Federico Castriotta
Learning the hierarchy of human activities in multi-view scenarios.
Rel. Giuseppe Bruno Averta, Francesca Pistilli, Simone Alberto Peirone. Politecnico di Torino, Corso di laurea magistrale in Ingegneria Informatica (Computer Engineering), 2025
|
|
PDF (Tesi_di_laurea)
- Tesi
Accesso riservato a: Solo utenti staff fino al 12 Giugno 2027 (data di embargo). Licenza: Creative Commons Attribution Non-commercial No Derivatives. Download (11MB) |
| Abstract: |
Human activities are inherently complex and variable, making them challenging for deep learning models. Yet, this variability does have an underlying hierarchical structure of related action patterns that naturally emerge from unscripted human activity videos. Exploiting this structure can enhance content understanding. The viewpoint from which actions are observed significantly influences the patterns that models detect. Traditional single-view methods, whether egocentric or exocentric, are limited: egocentric views capture detailed user interactions but are prone to occlusions and narrow fields of view, while exocentric views capture broader contexts but are restricted by fixed camera positions. This thesis proposes integrating these complementary perspectives to uncover patterns hidden by any single viewpoint. |
|---|---|
| Relatori: | Giuseppe Bruno Averta, Francesca Pistilli, Simone Alberto Peirone |
| Anno accademico: | 2025/26 |
| Tipo di pubblicazione: | Elettronica |
| Numero di pagine: | 83 |
| Soggetti: | |
| Corso di laurea: | Corso di laurea magistrale in Ingegneria Informatica (Computer Engineering) |
| Classe di laurea: | Nuovo ordinamento > Laurea magistrale > LM-32 - INGEGNERIA INFORMATICA |
| Aziende collaboratrici: | NON SPECIFICATO |
| URI: | http://webthesis.biblio.polito.it/id/eprint/38615 |
![]() |
Modifica (riservato agli operatori) |



Licenza Creative Commons - Attribuzione 3.0 Italia