collinge, W., Landis, A. E., Jones, A. K., Schaefer, L. A., & Bilec, M. M. (2013). Indoor environmental quality in a dynamic life cycle assessment framework for whole buildings: Focus on human health chemical impacts. Building and Environment, 62, 182-190.

Cruz, M. D., Christensen, J. H., Thomsen, J. D., & Müller, R. (2014). Can ornamental potted plants remove volatile organic compounds from indoor air?-a review. Environmental Science and Pollution Research, 21(24), 13909-13928.

Diez, U., Kroeßner, T., Rehwagen, M., Richter, M., Wetzig, H., Schulz, R.,... & Herbarth, O. (2000). Effects of indoor painting and smoking on airway symptoms in atopy risk children in the first year of life results of the LARS-study. International journal of hygiene and environmental health, 203(1), 23 28.

Feng, H., & Hewage, K. (2014). Lifecycle assessment of living walls: air purification and energy performance. Journal of Cleaner Production, 69, 91-99.

Fjeid, T. (2000). The effect of interior planting on health and discomfort among workers and school children HortTechnology, 10(1), 46-52.

Guieysse, B., Hort, C., Platel, V., Munoz, R., Ondarts, M , & Revah, S. (2008). Biological treatment of indoor air for VOC removal: Potential and challenges. Biotechnology Advances, 26(5), 398 -410.

Ho, D. X., Kim, K. H., Ryeul Sohn, J., Hee Oh, Y., & Ahn, J. W. (2011). Emission rates oc volatile organic compounds released from newly produced household furniture products using a large-scale chamber testing method. The Scientific World Journal, 11, 1597-1622.

Jones, A. P. (1999). Indoor air quality and health. Atmospheric environment, 33(28), 4535 4564.

Kim, K. J., Jeong, M. I., Lee, D. W., Song, J. S., Kim, H. D., Yoo, E. H.,... & Kim, H. H. (2010). Variation in formaldehyde removal efficiency among indoor plant species. HortScience, 45(10), 1489-1495.

Kong, X., Lu, S., Gao, P., Zhu, N., Wu, W., & Cao, X. (2012). Research on the energy performance and indoor environment quality of typical public buildings in the tropical areas of China. Energy and Buildings, 48, 155-167.

Langer, S., Beko, G., Bloom, E., Widheden, A., & Ekberg, L. (2015). Indoor air quality in passive and conventional new houses in Sweden. Building and Environment, 93, 92 100.

Liu, Y., Shao, M., Fu, L., Lu, S., Zeng, L., & Tang, D. (2008). Source profiles of volatile organic compounds (VOCs) measured in China: Part I. Atmospheric Environment, 42(25), 6247-6260.

Lohr, V. I., Pearson-Mims, C. H., & Goodwin, G. K. (1996). Interior plants may improve worker productivity and reduce stress in a windowless environment. Journal of Environmental Horticulture, 14, 97-100.

Madureira, J., Paciencia, I., Rufo, J., Severo, M., Ramos, E., Barros, H., & de Oliveira Fernandes, E. (2016). Source apportionment of CO 2, PM 10 and VOCs levels and health risk assessment in naturally ventilated primary schools in Porto, Portugal. Building and Environment, 96,198 -205.

Mendell, M. J. (2007). Indoor residential chemical emissions as risk factors for respiratory and allergic effects in children: a review. Indoor air, 17(4), 259-277.

Muller, C. O., Yu, H., & Zhu, B. (2015). Ambient Air Quality in China: The Impact of Particulate and Gaseous Pollutants on IAQ. Procedia Engineering, 121, 582-589.

Oh, H. J., Nam, I. S., Yun, H., Kim, J., Yang, J., & Sohn, J. R. (2014). Characterization of indoor air quality and efficiency of air purifier in childcare centers, Korea. Building and Environment, 82, 203-214.

Persily, A. (2015). Challenges in developing ventilation and indoor air quality standards: The story of ASHRAE Standard 62. Building and Environment, 91, 61-69.

Poulhet, G., Dusanter, S., Crunaire, S., Locoge, N., Gaudion, V., Merlen, C.,... & Coddeville, P. (2014). Investigation of formaldehyde sources in French schools using a passive flux sampler. Building and Environment, 71,111-120.

Raanaas, R. K., Evensen, K. H., Rich, D., Sj0str0m, G., & Patil, G. (2011). Benefits of indoor plants on attention capacity in an office setting. Journal of Environmental Psychology, 31(1), 99-105.

Shinohara, N., Kai, Y., Mizukoshi, A , Fujii, M., Kumagai, K., Okuizumi, Y.,... & Yanagisawa, Y. (2009). On site passive flux sampler measurement of emission rates of carbonyls and VOCs from multiple indoor sources. Building and Environment, 44(5), 859 863.

Sidheswaran, M. A., Destaillats, H., Sullivan, D. P., Cohn, S., & Fisk, W. J. (2012). Energy efficient indoor VOC air cleaning with activated carbon fiber (ACF) filters. Building and Environment, 47, 357-367.

Tarran, J., Torpy, F., & Burchett, M. (2007, October). Use of living pot plants to cleanse indoor air-research review. In Proceedings Of 6 th Internat. Conf. On Indoor Air Quality, Ventilation & Energy Conservation,-Sustainable Built Environment (pp. 249- 256).

Torpy, F. R., Irga, P. J., & Burchett, M. D. (2014). Profiling indoor plants for the amelioration of high CO 2 concentrations. Urban Forestry & Urban Greening, 13(2), 227-233.

Turanjanin, V., Vucicevic, B., Jovanovic, M., Mirkov, N., & Lazovic, I. (2014). Indoor CO 2 measurements in Serbian schools and ventilation rate calculation. Energy, 77, 290-296.

Wang, Y., Bakker, F., de Groot, R., & Wortche, H. (2014). Effect of ecosystem services provided by urban green infrastructure on indoor environment: A literature review. Building and Environment, 77, 88-100.

Wei, W., Ramalho, O., & Mandin, C. (2015). Indoor air quality requirements in green building certifications. Building and Environment, 92,10-19.

Wolkoff, P., Schneider, T., Kildes0, J., Degerth, R., Jaroszewski, M., & Schunk, H. (1998). Risk in cleaning: chemical and physical exposure. Science of the total environment, 215(1), 135-156.

Yang, D. S., Pennisi, S. V., Son, K. C., & Kays, S. J. (2009). Screening indoor plants for volatile organic pollutant removal efficiency. HortScience, 44(5), 1377 1381.

Yu, C., & Crump, D. (1998). A review of the emission of VOCs from polymeric materials used in buildings. Building and Environment, 33(6), 357-374.

Zhu, S., Cai, W., Yoshino, H., Yanagi, U., Hasegawa, K., Kagi, N., & Chen, M. (2015). Primary pollutants in schoolchildren's homes in Wuhan, China. Building and Environment, 93, 41-53.

Modifica (riservato agli operatori) Modifica (riservato agli operatori)