polito.it
Politecnico di Torino (logo)

Physics-Informed Machine Learning Approach to Satellite Attitude Dynamics and Control

Michele Olmo

Physics-Informed Machine Learning Approach to Satellite Attitude Dynamics and Control.

Rel. Marcello Romano, Luca Bigelli. Politecnico di Torino, Corso di laurea magistrale in Ingegneria Aerospaziale, 2024

Abstract:

This thesis explores a novel Physics-Informed Machine Learning (PIML) approach to solve the minimum-time rest-to-rest reorientation problem in satellite attitude dynamics and control. The problem of satellite reorientation consists in maneuvering a satellite from an initial rest state to a desired rest state within the shortest possible time. It is critical for a wide range of space missions, including Earth observation, scientific research, and defense applications. While traditional optimization methods are effective, they are computationally intensive and sensitive to initial conditions, posing challenges for real-time applications. To address these limitations, this research investigates a Physics-Informed Neural Network (PINN) architecture specifically designed to solve the minimum time reorientation problem. The PINN integrates the governing physical laws of satellite motion directly into the training process of the neural network, enhancing its ability to predict optimal trajectories compared to purely data-driven models. This research aims at bridging the gap between traditional control methods and emerging Machine Learning (ML) approaches, laying the groundwork for a promising new methodology for solving complex control problems in space missions.

Relatori: Marcello Romano, Luca Bigelli
Anno accademico: 2024/25
Tipo di pubblicazione: Elettronica
Numero di pagine: 89
Informazioni aggiuntive: Tesi secretata. Fulltext non presente
Soggetti:
Corso di laurea: Corso di laurea magistrale in Ingegneria Aerospaziale
Classe di laurea: Nuovo ordinamento > Laurea magistrale > LM-20 - INGEGNERIA AEROSPAZIALE E ASTRONAUTICA
Aziende collaboratrici: NON SPECIFICATO
URI: http://webthesis.biblio.polito.it/id/eprint/34280
Modifica (riservato agli operatori) Modifica (riservato agli operatori)