polito.it
Politecnico di Torino (logo)

Ply-Level Damage Localization in Composite Structures Using Machine Learning

Melih Eren Genc

Ply-Level Damage Localization in Composite Structures Using Machine Learning.

Rel. Marco Esposito, Marco Gherlone. Politecnico di Torino, Corso di laurea magistrale in Ingegneria Meccanica (Mechanical Engineering), 2025

[img] PDF (Tesi_di_laurea) - Tesi
Licenza: Creative Commons Attribution Non-commercial No Derivatives.

Download (4MB)
Abstract:

This study proposes a novel structural health monitoring (SHM) approach for detecting and localizing damage in composite materials. The developed system integrates spatial coordinate-based localization with ply-level damage identification. Sensor data are collected from the composite structure and processed through an ensemble of machine learning models designed to detect and localize damage with high precision. Three numerical case studies are presented to evaluate and compare the performance of different machine learning models. Additionally, a two-stage framework is introduced to improve robustness, allowing different models to be trained on distinct datasets and specialize in damage detection at various ply levels. The proposed SHM system demonstrates significant potential for real-time damage monitoring and localization, accurate remaining service life prediction, and integration with emerging smart material technologies.

Relatori: Marco Esposito, Marco Gherlone
Anno accademico: 2024/25
Tipo di pubblicazione: Elettronica
Numero di pagine: 127
Soggetti:
Corso di laurea: Corso di laurea magistrale in Ingegneria Meccanica (Mechanical Engineering)
Classe di laurea: Nuovo ordinamento > Laurea magistrale > LM-33 - INGEGNERIA MECCANICA
Aziende collaboratrici: NON SPECIFICATO
URI: http://webthesis.biblio.polito.it/id/eprint/36736
Modifica (riservato agli operatori) Modifica (riservato agli operatori)