polito.it
Politecnico di Torino (logo)

Shapelet Extraction Using Visibility Graphs

Giuseppe Priolo

Shapelet Extraction Using Visibility Graphs.

Rel. Luca Cagliero. Politecnico di Torino, Corso di laurea magistrale in Data Science And Engineering, 2025

[img] PDF (Tesi_di_laurea) - Tesi
Accesso riservato a: Solo utenti staff fino al 24 Ottobre 2026 (data di embargo).
Licenza: Creative Commons Attribution Non-commercial No Derivatives.

Download (4MB)
Abstract:

Time-series shapelets give transparent, example-based explanations but classic discovery is slow and brittle. I present a scalable, interpretable pipeline that discovers shapelets from visibility-graph (NVG/HVG) encodings of sliding windows. Each window becomes a compact 10-D graph descriptor; CLARA-style k-medoids then yields medoid subsequences as prototypes. Series are embedded via minimum z-normalized distances to these prototypes and classified with lightweight models (linear SVMs, tree ensembles). The design supports multivariate data. Across UCR/UEA benchmarks, the method achieves competitive accuracy while remaining auditable: predictions trace back to real subsequences. On GunPoint, the top shapelets recover the known “overshooting” motif, providing qualitative validation. Parallel VG extraction, CLARA subsampling, and batched transforms deliver strong runtime efficiency versus time-contracted baselines.

Relatori: Luca Cagliero
Anno accademico: 2025/26
Tipo di pubblicazione: Elettronica
Numero di pagine: 51
Soggetti:
Corso di laurea: Corso di laurea magistrale in Data Science And Engineering
Classe di laurea: Nuovo ordinamento > Laurea magistrale > LM-32 - INGEGNERIA INFORMATICA
Aziende collaboratrici: NON SPECIFICATO
URI: http://webthesis.biblio.polito.it/id/eprint/37891
Modifica (riservato agli operatori) Modifica (riservato agli operatori)