polito.it
Politecnico di Torino (logo)

Prediction of carbon Diffusivity in Austenite with a Neural Network model

Beatrice Cristalli

Prediction of carbon Diffusivity in Austenite with a Neural Network model.

Rel. Marco Actis Grande, Christophe Duwig, Joakim Odqvist, Viktor �sterberg. Politecnico di Torino, Corso di laurea magistrale in Ingegneria Dei Materiali Per L'Industria 4.0, 2025

Abstract:

This study develops a Neural Network (NN) model to predict carbon diffusivity (DC) in austenite under gas carburization conditions. The carburization process enhances surface hardness and wear resistance after quenching, by locally increasing the carbon content. By knowing DC, the efficiency of the carburization process can be enhanced. A fully empirical and a combined empirical-synthetic database are used for training the NN model. Synthetic data are generated using physics-based thermodynamic and mobility software, preventing data scarcity. Extensive pre-processing, including dimensionality reduction study, principal component analysis, and correlation analysis, controlling training input quality. The NN model uses supervised learning, estimating prediction and confidence intervals for DC. Results indicate that the proposed NN is able to handle experimental and synthetic data, opportunely predicting the target. This work aligns with the sustainable development goals by enhancing process efficiency and reducing energy consumption in steel manufacturing. Future developments involve extending the model to handle more complex carburization cycles and processes, such as nitriding, and refining redictive accuracy by incorporating additional data and methodologies.

Relatori: Marco Actis Grande, Christophe Duwig, Joakim Odqvist, Viktor �sterberg
Anno accademico: 2024/25
Tipo di pubblicazione: Elettronica
Numero di pagine: 75
Informazioni aggiuntive: Tesi secretata. Fulltext non presente
Soggetti:
Corso di laurea: Corso di laurea magistrale in Ingegneria Dei Materiali Per L'Industria 4.0
Classe di laurea: Nuovo ordinamento > Laurea magistrale > LM-53 - SCIENZA E INGEGNERIA DEI MATERIALI
Ente in cotutela: KUNGLIGA TEKNISKA HOGSKOLAN (ROYAL INSTITUTE OF TECHNOLOGY) - CBH (SVEZIA)
Aziende collaboratrici: KTH Royal Institute of Technology
URI: http://webthesis.biblio.polito.it/id/eprint/35199
Modifica (riservato agli operatori) Modifica (riservato agli operatori)